How Do Different Modes of Governance Support Ecosystem Services/Disservices in Small-Scale Urban Green Infrastructure? A Systematic Review
Abstract
:1. Introduction
2. Literature Review
2.1. Urban Green Infrastructure and ES
2.2. Urban Green Infrastructure and EDS
2.3. A Need for New Governance Approaches
3. Research Methods
3.1. Study Selection
3.2. Literature Synthesis
4. Results and Discussion
4.1. Date and Type of Studies
4.2. Governance Modes
4.3. Adaptive Governance
4.4. Mosaic Governance
4.5. Networked Governance
4.6. Transformative Governance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seto, K.C.; Guneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venter, Z.S.; Hjertager Krog, N.; Barton, D.N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 2020, 709, 136193. [Google Scholar] [CrossRef] [PubMed]
- Zuniga-Teran, A.A.; Gerlak, A.K.; Mayer, B.; Evans, T.P.; Lansey, K.E. Urban resilience and green infrastructure systems: Towards a multidimensional evaluation. Curr. Opin. Environ. Sustain. 2020, 44, 42–47. [Google Scholar] [CrossRef]
- Van Oijstaeijen, W.; Van Passel, S.; Cools, J. Urban green infrastructure: A review on valuation toolkits from an urban planning perspective. J. Environ. Manag. 2020, 267, 110603. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Green Infrastructure and Health. Annu. Rev. Public Health 2021, 42, 317–328. [Google Scholar] [CrossRef]
- European Environmental Agency [EEA]. Green Infrastructure and Territorial Cohesion: The Concept of Green Infrastructure and Its Integration into Policies Using Monitoring Systems (EEA Technical Report No. 18). 2011. Available online: http://www.upv.es/contenidos/CAMUNISO/info/U0632842.pdf (accessed on 10 February 2022).
- Benedict, M.A.; McMahon, E.T. Green Infrastructure: Linking Landscapes and Communities; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Eisenman, T.S. Frederick Law Olmsted, green infrastructure, and the evolving city. J. Plan. Hist. 2013, 12, 287–311. [Google Scholar] [CrossRef] [Green Version]
- Taylor Lovell, S.; Taylor, J.R. Supplying urban ecosystem srvices through multifunctional green infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1463. [Google Scholar] [CrossRef]
- Hansen, R.; Pauleit, S. From multifunctionality to multiple ecosystem srvices? A conceptual framework for multifunctionality in green infrastructure planning for urban areas. Ambio 2014, 43, 516–529. [Google Scholar] [CrossRef] [Green Version]
- Albert, C.; Haaren, C.V. Implications of applying the green infrastructure concept in landscape planning for ecosystem srvices in peri-urban areas: An expert survey and case study. Plan. Pract. Res. 2015, 32, 227–242. [Google Scholar] [CrossRef]
- Bertram, C.; Rehdanz, K. Preferences for cultural urban ecosystem srvices: Comparing attitudes, perception, and use. Ecosyst. Serv. 2015, 12, 187–199. [Google Scholar] [CrossRef]
- Andersson, E.; Tengo, M.; McPhearson, T.; Kremer, P. Cultural ecosystem srvices as a gateway for improving urban sustainability. Ecosyst. Serv. 2015, 12, 165–168. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ES and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef]
- Von Dohren, P.; Haase, D. Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecol. Indic. 2015, 52, 490–497. [Google Scholar] [CrossRef]
- Maya-Manzano, J.M.; Fernández-Rodríguez, S.; Monroy-Colín, A.; Silva-Palacios, I.; Tormo-Molina, R.; Gonzalo-Garijo, A. Allergenic pollen of ornamental plane trees in a Mediterranean environment and urban planning as a prevention tool. Urban For. Urban Green. 2017, 27, 352–362. [Google Scholar] [CrossRef]
- Lemos, M.C.; Agrawal, A. Environmental Governance. Annu. Rev. Environ. Resour. 2006, 31, 297–325. [Google Scholar] [CrossRef]
- Rist, S.; Chidambaranatha, M.; Escobar, C.; Weismann, U.; Zimmermann, A. Moving from sustainable management to sustainable governance of natural resources: The role of social learning processes in rural India, Bolivia and Mali. J. Rural. Stud. 2007, 23, 23–37. [Google Scholar] [CrossRef]
- Lockwood, M.; Davidson, J.; Curtis, A.; Stratford, E.; Griffith, R. Governance Principles for Natural Resource Management. Soc. Nat. Resour. 2010, 23, 986–1001. [Google Scholar] [CrossRef]
- Georgescu, M.; Morefield, P.E.; Bierwagen, B.G.; Weaver, C.P. Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA 2014, 111, 2909–2914. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, M. Environmental Transformations: A Geography of the Anthropocene; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Gunderson, L.H.; Holling, C.S. (Eds.) Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Derkzen, M.L.; Teeffelen, A.J.V.; Nagendra, H.; Verburg, P.H. Shifting roles of urban green space in the context of urban development and global change. Curr. Opin. Environ. Sustain. 2017, 29, 32–39. [Google Scholar] [CrossRef]
- Heo, S.; Lim, C.; Bell, M. Relationships between Local Green Space and Human Mobility Patterns during COVID-19 for Maryland and California, USA. Sustainability 2020, 12, 9401. [Google Scholar] [CrossRef]
- Chaffin, B.C.; Garmenstani, A.S.; Gunderson, L.H.; Benson, M.H.; Angeler, D.G.; Arnold, C.A.; Cosens, B.; Craig, R.K.; Ruhl, J.B.; Allen, C.R. Transformative Environmental Governance. Annu. Rev. Environ. Resour. 2016, 41, 399–423. [Google Scholar] [CrossRef]
- Lawrence, A.; De Vreese, R.; Johnston, M.; van den Bosch, C.C.K.; Sanesi, G. Urban forest governance: Towards a framework for comparing approaches. Urban For. Urban Green. 2013, 12, 464–473. [Google Scholar] [CrossRef]
- Arthur, N.; Hack, J. A multiple scale, function, and type approach to determine and improve Green Infrastructure of urban watersheds. Urban For. Urban Green. 2022, 68, 127459. [Google Scholar] [CrossRef]
- Green, O.; Garmestani, A.S.; Albro, S.; Ban, N.C.; Berland, A.; Burkman, C.E.; Gardiner, M.M.; Gunderson, L.; Hopton, M.E.; Schoon, M.L.; et al. Adaptive governance to promote ecosystem srvices in urban green spaces. Urban Ecosyst. 2016, 19, 77–93. [Google Scholar] [CrossRef]
- Caparrós Martínez, J.; Milán-García, J.; Rueda-López, N.; de Pablo-Valenciano, J. Green infrastructure and water: An analysis of global research. Water 2020, 12, 1760. [Google Scholar] [CrossRef]
- Nordh, H.; Østby, K. Pocket parks for people—A study of park design and use. Urban For. Urban Green. 2013, 12, 12–17. [Google Scholar] [CrossRef]
- Kerishnan, P.B.; Maruthaveeran, S. Factors contributing to the usage of pocket parks–A review of the evidence. Urban For. Urban Green. 2021, 58, 126985. [Google Scholar] [CrossRef]
- Zhang, D.; Gersberg, R.M.; Ng, W.J.; Tan, S.K. Conventional and decentralized urban stormwater management: A comparison through case studies of Singapore and Berlin, Germany. Urban Water J. 2017, 14, 113–124. [Google Scholar] [CrossRef]
- Cariñanos, P.; Casares-Porcel, M. Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landsc. Urban Plan. 2011, 101, 205–214. [Google Scholar] [CrossRef]
- Wolch, J.; Byrne, J.; Newell, J. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.K.L.; Jim, C.Y. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs. Sci. Total Environ. 2016, 573, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Branas, C.C.; South, E.; Kondo, M.C.; Hohl, B.C.; Bourgois, P.; Wiebe, D.J.; MacDonald, J.M. Citywide cluster randomized trial to restore blighted vacant land and its effects on violence, crime, and fear. Proc. Natl. Acad. Sci. USA 2018, 115, 2946–2951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigolon, A.; Németh, J. Green gentrification or ‘just green enough’: Do Park location, size and function affect whether a place gentrifies or not? Urban Stud. 2020, 57, 402–420. [Google Scholar] [CrossRef]
- Kim, S.K.; Wu, L. Do the characteristics of new green space contribute to gentrification? Urban Stud. 2021, 59, 360–380. [Google Scholar] [CrossRef]
- Cruz, N.; Rode, P.; McQuarrie, M. New urban governance: A review of current themes and future priorities. J. Urban Aff. 2018, 41, 1–9. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Torraco, R. Writing integrative literature reviews: Guidelines and examples. Hum. Resour. Dev. Rev. 2005, 4, 356–367. [Google Scholar] [CrossRef]
- Mayring, P. Qualitative content analysis. Forum Qual. Soc. Res. 2000, 1, 1089. Available online: http://nbn-resolving.de/urn:nbn:de:0114-fqs0002204 (accessed on 25 February 2022).
- Elo, S.; Kyngas, H. The qualitative content analysis process. J. Adv. Nurs. 2008, 62, 107–115. [Google Scholar] [CrossRef]
- Benedict, M.; McMahon, E. Green infrastructure: Smart conservation for the 21st century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Green Infrastructure (GI)–Enhancing Europe’s Natural Capital; Brussels. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.03/DOC_1&format=PDF (accessed on 10 January 2022).
- Schleyer, C.; Lux, A.; Mehring, M.; Görg, C. Ecosystem Services as a Boundary Concept: Arguments from Social Ecology. Sustainability 2017, 9, 1107. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Baggethun, E.; Gren, Å.; Barton, D.N.; Langemeyer, J.; McPhearson, T.; O’Farrell, P.; Andersson, E.; Hamstead, Z.; Kremer, P. Urban ecosystem srvices. In Urbanization, Biodiversity and Ecosystem Srvices: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef] [Green Version]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Derkzen, M.; Van Teeffelen, A.; Verburg, P.H. Green infrastructure for urban climate adaptation: How does residents’ views on climate impacts and green infrastructure shape adaptation preferences? Landsc. Urban Plan. 2017, 157, 106–130. [Google Scholar] [CrossRef]
- Irga, P.; Burchett, M.D.; Torpy, F.R. Does urban forestry have a quantitative effect on ambient air quality in an urban environment? Atmos. Environ. 2015, 120, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Amorim, J.; Engardt, M.; Johansson, C.; Ribeiro, I.; Sannebro, M. Regulating and Cultural ecosystem srvices of Urban Green Infrastructure in the Nordic Countries: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 1219. [Google Scholar] [CrossRef]
- Diekmann, L.O.; Gray, L.C.; Thai, C.L. More Than Food: The Social Benefits of Localized Urban Food Systems. Front. Sustain. Food Syst. 2020, 4, 534219. [Google Scholar] [CrossRef]
- Breuste, J.; Qureshi, S.; Li, J. Scaling down the ecosystem services at a local level for urban parks of three megacities. Hercynia-Okol. Umw. Mitteleur. 2013, 46, 1–20. [Google Scholar]
- Soga, M.; Gaston, K.; Yamaura, Y. Gardening is beneficial for health: A meta-analysis. Prev. Med. Rep. 2017, 5, 92–99. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Pauleit, S. Adapting cities for climate change: The role of green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Steenkamp, J.; Cilliers, E.J.; Cilliers, S.S.; Lategan, L. Food for Thought: Addressing Urban Food Security Risks through Urban Agriculture. Sustainability 2021, 13, 1267. [Google Scholar] [CrossRef]
- Pena, J.C.; Martello, F.; Ribeiro, M.C.; Armitage, R.A.; Young, R.J.; Rodrigues, M. Street trees reduce the negative effects of urbanization on birds. PLoS ONE 2017, 12, e0174484. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, M.; Burkman, C.E.; Prajzner, S.P. The value of urban vacant land to support arthropod biodiversity and ES. Environ. Entomol. 2013, 42, 1123–1136. [Google Scholar] [CrossRef]
- Xing, Q.; Hao, X.; Lin, Y.; Hang, T.; Ke, Y. Experimental investigation on the thermal performance of a vertical greening system with green roof in wet and cold climates during winter. Energy Build. 2019, 183, 105–117. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Q.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Zheng, X.; Zou, Y.; Lounsbury, A.W.; Wang, C.; Wang, R. Green roofs for stormwater runoff retention: A global quantitative synthesis of the performance. Resour. Conserv. Recycl. 2021, 170, 105577. [Google Scholar] [CrossRef]
- Kavehei, E.; Jenkins, G.A.; Adame, M.F.; Lemckert, C. Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure. Renew. Sustain. Energy Rev. 2018, 94, 1179–1191. [Google Scholar] [CrossRef]
- Eisenman, S.T.; Churkin, G.; Jariwal, S.P.; Kumar, P.; Lovasi, G.S.; Pataki, D.E.; Weinberger, K.R.; Whitlow, T.H. Urban trees, air quality, and asthma: An interdisciplinary review. Landsc. Urban Plan. 2019, 187, 47–59. [Google Scholar] [CrossRef]
- Berland, A.; Shiflett, S.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Gittleman, M.; Farmer, C.J.Q.; Kremer, P.; McPhearson, T. Estimating stormwater runoff for community gardens in New York City. Urban Ecosyst. 2017, 20, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.A.; Marsh, T.; Williamson, S.; Han, B.; Derose, K.P.; Golinelli, D.; McKenzie, T. The Potential for Pocket Parks to Increase Physical Activity. Am. J. Health Promot. 2014, 28, S19–S26. [Google Scholar] [CrossRef] [Green Version]
- Mesimäki, M.; Hauru, K.; Lehvävirta, S. Do small green roofs have the possibility to offer recreational and experiential benefits in a dense urban area? A case study in Helsinki, Finland. Urban For. Urban Green. 2019, 40, 114–124. [Google Scholar] [CrossRef]
- Corkery, L. Community Gardens as a Platform for Education for Sustainability. Aust. J. Environ. Educ. 2004, 20, 69–75. [Google Scholar] [CrossRef]
- Kim, G. The Public Value of Urban Vacant Land: Social Responses and Ecological Value. Sustainability 2016, 8, 486. [Google Scholar] [CrossRef] [Green Version]
- Clarke, M.; Davidson, M.; Egerer, M.; Anderson, E.; Fouch, N. The underutilized role of community gardens in improving cities’ adaptation to climate change: A review. People Place Policy 2019, 12, 241–251. [Google Scholar] [CrossRef]
- Lyytimaki, J.; Sipil, M. Hopping on one leg—The challenge of ecosystem disservices for urban green management. Urban For. Urban Green. 2009, 8, 309–315. [Google Scholar] [CrossRef]
- Von Dohren, P.; Haase, D. Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin, Germany. Ecosyst. Serv. 2019, 40, 101031. [Google Scholar] [CrossRef]
- Peschardt, K.K.; Schipperijn, J.; Stigsdotter, U.K. Use of Small Public Urban Green Spaces (SPUGS). Urban For. Urban Green. 2012, 11, 235–244. [Google Scholar] [CrossRef]
- Teixeira, F.Z.; Bachi, L.; Blanco, J.; Zimmermann, I.; Welle, I.; Carvalho-Ribeiro, S.M. Perceived ecosystem ssrvices (ES) and ecosystem disservices (EDS) from trees: Insights from three case studies in Brazil and France. Landscape Ecol. 2019, 34, 1583–1600. [Google Scholar] [CrossRef]
- Armstrong, D. A Survey of Community Gardens in Upstate New York: Implications for Health Promotion and Community Development. Health Place 2000, 6, 319–327. [Google Scholar] [CrossRef]
- Baldock, K.C.R.; Goddard, M.A.; Hicks, D.M.; Kunin, W.E.; Mitschunas, N.; Morse, H.; Osgathorpe, L.M.; Potts, S.G.; Robertson, K.M.; Scott, A.V.; et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 2019, 3, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Roman, L.A.; Conway, T.M.; Eisenman, T.S.; Koeser, A.K.; Barona, C.O.; Locke, D.H.; Jenerette, G.D.; Östberg, J.; Vogt, J. Beyond ‘trees are good’: Disservices, management costs, and tradeoffs in urban forestry. Ambio 2021, 50, 615–630. [Google Scholar] [CrossRef]
- Wooster, E.I.F.; Fleck, R.; Torpy, F.; Ramp, D.; Irga, P.J. Urban green roofs promote metropolitan biodiversity: A comparative case study. Build. Environ. 2022, 207, 108458. [Google Scholar] [CrossRef]
- Russo, A.; Escobedo, F.J.; Girella, G.T.; Zerbe, S. Edible green infrastructure: An approach and review of provisioning ecosystem services and disservices in urban environments. Agric. Ecosyst. Environ. 2017, 242, 53–66. [Google Scholar] [CrossRef]
- Pearsall, H. Staying cool in the compact city: Vacant land and urban heating in Philadelphia, Pennsylvania. Appl. Geogr. 2017, 79, 84–92. [Google Scholar] [CrossRef]
- Curtis, A.J.; Helmig, D.; Baroch, C.; Daly, R.; Davis, S. Biogenic volatile organic compound emissions from nine tree species used in an urban tree-planting program. Atmos. Environ. 2014, 95, 634–643. [Google Scholar] [CrossRef]
- Lyytimaki, J. Bad nature: Newspaper representation of ecosystem disservices. Urban For. Urban Green. 2014, 13, 418–424. [Google Scholar] [CrossRef]
- Shackleton, C.M.; Ruwanza, S.; Sinasson Sanni, G.K.; Bennett, S.; Lacy, P.; Modipa, R.; Mtati, N.; Sachikonye, M.; Thondhlana, G. Unpacking Pandora’s Box: Understanding and categorising ecosystem disservices for environmental management and human wellbeing. Ecosystem 2016, 19, 587–600. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Li, S. Classifying ecosystem disservices and comparing their effects with ES in Beijing, China. arXiv 2020, arXiv:2001.01605. [Google Scholar]
- Campagne, C.S.; Roche, P.K.; Salles, J.-M. Looking into Pandora’s Box: Ecosystem disservices assessment and correlations with ecosystem services. Ecosyst. Serv. 2018, 30, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Lara, B.; Rojo, J.; Fernández-González, F.; González-García-Saavedra, A.; Serrano-Bravo, M.D.; Pérez-Badia, R. Impact of Plane Tree Abundance on Temporal and Spatial Variations in Pollen Concentration. Forests 2020, 11, 817. [Google Scholar] [CrossRef]
- Pecero-Casimiro, R.; Fernández-Rodríguez, S.; Tormo-Molina, R.; Silva-Palacios, I.; Gonzalo-Garijo, Á.; Monroy-Colín, A.; Coloma, J.F.; Maya-Manzano, J.M. Producing Urban Aerobiological Risk Map for Cupressaceae Family in the SW Iberian Peninsula from LiDAR Technology. Remote Sens. 2020, 12, 1562. [Google Scholar] [CrossRef]
- Sousa-Silva, R.; Smargiassi, A.; Kneeshaw, D.; Dupras, J.; Zinszer, K.; Paquette, A. Strong variations in urban allergenicity riskscapes due to poor knowledge of tree pollen allergenic potential. Sci. Rep. 2021, 11, 10196. [Google Scholar] [CrossRef] [PubMed]
- Lyytimäki, j.; Kjerulf Petersen, L.; Normander, B.; Bezák, P. Nature as a nuisance? Ecosystem services and disservices to urban lifestyle. Environ. Sci. 2008, 5, 161–172. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef] [PubMed]
- Cariñanos, P.; Grilo, F.; Pinho, P.; Casares-Porcel, M.; Branquinho, C.; Acil, N.; Andreucci, M.B.; Anjos, A.; Bianco, P.M.; Brini, S.; et al. Estimation of the Allergenic Potential of Urban Trees and Urban Parks: Towards the Healthy Design of Urban Green Spaces of the Future. Int. J. Environ. Res. Public Health 2019, 16, 1357. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, W.D. Sidewalk/curb-breaking tree roots. 1. Why tree roots cause pavement problems. Arboric. J. 1984, 8, 37–44. [Google Scholar] [CrossRef]
- Wu, C.; Li, X.; Tian, Y.; Deng, Z.; Yu, X.; Wu, S.; Shu, D.; Peng, Y.; Sheng, F.; Gan, D. Chinese Residents’ Perceived ES and Disservices Impacts Behavioral Intention for Urban Community Garden: An Extension of the Theory of Planned Behavior. Agronomy 2022, 12, 193. [Google Scholar] [CrossRef]
- Azmy, M.M.; Hosaka, T.; Numata, S. Responses of four hornet species to levels of urban greenness in Nagoya city, Japan: Implications for ecosystem disservices of urban green spaces. Urban For. Urban Green. 2016, 18, 117–125. [Google Scholar] [CrossRef]
- Hagemann, F.; Randrup, T.B.; Ode Sang, A. Challenges to implementing the urban ecosystem service concept in green infrastructure planning: A view from practitioners in Swedish municipalities. Socio-Ecol. Pract. Res. 2020, 2, 283–296. [Google Scholar] [CrossRef]
- Andersson, E.; Enqvist, T.; Tengo, M. Stewardship in urban landscapes. In Science and Practice of Landscape Stewardship; Bieling, C., Plieninger, T., Eds.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Jerome, G. Defining community-scale green infrastructure. Landsc. Res. 2017, 42, 223–229. [Google Scholar] [CrossRef]
- Katz, D.S.W.; Connor Barrie, B.T.; Cary, T.S. Urban ragweed populations in vacant lots: An ecological perspective on management. Urban For. Urban Green. 2014, 13, 756–760. [Google Scholar] [CrossRef]
- Nemeth, J.; Langhorst, J. Rethinking urban transformation: Temporary uses for vacant land. Cities 2013, 40, 143–150. [Google Scholar] [CrossRef]
- Dennis, M.; Armitage, R.P.; James, P. Social-ecological innovation: Adaptive responses to urban environmental conditions. Urban Ecosyst. 2016, 19, 1063–1082. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N. Ecosystem service implementation and governance challenges in urban green space planning—The case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- Fox-Kamper, R.; Wesener, A.; Munderlein, D.; Sondermann, M.; McWilliam, W.; Kirk, N. Urban community gardens: An evaluation of governance approaches and related enablers and barriers at different development stages. Landsc. Urban Plan. 2017, 170, 59–68. [Google Scholar] [CrossRef]
- Guitart, D.; Pickering, C.; Byrne, J. Past results and future directions in urban community gardens research. Urban For. Urban Green. 2012, 11, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Feltynowski, M.; Bergier, T.; Kabisch, N.; Laszkiewicz, E.; Strohbach, M.; Kronenberg, J. Challenges of urban green space management in the face of using inadequate data. Urban For. Urban Green. 2017, 31, 56–66. [Google Scholar] [CrossRef]
- Kronenberg, J.; Haase, A.; Laszkiewicz, E.; Antal, A.; Baravikova, A.; Biernacka, M.; Dushkova, D.; Filcak, R.; Haase, D.; Ignatieva, M.; et al. Environmental justice in the context of urban green space availability, accessibility, and attractiveness in post socialist cities. Cities 2020, 106, 102862. [Google Scholar] [CrossRef]
- Silva, C.; Viegas, I.; Panagopoulos, T.; Bell, S. Environmental Justice in Accessibility to Green Infrastructure in Two European Cities. Land 2018, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, L.; Reames, T. Cooling Detroit: A socio-spatial analysis of equity in green roofs as an urban heat island mitigation strategy. Urban For. Urban Green. 2019, 44, 126331. [Google Scholar] [CrossRef]
- Anguelovski, I.; Connolly, J.J.T.; Masip, L.; Pearsall, H. Assessing green gentrification in historically disenfranchised neighborhoods: A longitudinal and spatial analysis of Barcelona. Urban Geogr. 2017, 39, 458–491. [Google Scholar] [CrossRef]
- MacKenzie, A.; Pearson, L.J.; Pearson, C.J. A framework for governance of public green spaces in cities. Landsc. Res. 2018, 44, 444–457. [Google Scholar] [CrossRef]
- Gunningham, N.; Holley, C. Next-generation environmental regulation: Law, regulation and governance. Annu. Rev. Law Soc. Sci. 2016, 12, 273–293. [Google Scholar] [CrossRef]
- Lo, C. Going from government to governance. In Global Encyclopedia of Public Administration, Public Policy and Governance; Farazmand, A., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Harrington, E.; Hsu, D. Roles for government and other sectors in the governance of green infrastructure in the U.S. Environ. Sci. Policy 2018, 88, 104–115. [Google Scholar] [CrossRef]
- Depietri, Y. Planning for urban green infrastructure: Addressing tradeoffs and synergies. Curr. Opin. Environ. Sustain. 2022, 54, 101148. [Google Scholar] [CrossRef]
- Armitage, D. Adaptive Capacity and Community-Based Natural Resource Management. Environ. Manag. 2005, 35, 703–715. [Google Scholar] [CrossRef]
- Newig, J.; Fritsch, O. Environmental governance: Participatory, multi-level—And effective? Environ. Policy Gov. 2009, 19, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Spotswood, E.N.; Benjamin, M.; Stoneburner, L.; Wheeler, M.M.; Beller, E.E.; Balk, D.; McPhearson, T.; Kuo, M.; McDonald, R.I. Nature inequity and higher COVID-19 case rates in less-green neighbourhoods in the United States. Nat. Sustain. 2021, 4, 1092–1098. [Google Scholar] [CrossRef]
- Dennis, M.; James, P. Site-specific factors in the production of local urban ecosystem srvices: A case study of community-managed green space. Ecosyst. Serv. 2016, 17, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Breen, A.; Giannotti, E.; Molina, M.F.; Vásquez, A. From “Government to Governance”? A Systematic Literature Review of Research for Urban Green Infrastructure Management in Latin America. Front. Sustain. Cities 2020, 2, 572360. [Google Scholar] [CrossRef]
- Amundsen, H.; Berglund, F.; Westskog, H. Overcoming barriers to climate change adaptation—a question of multilevel governance? Environ. Plan. C Govern. Policy 2010, 28, 276–289. [Google Scholar] [CrossRef]
- Aronson, M.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.; Gunderson, L. Pathology and failure in the design and implementation of adaptive management. J. Environ. Manag. 2011, 92, 1379–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, R.; Bai, X.; Stafford Smith, M.; Costanza, R.; Griggs, D.; Moglia, M.; Neuman, M.; Newman, P.; Newton, P.; Norman, B.; et al. Sustainable urban systems: Co-design and framing for transformation. Ambio 2018, 47, 57–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G. An integrated system of urban green infrastructure on different types of vacant land to provide multiple benefits for local communities. Sustain. Cities Soc. 2017, 36, 116–130. [Google Scholar] [CrossRef]
- Colding, J.; Barthel, S. The potential of ‘Urban Green Commons’ in the resilience building of cities. Ecol. Econ. 2013, 86, 156–166. [Google Scholar] [CrossRef]
- Plummer, R.; FitzGibbon, J.E. Connecting adaptive co-management, social learning and social capital through theory and practicein. In Adaptive Co-Management: Collaboration, Learning and Multi-Level Governance; Armitage, D., Berkes, F., Doubleday, N., Eds.; University of British Columbia Press: Vancouver, BC, Canada, 2007; pp. 38–61. [Google Scholar]
- Krasny, M.; Tidball, K.G. Community Gardens as Contexts for Science, Stewardship, and Civic Action Learning. Cities Environ. 2009, 2, 8. [Google Scholar] [CrossRef]
- Barthel, S.; Folke, C.; Colding, J. Social–ecological memory in urban gardens—Retaining the capacity for management of ecosystem services. Glob. Environ. Chang. 2010, 20, 255–265. [Google Scholar] [CrossRef]
- Lin, B.; Egerer, M.H. Global social and environmental change drives the management and delivery of ecosystem services from urban gardens: A case study from Central Coast, California. Glob. Environ. Chang. 2020, 60, 102006. [Google Scholar] [CrossRef]
- Coffey, B.; Bush, J.; Mumaw, L.; de Kleyn, L.; Furlong, C.; Cretney, R. Towards good governance of urban greening: Insights from four initiatives in Melbourne, Australia. Aust. Geographer 2020, 51, 189–204. [Google Scholar] [CrossRef]
- Ordonez, C.; Threlfall, C.; Livesley, S.; Kendal, D.; Fuller, R.; Davern, M.; der Ree, R.; Hochuli, D.F. Decision-making of municipal urban forest managers through the lens of governance. Environ. Sci. Policy 2020, 104, 136–147. [Google Scholar] [CrossRef]
- Buijs, A.E.; Mattijssen, T.J.M.; van der Jagt, A.P.N.; Ambrose-Oji, B.; Andersson, E.; Elands, B.H.M.; Møller, M.S. Active citizenship for urban green infrastructure: Fostering the diversity and dynamics of citizen contributions through mosaic governance. Curr. Opin. Environ. Sustain. 2017, 22, 1–6. [Google Scholar] [CrossRef]
- Jansson, M.; Vogel, N.; Fors, H.; Randrup, T. The governance of landscape management: New approaches to urban open space development. Landsc. Res. 2018, 44, 952–965. [Google Scholar] [CrossRef] [Green Version]
- Mejia, A.; Bhattacharya, M.; Nigon-Crowley, A.; Kirkpatrick, K.; Katoch, C. Community gardening during times of crisis: Recommendations for community-engaged dialogue, research, and praxis. J. Agric. Food Syst. Community Dev. 2020, 10, 13–19. [Google Scholar] [CrossRef]
- Mattijssen, J.M.T.; Buijs, A.A.E.; Elands, B.H.M.; Arts, B.J.M.; Van Dam, R.I.; Donders, J.L.M. The Transformative Potential of Active Citizenship: Understanding Changes in Local Governance Practices. Sustainability 2019, 11, 5781. [Google Scholar] [CrossRef] [Green Version]
- Gulsrud, N.; Hertzog, K.; Shears, I. Innovative urban forestry governance in Melbourne? Investigating “green placemaking” as a nature-based solution. Environ. Res. 2018, 161, 158–167. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social–ecological Systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Jerome, G.; Mell, I.; Shaw, D. Re-defining the characteristics of environmental volunteering: Creating a typology of community-scale green infrastructure. Environ. Res. 2017, 158, 399–408. [Google Scholar] [CrossRef]
- Feindt, P.H.; Weiland, S. Reflexive governance: Exploring the concept and assessing its critical potential for sustainable development. Introduction to the special issue. J. Environ. Policy Plan. 2018, 20, 661–674. [Google Scholar] [CrossRef] [Green Version]
- Ernstson, H.; Barthel, S.; Andersson, E.; Borgstrom, S.T. Scale-crossing brokers and network governance of urban ecosystem services: The case of Stockholm. Ecol. Soc. 2010, 15, 28. [Google Scholar] [CrossRef]
- Thomas, K.; Littlewood, S. From Green Belts to Green Infrastructure? The Evolution of a New Concept in the Emerging Soft Governance of Spatial Strategies. Plan. Pract. Res. 2010, 25, 203–222. [Google Scholar] [CrossRef]
- Trogrlic, R.S.; Rijke, J.; Dolman, N.; Zevenbergen, C. Rebuild by Design in Hoboken: A Design Competition as a Means for Achieving Flood Resilience of Urban Areas through the Implementation of Green Infrastructure. Water 2018, 10, 553. [Google Scholar] [CrossRef] [Green Version]
- Rusciano, V.; Civero, C.; Scapato, D. Social and Ecological High Influential Factors in Community Gardens Innovation: An Empirical Survey in Italy. Sustainability 2020, 12, 4651. [Google Scholar] [CrossRef]
- Ng, H. Recognizing the edible urban commons: Cultivating latent capacities for transformative governance in Singapore. Urban Stud. 2020, 57, 1417–1433. [Google Scholar] [CrossRef]
- Mattijssen, T.; Buijs, A.; Elands, B.; Arts, B. The ‘Green’ and ‘Self ‘in Green Self-Governance—A Study of 264 Green Space initiatives by Citizens. J. Environ. Policy Plan. 2018, 20, 96–113. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.; Svendsen, E.S.; Fisher, D.R.; Campbell, L.K. Organizing urban ecosystem services through environmental stewardship governance in New York City. Landsc. Urban Plan. 2013, 109, 76–84. [Google Scholar] [CrossRef]
- Langemeyer, J.; Camps-Calvet, M.; Calvet-Mir, L.; Barthel, S.; Gomez-Baggethun, E. Stewardship of urban ecosystem services: Understanding the value(s) of urban gardens in Barcelona. Landsc. Urban Plan. 2017, 170, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Notcha, T.; Skelcher, C. Network governance in low-carbon energy transitions in European cities: A comparative analysis. Energy Policy 2020, 138, 111298. [Google Scholar]
- Bixler, P.; Lieberknecht, K.; Atshan, S.; Zutz, C.P.; Richter, S.M.; Belaire, J.A. Reframing urban governance for resilience implementation: The role of T network closure and other insights from a network approach. Cities 2020, 103, 102726. [Google Scholar] [CrossRef]
- Metzger, J.P.; Fidelman, P.; Sattler, C.; Schroter, B.; Maron, M.; Eigenbrod, F.; Fortin, M.; Hohlenwerger, C.; Rhodes, J. Connecting governance interventions to ecosystem services provision: A socio-ecological network approach. People Nat. 2020, 3, 266–280. [Google Scholar] [CrossRef]
- Ghose, R. The complexities of citizen participation through collaborative governance. Space Polity 2005, 9, 61–75. [Google Scholar] [CrossRef]
- Nyseth, T. Network Governance in Contested Urban Landscapes. Plan. Theory Pract. 2008, 9, 497–514. [Google Scholar] [CrossRef]
- Chaffin, B.C.; Floyd, T.M.; Albro, S.L. Leadership in informal stormwater governance networks. PLoS ONE 2019, 14, e0222434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghose, R.; Pettygrove, M. Urban Community Gardens as Spaces of Citizenship. Antipode 2014, 46, 1092–1112. [Google Scholar] [CrossRef]
- Carlsson, L.; Sandstrom, A. Network governance of the commons. Int. J. Commons 2008, 2, 33–54. [Google Scholar] [CrossRef]
- Sandstrom, A.; Rova, C. Adaptive Co-management Networks: A Comparative Analysis of Two Fishery Conservation Areas in Sweden. Ecol. Soc. 2010, 15, 14. [Google Scholar] [CrossRef]
- Keast, R. Network governance. In Handbook on Theories of Governance; Ansell, C., Torfing, J., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2016; pp. 442–453. [Google Scholar]
- Magaudda, S.; Ascanio, R.; Muccitelli, S.; Palazzo, A.L. ‘Greening’ green infrastructure. Good Italian practices for enhancing green infrastructure through the common agricultural policy. Sustainability 2020, 12, 2301. [Google Scholar] [CrossRef] [Green Version]
- Toxopeus, H.; Kotsila, P.; Conde, M.; Katona, A.; van der Jagt, A.; Polzin, F. How ‘just’ is hybrid governance of urban nature-based solutions? Cities 2020, 105, 102839. [Google Scholar] [CrossRef]
- Reames, T. Distributional disparities in residential rooftop solar potential and penetration in four cities in the United States. Energy Res. Soc. Sci. 2020, 69, 101612. [Google Scholar] [CrossRef]
- Allen, C.; Angeler, D.G.; Garmestani, A.; Gunderson, L.H.; Holling, C.S. Panarchy: Theory and application. Ecosystems 2014, 17, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Frantzeskaki, N.; Bush, J. Governance of nature-based solutions through intermediaries for urban transitions—A case study from Melbourne, Australia. Urban For. Urban Green. 2021, 64, 127262. [Google Scholar] [CrossRef]
- Kabisch, N. Transformation of urban brownfields through co-creation: The multi-functional Lene-Voigt Park in Leipzig as a case in point. Urban Transform. 2019, 1, 2. [Google Scholar] [CrossRef]
- Kemp, R.; Loorbach, D.; Rotmans, J. Transition management as a model for managing processes of co-evolution towards sustainable development. Int. J. Sustain. Dev. World Ecol. 2007, 14, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Loorbach, D. Transition Management for Sustainable Development: A Prescriptive, Complexity-Based Governance Framework. Gov. Int. J. Policy Adm. Inst. 2010, 23, 161–183. [Google Scholar] [CrossRef]
- Biggs, R.; Schlüter, M.; Schoon, M.L. (Eds.) Principles for Building Resilience: Sustaining ES in Social–Ecological Systems; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Schaffler, A.; Swilling, M. Valuing green infrastructure in an urban environment under pressure—The Johannesburg case. Ecol. Econ. 2013, 86, 246–257. [Google Scholar] [CrossRef]
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Gabrys, J. Smart forests and data practices: From the Internet of Trees to planetary governance. Big Data Soc. 2020, 7, 2053951720904871. [Google Scholar] [CrossRef]
- Møller, M.S.; Olafsson, A.S.; Vierikko, K.; Sehested, K.; Elands, B.; Buijs, A.; van den Bosch, C.K. Participation through place-based e-tools: A valuable resource for urban green infrastructure governance? Urban For. Urban Green. 2018, 40, 245–253. [Google Scholar] [CrossRef]
- Boulton, C.; Dedekorkut-Howes, A.; Byrne, J. Governance Factors Shaping Greenspace Provision: From Theory to Practice. Plan. Theory Pract. 2021, 22, 27–50. [Google Scholar] [CrossRef]
ES | Some Examples of UGI and Their Impacts in Literature |
---|---|
Provisioning | Community gardens can address food security in urban areas [57,58] |
Supporting | Street trees offer key conservation opportunities for pollinators [59], they also reduce the negative effects of urbanization on birds [60]; green roofs can have ecological significance by attracting and supporting urban fauna [61]; vacant lands can support insects’ habitats [62] |
Regulating | Vacant lands have cooling effects in urbanized areas [63]; green roofs have large impact on the urban heat island effect, positive effect on street canyon air quality, and stormwater management [64,65,66]; rain gardens may provide considerable carbon potential, offsetting the whole carbon footprint [67]; street trees can reduce air quality depending on the aspect ratio as well as stormwater [68,69]; community gardens can reduce surface runoff [70] |
Socio-Cultural | Small parks offer health benefits [62,71]; green roofs offer recreational and experimental benefits for residents [72]; community gardens as learning environments for sustainability [73]; vacant lots may provide social and cultural values for local communities [74] |
EDS | Some Examples of UGI and Their Impacts in Literature |
---|---|
EDS | Tall and leafy trees may block the views [89]; Vacant lands may be unsafe and ugly [89]; Some plant species may create allergenic pollen [90,91,92]; Tree roots may cause sidewalk pavement problems [93]; Community gardens may get contaminated by greywater irrigation from contaminated drainage channels or streams [94]; Increasing UGI results in an increase in hornet species [95]; Urban trees produce green waste resulting in public health issues [14] |
Governance Models | Principles | Number of Studies | |
---|---|---|---|
Adaptive governance | Adaptability is the capacity of actors to influence resilience. | 45 | 48 |
Diversity of stakeholders facilitates collaboration among institutions and jurisdictions. | 39 | ||
Flexibility allows stakeholders to adapt their needs and expectations to new opportunities. | 36 | ||
Social learning allows actors to share their values, experiences, and actions. | 23 | ||
Connectivity facilitates negotiations and collaborations across horizontal (collaborative) and vertical (hierarchical) connections. | 22 | ||
Resilience thinking is about how to learn to live with change and make use of it. | 17 | ||
Mosaic governance | Self-governance strengthens the autonomy of citizens to shape their own bottom-up initiatives and rules. | 29 | 30 |
Active citizen enhances the ability of people to organize themselves in a multiform manner. | 26 | ||
Polycentricity allows multiple centers of governance to interact with each other across diverse scales and actors. | 26 | ||
Connectivity fosters social and ecological resilience through linking actors. | 18 | ||
Stewardship focuses on collaborative management activity. | 14 | ||
Reflexivity allows to include the perspectives, values, and norms of a variety of actors. | 11 | ||
Networked governance | Knowledge sharing allows exchanging information between local stakeholders. | 7 | 10 |
Social networks facilitate social interactions between actors. | 7 | ||
Diversity of actors allows the presence of various actors, often multi-level. | 6 | ||
Decentralization transfers organization activities to several local actors. | 4 | ||
Transformative governance | Social innovation is the design of new solutions to imply transformative changes. | 3 | 3 |
Transition management accelerates the sustainability transition through the participatory process of visioning, learning, and experimenting. | 3 | ||
Regime shifts are large, abrupt, persistent changes in the structure and function of ecosystems. | 2 | ||
Long-termism allows improving the long-term future of ecosystems. | 2 | ||
Panarchy means drastic transformative changes. | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razzaghi Asl, S.; Pearsall, H. How Do Different Modes of Governance Support Ecosystem Services/Disservices in Small-Scale Urban Green Infrastructure? A Systematic Review. Land 2022, 11, 1247. https://doi.org/10.3390/land11081247
Razzaghi Asl S, Pearsall H. How Do Different Modes of Governance Support Ecosystem Services/Disservices in Small-Scale Urban Green Infrastructure? A Systematic Review. Land. 2022; 11(8):1247. https://doi.org/10.3390/land11081247
Chicago/Turabian StyleRazzaghi Asl, Sina, and Hamil Pearsall. 2022. "How Do Different Modes of Governance Support Ecosystem Services/Disservices in Small-Scale Urban Green Infrastructure? A Systematic Review" Land 11, no. 8: 1247. https://doi.org/10.3390/land11081247
APA StyleRazzaghi Asl, S., & Pearsall, H. (2022). How Do Different Modes of Governance Support Ecosystem Services/Disservices in Small-Scale Urban Green Infrastructure? A Systematic Review. Land, 11(8), 1247. https://doi.org/10.3390/land11081247