Making the Case for Parks: Construction of an Ecological Network of Urban Parks Based on Birds
Abstract
:1. Introduction
2. Method
2.1. Study Area
2.2. Data Source
2.3. Methodological Framework
2.4. Ecological Source Identification
- ①
- : Effects of threat source on grid in habitat :
- ①
- : Total threat level of grid in habitat type :
- ①
- : Habitat quality of grid in habitat type :
2.5. Ecological Corridor Extraction
2.5.1. Construction of Resistance Surface
2.5.2. MCR
2.5.3. Gravity Model
2.6. Evaluation of the Importance of 3D EN
3. Results
3.1. Identification of Ecological Source
3.2. Ecological Corridor Extraction
3.2.1. Two-Dimensional Ecological Resistance Surfaces and Corridors
3.2.2. 3D Ecological Resistance Surfaces and Corridors
3.2.3. Evaluation of the Importance of 3D EN
4. Discussion
4.1. Three-Dimensional EN
4.2. Combining Accessibility Analysis with ENs
4.2.1. Accessibility Analysis of Parks
4.2.2. Analysis Results
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, H.; Song, Y.; Kang, W.; Thorne, J.H.; Song, W.; Lee, D.K. LiDAR-derived three-dimensional ecological connectivity mapping for urban bird species. Landsc. Ecol. 2021, 36, 581–599. [Google Scholar] [CrossRef]
- Feng, Y.X.; Li, G.D. Interaction between urbanization and eco-environment in the Tibetan Plateau. J. Geogr. Sci. 2021, 31, 298–324. [Google Scholar] [CrossRef]
- Monalisa, P. Impact of urbanization on moth (Insecta: Lepidoptera: Heterocera) diversity across different urban landscapes of Delhi, India. Acta Ecol. Sin. 2021, 41, 204–209. [Google Scholar]
- Devraj, C.; Lalit, K. Land use change affects water erosion in the Nepal Himalayas. PLoS ONE 2020, 15, e0231692. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yu, D.D.; Yi, J.F.; Cao, Y.; Li, X.F.; Xu, H.G. Effects of spatial fragmentation on the elevational distribution of bird diversity in a mountain adjacent to urban areas. Ecol. Evol. 2022, 12, e9051. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.X.; Wei, L.Y.; Wang, Y.; Lu, Y.Q. Construction of ecological security pattern based on the importance of ecosystem service functions and ecological sensitivity assessment: A case study in Fengxian County of Jiangsu Province, China. Environ. Dev. Sustain. 2020, 23, 563–590. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Peng, J.; Dong, J.; Zhang, Z.; Xu, Z.; Meersmans, J. Linking ecological background and demand to identify ecological security patterns across the Guangdong-Hong Kong-Macao Greater Bay Area in China. Landsc. Ecol. 2021, 36, 2135–2150. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.X.; Hu, Y.N.; Du, Y.Y.; Meersmans, J.; Qiu, S.J. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Tillmann, J.E. Habitat Fragmentation and Ecological Networks in Europe. Oekom Verlag. 2005, 14, 119–123. [Google Scholar] [CrossRef]
- Xiao, S.; Wu, W.; Guo, J.; Ou, M.; Pueppke, S.G.; Ou, W.; Tao, Y. An evaluation framework for designing ecological security patterns and prioritizing ecological corridors: Application in Jiangsu Province, China. Landsc. Ecol. 2020, 35, 2517–2534. [Google Scholar] [CrossRef]
- Wang, C.; Yu, C.; Chen, T.; Feng, Z.; Hu, Y.; Wu, K. Can the establishment of ecological security patterns improve ecological protection? An example of Nanchang, China. Sci. Total Environ. 2020, 740, 140051. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.B.; Chen, Z.A.; Wei, X.J.; Li, X.Q.; Zhang, L.T. Comparative ecological network pattern analysis: A case of Nanchang. Environ. Sci. Pollut. Res. 2022, 29, 37423–37434. [Google Scholar] [CrossRef] [PubMed]
- Di, Z.; Wei, S. Identifying Ecological Corridors and Networks in Mountainous Areas. Int. J. Environ. Res. Public Health 2021, 18, 4797. [Google Scholar] [CrossRef]
- Huang, L.; Wang, D.R.; He, C.L. Ecological security assessment and ecological pattern optimization for Lhasa city (Tibet) based on the minimum cumulative resistance model. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.L.; Huang, L.Y. Linking MSPA and Circuit Theory to Identify the Spatial Range of Ecological Networks and Its Priority Areas for Conservation and Restoration in Urban Agglomeration. Front. Ecol. Evol. 2022, 10, fevo.2022.828979. [Google Scholar] [CrossRef]
- Bai, D.F.; Chen, P.J.; Atzeni, L.; Cering, L.; Li, Q.; Shi, K. Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling. Zool. Res. 2018, 39, 373–386. [Google Scholar] [CrossRef]
- Dou, H.L.; Jiang, G.S.; Stott, P.; Piao, R.Z. Climate change impacts population dynamics and distribution shift of moose (Alces alces) in Heilongjiang Province of China. Ecol. Res. 2013, 28, 625–632. [Google Scholar] [CrossRef]
- Irene, G.; Marta, B.A.; Xavier, G.; Pere, V.C. Perception assessment of environmental factors related to leisure-time physical activity in an urban stream corridor. Leis. Stud. 2020, 39, 688–705. [Google Scholar] [CrossRef]
- Pang, X.; Mörtberg, U.; Sallnäs, O.; Trubins, R.; Nordström, E.M.; Böttcher, H. Habitat network assessment of forest bioenergy options using the landscape simulator LandSim—A case study of Kronoberg, southern Sweden. Ecol. Model. 2017, 345, 99–112. [Google Scholar] [CrossRef]
- Dai, C.; Guo, H.C.; Tan, Q.; Ren, W. Development of a constructed wetland network for mitigating nonpoint source pollution through a GIS-based watershed-scale inexact optimization approach. Ecol. Eng. 2016, 96, 94–108. [Google Scholar] [CrossRef]
- Zhang, W.X.; Li, W.D.; Zhang, C.R.; Ouimet, W.B. Detecting horizontal and vertical urban growth from medium resolution imagery and its relationships with major socioeconomic factors. Int. J. Remote Sens. 2017, 38, 3704–3734. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, B. Enhancing urban landscape configurations by integrating 3D landscape pattern analysis with people’s landscape preferences. Environ. Earth Sci. 2016, 75, 1018. [Google Scholar] [CrossRef]
- Bauer, S.; Hoye, B.J. Migratory Animals Couple Biodiversity and Ecosystem Functioning Worldwide. Science 2014, 344, 1242552. [Google Scholar] [CrossRef] [PubMed]
- Flaspohler, D.J.; Giardina, C.P.; Asner, G.P.; Hart, P.; Price, J.; Lyons, C.K.A.; Castaneda, X. Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests. Biol. Conserv. 2009, 143, 280–288. [Google Scholar] [CrossRef]
- Sulaiman, S.; Mohamad, N.H.N.; Idilfitri, S. Contribution of Vegetation in Urban Parks as Habitat for Selective Bird Community. Procedia—Soc. Behav. Sci. 2013, 85, 267–281. [Google Scholar] [CrossRef] [Green Version]
- Marzluff, J.M. A decadal review of urban ornithology and a prospectus for the future. IBIS 2017, 159, 1–13. [Google Scholar] [CrossRef]
- Anjoulie, B.; Christoph, S. Urban wild food foraging locations: Understanding selection criteria to inform green space planning and management. Urban For. Urban Green. 2022, 73, 127596. [Google Scholar] [CrossRef]
- Li, Q.Z.; Thapa, S.; Hu, X.J.; Luo, Z.W.; Gibson, D.J. The Relationship between Urban Green Space and Urban Expansion Based on Gravity Methods. Sustainability 2022, 14, 5396. [Google Scholar] [CrossRef]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2003, 68, 129–138. [Google Scholar] [CrossRef]
- Eisazadeh, N.; Faizi, M. The Impact of Urban Parks and Green Spaces on Citizens’ Health and Quality of Life. Int. J. Environ. Cult. Econ. Soc. Sustain. Annu. Rev. 2008, 4, 17–24. [Google Scholar]
- Nielsen, A.B.; Bosch, M.V.D.; Maruthaveeran, S.; Bosch, C.K.V.D. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 2014, 17, 305–327. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Yin, P.Y.; Li, X.C.; Niu, J.G.; Wang, Y.X.; Cao, W.T.; Huang, J.X.; Chen, H.; Yao, X.C.; Yu, L.; et al. The divergent response of vegetation phenology to urbanization: A case study of Beijing city, China. Sci. Total Environ. 2022, 803, 150079. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.M.; Fan, Z.X.; Shen, S.G. Urban Green Space Suitability Evaluation Based on the AHP-CV Combined Weight Method: A Case Study of Fuping County, China. Sustainability 2018, 10, 2656. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Tan, X.; Chen, C.; Wang, Y. The influence of urban park characteristics on bird diversity in Nanjing, China. Avian Res. 2020, 11, 475–483. [Google Scholar] [CrossRef]
- Bar-Massada, A.; Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C. Complex effects of scale on the relationships of landscape pattern versus avian species richness and community structure in a woodland savanna mosaic. Ecography 2012, 35, 393–411. [Google Scholar] [CrossRef]
- Hager, S.B.; Cosentino, B.J.; Aguilar-Gómez, M.A.; Anderson, M.L.; Bakermans, M.; Boves, T.J.; Brandes, D.; Butler, M.W.; Butler, E.M.; Cagle, N.L.; et al. Continent-wide analysis of how urbanization affects bird-window collision mortality in North America. Biol. Conserv. 2017, 212, 209–215. [Google Scholar] [CrossRef]
- Van Doren, B.M.; Willard, D.E.; Hennen, M.; Horton, K.G.; Stuber, E.F.; Sheldon, D.; Sivakumar, A.H.; Wang, J.; Farnsworth, A.; Winger, B.M. Drivers of fatal bird collisions in an urban center. Proc. Natl. Acad. Sci. USA 2021, 118, e2101666118. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, L.; Shi, Y.; Zhang, Z.M.; Ji, J.W.; Zhou, X.W.; Bao, W.D. GIS analysis of the distribution dynamics of rare birds in Beijing. J. Beijing For. Univ. 2015, 37, 119–125. [Google Scholar] [CrossRef]
- Huang, Y.; Gu, Y.Y.; Li, X.S.; Wen, C. The identification and assessment of habitats of threatened birds in plain areas of Beijing. Landsc. Archit. 2019, 26, 32–36. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, C.; Wu, X. Urban Ecological Corridor Network Construction: An Integration of the Least Cost Path Model and the InVEST Model. ISPRS Int. J. Geo-Inf. 2020, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.S.; Li, X.C.; Luo, Y.H.; Zhang, D.N. Spatiotemporal effects of urban sprawl on habitat quality in the Pearl River Delta from 1990 to 2018. Sci. Rep. 2021, 11, 13981. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P. Spatiotemporal Features of the Three-Dimensional Architectural Landscape in Qingdao, China. PLoS ONE 2017, 10, e0137853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Wu, T.; Liu, M.R.; Huang, M.S.; Stendardo, L.; Zhang, Y.T. The Construction and Optimization of Ecological Security Pattern in the Harbin-Changchun Urban Agglomeration, China. Int. J. Environ. Res. Public Health 2019, 16, 1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Huang, Q.; Tang, G. Identification of urban flight corridors for migratory birds in the coastal regions of Shenzhen city based on three-dimensional landscapes. Landsc. Ecol. 2020, 36, 2043–2057. [Google Scholar] [CrossRef]
- Ye, H.; Yang, Z.; Xu, X. Ecological Corridors Analysis Based on MSPA and MCR Model—A Case Study of the Tomur World Natural Heritage Region. Sustainability 2020, 12, 959. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.Z.; Zhen, L.; Wang, C.; Yan, B.Y.; Cao, X.C.; Wu, R.Z. Impacts of ecological restoration and human activities on habitat of overwintering migratory birds in the wetland of Poyang Lake, Jiangxi Province, China. J. Mt. Sci. 2015, 12, 1302–1314. [Google Scholar] [CrossRef]
- Longcore, T.; Rich, C.; Mineau, P.; MacDonald, B.; Bert, D.G.; Sullivan, L.M.; Mutrie, E.; Gauthreaux, S.A.; Avery, M.L.; Crawford, R.L.; et al. Avian mortality at communication towers in the United States and Canada: Which species, how many, and where? Biol. Conserv. 2013, 158, 410–419. [Google Scholar] [CrossRef] [Green Version]
- Bowlin, M.S.; Enstrom, D.A.; Murphy, B.J.; Plaza, E.; Jurich, P.; Cochran, J. Unexplained altitude changes in a migrating thrush: Long-flight altitude data from radio-telemetry. Auk 2015, 132, 808–816. [Google Scholar] [CrossRef] [Green Version]
- Hager, S.B.; Cosentino, B.J.; McKay, K.J.; Monson, C.; Zuurdeeg, W.; Blevins, B. Window Area and Development Drive Spatial Variation in Bird-Window Collisions in an Urban Landscape. PLoS ONE 2013, 8, e53371. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Liu, C.; Jia, W.; Lu, S.; Lv, C.D. Construction and optimization of green space ecological networks in urban fringe areas: A case study with the urban fringe area of Tongzhou district in Beijing. J. Clean. Prod. 2020, 276, 124266. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Liu, X.; Chen, Z.; Wei, X.; Che, W. MCR-Modified CA–Markov Model for the Simulation of Urban Expansion. Sustainability 2018, 10, 3116. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Pan, L.; Wang, Q.; Chen, P.; Yan, C.; Liu, L. Research on Urban Ecological Network Under the Threat of Road Networks—A Case Study of Wuhan. ISPRS Int. J. Geo-Inf. 2019, 8, 342. [Google Scholar] [CrossRef] [Green Version]
- Turgay, D. Determination of ecological networks for vegetation connectivity using GIS & AHP technique in the Mediterranean degraded karst ecosystems. Journal of Arid Environments. 2021, 188. [Google Scholar] [CrossRef]
- Wang, L.W.; Wang, H.; Wang, Y.C.; Che, Y.; Ge, Z.W.; Mao, L.F. The relationship between green roofs and urban biodiversity: A systematic review. Biodivers Conserv. 2022, 31, 1771–1796. [Google Scholar] [CrossRef]
- Cho, C.J. The Korean growth-management programs: Issues, problems and possible reforms. Land Use Policy 2002, 19, 13–27. [Google Scholar] [CrossRef]
- Galster, G.; Hanson, R.; Ratcliffe, M.R.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling sprawl to the ground: Defining and measuring an elusive concept. Hous. Policy Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Shi, L.Y.; Shao, G.F.; Cui, S.H.; Li, X.Q.; Lin, T.; Yin, K.; Zhao, J.Z. Urban three-dimensional expansion and its driving forces-A case study of Shanghai, China. Chin. Geogr. Sci. 2009, 19, 291–298. [Google Scholar] [CrossRef]
- Munn, K.; Dragicevic, S. Spatial multi-criteria evaluation in 3D context: Suitability analysis of urban vertical development. Cartogr. Geogr. Inf. Sci. 2021, 48, 105–123. [Google Scholar] [CrossRef]
- He, S.J.; Wang, X.Y.; Dong, J.R.; Wei, B.C.; Duan, H.M.; Jiao, J.Z.; Xie, Y.W. Three-Dimensional Urban Expansion Analysis of Valley-Type Cities: A Case Study of Chengguan District, Lanzhou, China. Sustainability 2019, 11, 5663. [Google Scholar] [CrossRef] [Green Version]
- Li, C.L.; Xu, Y.Y.; Liu, M.; Hu, Y.M.; Huang, N.; Wu, W. Modeling the Impact of Urban Three-Dimensional Expansion on Atmospheric Environmental Conditions in an Old Industrial District: A Case Study in Shenyang, China. Pol. J. Environ. Stud. 2020, 29, 3171–3181. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, W.; Qian, Y.; Zheng, Z.; Yan, J. The effect of urban 2D and 3D morphology on air temperature in residential neighborhoods. Landsc. Ecol. 2019, 34, 1161–1178. [Google Scholar] [CrossRef]
- Cheng, X.; Damme, S.V.; Uyttenhove, P. A review of empirical studies of cultural ecosystem services in urban green infrastructure. J. Environ. Manag. 2021, 293, 112895. [Google Scholar] [CrossRef] [PubMed]
- Schüle, S.A.; Hilz, L.K.; Dreger, S.; Bolte, G. Social Inequalities in Environmental Resources of Green and Blue Spaces: A Review of Evidence in the WHO European Region. Int. J. Environ. Res. Public Health 2019, 16, 1216. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Song, W.; Li, C.; Lu, J. A multi-mode Gaussian-based two-step floating catchment area method for measuring accessibility of urban parks. Cities 2020, 105, 102815. [Google Scholar] [CrossRef]
- Dai, D. Racial/ethnic and socioeconomic disparities in urban green space accessibility: Where to intervene? Landsc. Urban Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Kim, J.; Chae, J.; Koo, T.H. Variation in bird diversity in relation to habitat size in the urban landscape of Seoul, South Korea. Acta Ornithol. 2007, 42, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Ronald, A.K.; Nándor, C.; Péter, S. Urban atlas population data in urban green space provision analyses through the case study of Szeged, Hungary. Urban For. Urban Green. 2021, 57, 126942. [Google Scholar] [CrossRef]
- Mohd, A.H. SMOTEDNN: A Novel Model for Air Pollution Forecasting and AQI Classification. Comput. Mater. Contin. 2022, 71, 1403–1425. [Google Scholar] [CrossRef]
- Mohd, A.H. CDLSTM: A Novel Model for Climate Change Forecasting. Comput. Mater. Contin. 2021, 71, 2363–2381. [Google Scholar] [CrossRef]
Data Name | Data Source | Year | Units/Resolution |
---|---|---|---|
Land use/land cover data | Resource and Environment Science and Data Center | 2018 | 30 m × 30 m |
Digital elevation model | Geospatial Data Cloud | 2018 | 30 m × 30 m |
Roads, rivers, and parks | Open Street Map | 2018 | 1:250,000 |
Buildings | Resource and Environment Science and Data Center | 2021 | City |
NDVI | NASA | 2020 | 30 m × 30 m |
Residential points | Lianjia | 2018 | / |
Threat Factors | Maximum Influence Range (km) | Sensitive Weight | Decay Function Type |
---|---|---|---|
Roads | 10 | 0.8 | linear |
Railways | 7 | 0.7 | linear |
Buildings | 12 | 1 | exponential |
Unused land | 4 | 0.2 | exponential |
Land Use Type | Habitat Value | Threat Sensitivity | |||
---|---|---|---|---|---|
Roads | Railways | Buildings | Unused Land | ||
Cultivated land | 0.4 | 0.2 | 0.2 | 0.5 | 0.3 |
Forest land | 1.0 | 0.6 | 0.6 | 0.8 | 0.6 |
Grassland | 0.6 | 0.4 | 0.3 | 0.6 | 0.5 |
Water | 1.0 | 0.5 | 0.4 | 0.9 | 0.5 |
Construction land | 0 | 0 | 0 | 0 | 0 |
Unused land | 0 | 0 | 0 | 0 | 0 |
Resistance Factors | Grading Index | Resistance Value |
---|---|---|
Landscape type | Forest land | 1 |
Water | 1 | |
Grassland | 20 | |
Cultivated land | 30 | |
Unused land | 50 | |
Construction land | 60 | |
Transport land | Other roads | 50 |
Main roads | 150 | |
Secondary Trunk Road | 250 | |
Highways and railways | 350 | |
Density of residential area | <10% | 50 |
10%–15% | 150 | |
15%–20% | 250 | |
20%–25% | 350 | |
>25% | 500 | |
Building height (3D) | <20 | 20 |
20–50 | 200 | |
50–100 | 500 | |
100–200 | 1000 | |
>200 | 2000 |
Target Layer | Criteria Layers and Weights | Indicator Layers and Weights | Score | |
---|---|---|---|---|
Ecological Source | Landscape Patterns (0.4) | Plaque area (0.5) | 9, 7, 5, 3, 1 in order according to the size of the area | |
Boundary density (0.5) | 9, 7, 5, 3, 1 in order according to the size of the density | |||
Ecological service function (0.4) | Number of connecting corridors | 9, 7, 5, 3, 1 in order according to the number of connecting corridors | ||
Social service function (0.2) | Service area of surrounding residents (hm2) | >500 | 9 | |
300–500 | 7 | |||
100–300 | 5 | |||
50–100 | 3 | |||
<50 | 1 | |||
Ecological corridor | Landscape Patterns (0.4) | Corridor length (km) | >20 | 9 |
15–20 | 7 | |||
10–15 | 5 | |||
5–10 | 3 | |||
<5 | 1 | |||
Ecological service function (0.4) | Number of connected plaques | >5 | 9 | |
3–4 | 7 | |||
1–2 | 5 | |||
0 | 1 | |||
Social service function (0.2) | The area of residential land within 1000 m around the corridor (hm2) | >200 | 9 | |
100–200 | 7 | |||
50–100 | 5 | |||
<50 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhou, Y.; Feng, Z.; Wu, K. Making the Case for Parks: Construction of an Ecological Network of Urban Parks Based on Birds. Land 2022, 11, 1144. https://doi.org/10.3390/land11081144
Yang Y, Zhou Y, Feng Z, Wu K. Making the Case for Parks: Construction of an Ecological Network of Urban Parks Based on Birds. Land. 2022; 11(8):1144. https://doi.org/10.3390/land11081144
Chicago/Turabian StyleYang, Yang, Yanru Zhou, Zhe Feng, and Kening Wu. 2022. "Making the Case for Parks: Construction of an Ecological Network of Urban Parks Based on Birds" Land 11, no. 8: 1144. https://doi.org/10.3390/land11081144
APA StyleYang, Y., Zhou, Y., Feng, Z., & Wu, K. (2022). Making the Case for Parks: Construction of an Ecological Network of Urban Parks Based on Birds. Land, 11(8), 1144. https://doi.org/10.3390/land11081144