The Role of Spatial Information in Peri-Urban Ecosystem Service Valuation and Policy Investment Preferences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Policy Analysis Approach
2.3. Survey and Data
2.3.1. Spatial Literacy Questions
2.3.2. Questions regarding Investment Preferences
2.3.3. Questions regarding WTP
2.4. Empirical Approach
2.4.1. Modeling Investment Preferences
2.4.2. Modeling Willingness to Pay
3. Results
3.1. Investment Preference Models
3.2. Willingness to Pay Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B. Correlation Table
Variable | Spatial Literacy | Age | High Wages | Renting | Education | Female | Student | Residing | Foreign | Would Pay |
---|---|---|---|---|---|---|---|---|---|---|
WTP | 0.025 | −0.169 | 0.133 | −0.015 | 0.02 | −0.012 | 0.198 | −0.083 | 0.008 | −0.425 |
Agricultural production | −0.09 | 0.011 | −0.048 | −0.014 | −0.015 | −0.011 | −0.011 | −0.015 | 0.007 | −0.016 |
Water supply programs | 0.098 | 0.064 | −0.0005 | −0.03 | 0.002 | 0.008 | −0.063 | 0.055 | −0.013 | 0.03 |
Landscape Legacy | 0.015 | −0.012 | 0.009 | −0.016 | 0.022 | 0.012 | 0.059 | 0.015 | 0.019 | −0.015 |
Environmental education | 0.008 | −0.039 | −0.034 | 0.042 | −0.0004 | 0.044 | 0.022 | −0.065 | 0.035 | −0.02 |
Wood and timber production | −0.121 | 0.004 | 0.005 | −0.032 | 0.023 | −0.001 | −0.006 | 0.023 | 0.011 | 0.045 |
Natural disaster mitigation | 0.008 | 0.046 | 0.001 | −0.016 | 0.013 | 0.043 | −0.047 | 0.051 | −0.01 | 0.007 |
Protecting biodiversity | 0.032 | −0.024 | −0.002 | 0.018 | −0.002 | 0.001 | −0.012 | −0.025 | −0.003 | −0.024 |
Climate change | −0.034 | −0.03 | 0.007 | 0.041 | −0.018 | −0.028 | 0.034 | −0.032 | −0.025 | 0.005 |
Recreation and ecotourism | −0.031 | −0.042 | 0.062 | −0.009 | −0.015 | −0.077 | 0.061 | −0.018 | 0.001 | −0.012 |
Appendix C. Regression Tables
Agriculture | Forest | Water | Tourism | Cultural | Environmental | Natural | Climate | Biodiversity | |
---|---|---|---|---|---|---|---|---|---|
History | Education | Risk | Change | ||||||
spatial literacy | −0.074 *** | −0.084 *** | 0.148 *** | −0.031 | 0.014 | 0.016 | 0.003 | −0.039 | 0.046 |
index | (0.018) | (0.014) | (0.033) | (0.019) | (0.02) | (0.021) | (0.023) | (0.027) | (0.028) |
age | 0.017 | −0.015 | 0.0.32 | −0.002 | 0.036 | −0.009 | 0.001 | 0.007 | −0.068 * |
(0.023) | (0.018) | (0.042) | (0.025) | (0.026) | (0.028) | (0.03) | (0.036) | (0.037) | |
high wage | −1.019 ** | 0.165 | −0.139 | 1.286 ** | −0.077 | −0.796 | 0.165 | 0.337 | 0.079 |
(0.458) | (0.357) | (0.85) | (0.499) | (0.52) | (0.557) | (0.593) | (0.718) | (0.742) | |
residency | −0.02 | 0.016 | 0.013 | 0.009 | 0.025 | −0.040 ** | 0.026 | −0.012 | −0.017 |
(0.016) | (0.012) | (0.03) | (0.017) | (0.018) | (0.019) | (0.021) | (0.025) | (0.026) | |
gender | 0.314 | 0.013 | −0.111 | 1.659 *** | −0.364 | −1.196 ** | −1.119 * | 0.848 | −0.044 |
(male = 1) | (0.448) | (0.349) | (0.83) | (0.487) | (0.508) | (0.544) | (0.579) | (0.701) | (0.725) |
high- | −0.314 | 0.489 | −0.335 | −0.236 | 0.596 | 0.086 | 0.228 | −0.495 | −0.018 |
education | (0.489) | (0.381) | (0.908) | (0.533) | (0.555) | (0.595) | (0.633) | (0.766) | (0.792) |
student | −0.147 | −0.267 | −1.332 | 1.235* | 2.898 *** | −0.156 | −0.742 | 0.868 | −2.357 ** |
(0.684) | (0.533) | (1.27) | (0.745) | (0.776) | (0.832) | (0.885) | (1.072) | (1.108) | |
foreign | 0.504 | 1.003 | −1.523 | 0.294 | 2.091 | 2.731 | −0.649 | −3.571 | −0.881 |
(1.711) | (1.333) | (3.175) | (1.863) | (1.941) | (2.081) | (2.213) | (2.681) | (2.771) | |
rent | −0.763 | −0.602 | −0.629 | −0.105 | −0.154 | 0.579 | −0.095 | 1.367 * | 0.403 |
(0.509) | (0.397) | (0.945) | (0.554) | (0.578) | (0.619) | (0.659) | (0.798) | (0.825) | |
constant | 12.279 *** | 10.513 *** | 9.700 *** | 7.067 *** | 4.769 ** | 10.226 *** | 10.984 *** | 16.026 *** | 18.435 *** |
(1.814) | (1.413) | (3.366) | (1.975) | (2.057) | (2.206) | (2.346) | (2.842) | (2.937) |
Agriculture | Forest | Water | Tourism | Cultural | Environmental | Natural | Climate | Biodiversity | |
---|---|---|---|---|---|---|---|---|---|
History | Education | Risk | Change | ||||||
spatial literacy | −0.008 *** | −0.018 *** | 0.011 *** | −0.004 ** | 0.0003 | 0.00004 | −0.001 | −0.002 | 0.004 * |
index | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) |
age | −0.003 | −0.002 | −0.003 | −0.002 | −0.002 | −0.002 | −0.002 | −0.003 | −0.009 *** |
(0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | |
high wage | −0.159 *** | 0.022 | −0.062 | 0.079 | −0.041 | −0.111 ** | −0.049 | −0.026 | −0.063 |
(0.055) | (0.059) | (0.062) | (0.054) | (0.054) | (0.054) | (0.054) | (0.055) | (0.06) | |
residency | −0.003 | −0.002 | −0.002 | −0.002 | 0.001 | −0.002 | 0.001 | 0.0004 | −0.00004 |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | |
gender | 0.078 | 0.057 | 0.004 | 0.182 *** | −0.04 | −0.06 | −0.055 | 0.083 | 0.013 |
(male = 1) | (0.054) | (0.057) | (0.061) | (0.053) | (0.052) | (0.053) | (0.053) | (0.054) | (0.059) |
high- | 0.003 | 0.086 | −0.045 | 0.046 | −0.011 | −0.028 | 0.035 | −0.028 | −0.058 |
education | (0.059) | (0.063) | (0.066) | (0.058) | (0.057) | (0.058) | (0.058) | (0.058) | (0.064) |
student | 0.046 | 0.03 | 0.059 | 0.167 ** | 0.291 *** | 0.209 *** | 0.046 | 0.173 ** | 0.009 |
(0.082) | (0.088) | (0.092) | (0.081) | (0.08) | (0.081) | (0.081) | (0.082) | (0.091) | |
foreign | 0.313 | 0.204 | 0.052 | 0.214 | 0.154 | 0.214 | −0.146 | −0.239 | 0.24 |
(0.2) | (0.209) | (0.239) | (0.2) | (0.204) | (0.209) | (0.2) | (0.2) | (0.245) | |
rent | −0.139 ** | −0.154 ** | −0.101 | −0.038 | 0.004 | 0.118 * | 0.031 | 0.032 | 0.04 |
(0.061) | (0.066) | (0.068) | (0.06) | (0.06) | (0.06) | (0.06) | (0.061) | (0.067) | |
constant | 0.565 *** | 0.909 *** | 0.188 | 0.087 | 0.047 | 0.262 | 0.424 ** | 0.550 ** | 0.773 *** |
(0.217) | (0.228) | (0.236) | (0.214) | (0.212) | (0.214) | (0.215) | (0.217) | (0.235) | |
Log Likelihood | −1514.12 | −1278.10 | −1127.94 | −1575.88 | −1605.54 | −1581.62 | −1568.47 | −1520.33 | −1218.09 |
χ2 (df = 9) | 48.51 *** | 81.97 *** | 31.70 *** | 52.07 *** | 35.33 *** | 42.58 *** | 5.32 | 27.80 *** | 37.11 *** |
Agriculture | Forest | Water | Tourism | Cultural | Environmental | Natural | Climate | Biodiversity | |
---|---|---|---|---|---|---|---|---|---|
History | Education | Risk | Change | ||||||
spatial literacy | −0.790 ** | 0.298 | −0.176 | −0.472 ** | −0.076 * | 0.017 | 0.105 | −0.002 | −0.079 |
index | (0.315) | (0.358) | (0.361) | (0.198) | (0.04) | (0.021) | (0.254) | (0.191) | (0.153) |
age | −0.281 ** | 0.035 | 0.115 | −0.225 ** | −0.31 | −0.066 | 0.183 | 0.061 | 0.226 |
(0.133) | (0.05) | (0.102) | (0.103) | (0.191) | (0.082) | (0.448) | (0.281) | (0.354) | |
high wage | −15.201 ** | −0.314 | 1.659 | 9.472 ** | −8.354 * | −4.382 | 5.242 | 0.792 | 1.897 |
(6.239) | (0.574) | (2.171) | (3.693) | (4.564) | (4.843) | (12.546) | (2.442) | (2.305) | |
residency | −0.296 ** | 0.071 | 0.084 | −0.224 ** | 0.268 ** | −0.094 | −0.094 | −0.02 | −0.015 |
(0.122) | (0.053) | (0.084) | (0.105) | (0.134) | (0.075) | (0.297) | (0.049) | (0.026) | |
gender | 7.169 ** | −1.219 | −0.198 | 20.449 ** | −8.415 * | −3.132 | 4.609 | −0.624 | −0.421 |
(male = 1) | (3.04) | (1.206) | (0.836) | (8.413) | (4.44) | (2.653) | (7.582) | (7.582) | (0.854) |
high- | −0.079 | −1.401 | 1.038 | 4.518 ** | −1.74 | −0.784 | −3.389 | 0.008 | 1.757 |
education | (0.499) | (1.811) | (1.775) | (2.191) | (1.395) | (1.31) | (8.95) | (2.691) | (2.273) |
student | 3.767 ** | −0.915 | −2.926 | 18.037 ** | 60.823 * | 6.392 | −5.422 | −2.123 | −2.187 * |
(1.848) | (0.808) | (2.178) | (7.547) | (31.739) | (8.825) | (11.586) | (15.377) | (1.127) | |
foreign | 27.041 ** | −3.424 | −3.022 | 21.628 ** | 32.097 * | 9.103 | 14.897 | 0.875 | −7.168 |
(11.767) | (4.358) | (3.586) | (9.716) | (16.55) | (8.798) | (38.441) | (22.965) | (8.04) | |
rent | −13.171 ** | 2.795 | 2.346 | −4.083 ** | 0.792 | 4.268 | −3.313 | 0.803 | −0.73 |
(5.467) | (3.209) | (3.437) | (1.862) | (0.776) | (4.989) | (7.97) | (2.998) | (1.59) | |
IMR | 125.851 ** | −29.102 | −72.874 | 151.922 ** | 332.688 * | 55.079 | −181.486 | −32.748 | −68.158 |
(55.214) | (27.274) | (80.935) | (67.907) | (182.23) | (73.897) | (448.008) | (167.998) | (81.808) | |
constant | −37.352 * | 13.425 *** | 55.583 | −104.99 ** | −250.69 * | −24.797 | 110.244 | 31.744 | 43.720 |
(21.850) | (3.073) | (51.069) | (50.125) | (139.948) | (47.042) | (245.039) | (80.682) | (30.491) |
References
- Sylla, M.; Hagemann, N.; Szewrański, S. Mapping trade-offs and synergies among peri-urban ecosystem services to address spatial policy. Environ. Sci. Policy 2020, 112, 79–90. [Google Scholar] [CrossRef]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, C.; Escobedo, F.J.; Clerici, N.; De La Barrera, F.; Eleuterio, A.A.; MacGregor-Fors, I.; Reyes-Paecke, S.; Vásquez, A.; Camaño, J.D.Z.; Hernández, H.J. Urban ecosystem Services in Latin America: Mismatch between global concepts and regional realities? Urban Ecosyst. 2019, 22, 173–187. [Google Scholar] [CrossRef]
- Livesley, S.J.; Escobedo, F.J.; Morgenroth, J. The Biodiversity of Urban and Peri-Urban Forests and the Diverse Ecosystem Services They Provide as Socio-Ecological Systems. Forest 2016, 7, 291. [Google Scholar] [CrossRef]
- Grima, N.; Singh, S.J.; Smetschka, B.; Ringhofer, L. Payment for Ecosystem Services (PES) in Latin America: Analysing the performance of 40 case studies. Ecosyst. Serv. 2016, 17, 24–32. [Google Scholar] [CrossRef]
- Redford, K.H.; Adams, W.M. Payment for Ecosystem Services and the Challenge of Saving Nature. Conserv. Biol. 2009, 23, 785–787. [Google Scholar] [CrossRef]
- de Castro-Pardo, M.; Azevedo, J.C.; Fernández, P. Ecosystem Services, Sustainable Rural Development and Protected Areas. Land 2021, 10, 1008. [Google Scholar] [CrossRef]
- Anselm, N.; Brokamp, G.; Schütt, B. Assessment of land cover change in peri-urban high andean environments South of Bogotá, Colombia. Land 2018, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.; Bodini, A.; Escobedo, F.J.; Clerici, N. Analyzing socio-ecological interactions through qualitative modeling: Forest conservation and implications for sustainability in the peri-urban bogota (Colombia). Ecol. Model. 2021, 439, 109344. [Google Scholar] [CrossRef]
- Pérez-Rubio, I.; Flores, D.; Vargas, C.; Jiménez, F.; Etxano, I. To What Extent Are Cattle Ranching Landholders Willing to Restore Ecosystem Services? Constructing a Micro-Scale PES Scheme in Southern Costa Rica. Land 2021, 10, 709. [Google Scholar] [CrossRef]
- Kaffashi, S.; Shamsudin, M.N.; Radam, A.; Yacob, M.R.; Rahim, K.A.; Yazid, M. Economic valuation and conservation: Do people vote for better preservation of Shadegan International Wetland? Biol. Conserv. 2012, 150, 150–158. [Google Scholar] [CrossRef]
- Nabatchi, T.; Amsler, L.B. Direct Public Engagement in Local Government. Am. Rev. Public Adm. 2016, 44, 63S–88S. [Google Scholar] [CrossRef]
- Tolvanen, H.; Rönkä, M.; Vihervaara, P.; Kamppinen, M.; Arzel, C.; Aarras, N.; Thessler, S. Spatial information in ecosystem service assessment: Data applicability in the cascade model context. J. Land Use Sci. 2016, 11, 350–367. [Google Scholar] [CrossRef]
- Tammi, I.; Mustajärvi, K.; Rasinmäki, J. Integrating spatial valuation of ecosystem services into regional planning and development. Ecosyst. Serv. 2017, 26, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Bagstad, K.J.; Villa, F.; Batker, D.; Harrison-Cox, J.; Voigt, B.; Johnson, G.W. From theoretical to actual ecosystem services: Mapping beneficiaries and spatial flows in ecosystem service assessments. Ecol. Soc. 2014, 19, 64. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, F. Design of Stated Preference Surveys: Is There More to Learn from Behavioral Economics? Environ. Resour. Econ. 2010, 46, 167–177. [Google Scholar] [CrossRef]
- Schaafsma, M.; Brouwer, R.; Rose, J. Directional heterogeneity in WTP models for environmental valuation. Ecol. Econ. 2012, 79, 21–31. [Google Scholar] [CrossRef]
- Villegas-Palacio, C.; Berrouet, L.; López, C.; Ruiz, A.; Upegui, A. Lessons from the integrated valuation of ecosystem services in a developing country: Three case studies on ecological, socio-cultural and economic valuation. Ecosyst. Serv. 2016, 22, 297–308. [Google Scholar] [CrossRef]
- Bateman, I.J.; Mawby, J. First impressions count: Interviewer appearance and information effects in stated preference studies. Ecol. Econ. 2004, 49, 47–55. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Bottin, M.; Clerici, N.; Camargo, S.G.; Feged-Rivadeneira, A. Evaluating the role of spatial landscape literacy in public participation processes and opinions on environmental issues and ecosystem services. Environ. Manag. 2022, 69, 244–257. [Google Scholar] [CrossRef]
- Dertwinkel-Kalt, M. Salience and health campaigns. Forum Health Econ. Policy 2016, 19, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, J.D.; Hicks, C.C.; Gurney, G.G.; Cinner, J.E. Disaggregating ecosystem service values and priorities by wealth, age, and education. Ecosyst. Serv. 2018, 29, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Reilly, K.; Adamowski, J.; John, K. Participatory mapping of ecosystem services to understand stakeholders’ perceptions of the future of the Mactaquac Dam, Canada. Ecosyst. Serv. 2018, 30, 107–123. [Google Scholar] [CrossRef]
- García-Díez, V.; García-Llorente, M.; González, J.A. Participatory Mapping of Cultural Ecosystem Services in Madrid: Insights for Landscape Planning. Land 2020, 9, 244. [Google Scholar] [CrossRef]
- Dupont, D.P.; Bateman, I. Political affiliation and willingness to pay: An examination of the nature of benefits and means of provision. Ecol. Econ. 2012, 75, 43–51. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Bottin, M.; Cala, D.; Montoya, D.L.S. Spatial literacy influences stakeholder’s recognition and mapping of peri-urban and urban ecosystem services. Urban Ecosyst. 2020, 23, 1039–1049. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Palomo, I.; Martín-López, B.; Zorrilla-Miras, P.; Del Amo, D.G.; Montes, C. Deliberative mapping of ecosystem services within and around Doñana National Park (SW Spain) in relation to land use change. Reg. Environ. Chang. 2014, 14, 237–251. [Google Scholar] [CrossRef]
- Darvill, R.; Lindo, Z. Quantifying and mapping ecosystem service use across stakeholder groups: Implications for conservation with priorities for cultural values. Ecosyst. Serv. 2015, 13, 153–161. [Google Scholar] [CrossRef]
- Damastuti, E.; de Groot, R. Participatory ecosystem service mapping to enhance community-based mangrove rehabilitation and management in Demak, Indonesia. Reg. Environ. Chang. 2019, 19, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Fagerholm, N.; Käyhkö, N. Participatory mapping and geographical patterns of the social landscape values of rural communities in coastal Zanzibar, Tanzania. Fennia 2009, 187, 43–60. [Google Scholar]
- Brown, G.; Fagerholm, N. Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation. Ecosyst. Serv. 2015, 13, 119–133. [Google Scholar] [CrossRef]
- Fagerholm, N.; Eilola, S.; Kisanga, D.; Arki, V.; Käyhkö, N. Place-based landscape services and potential of participatory spatial planning in multifunctional rural landscapes in Southern highlands, Tanzania. Landsc. Ecol. 2019, 34, 1769–1787. [Google Scholar] [CrossRef] [Green Version]
- Raymond, C.M.; Bryan, B.A.; MacDonald, D.H.; Cast, A.; Strathearn, S.; Grandgirard, A.; Kalivas, T. Mapping community values for natural capital and ecosystem services. Ecol. Econ. 2009, 68, 1301–1315. [Google Scholar] [CrossRef]
- Ruiz-Frau, A.; Edwards-Jones, G.; Kaiser, M. Mapping stakeholder values for coastal zone management. Mar. Ecol. Prog. Ser. 2011, 434, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Bagstad, K.J.; Reed, J.M.; Semmens, D.J.; Sherrouse, B.C.; Troy, A. Linking biophysical models and public preferences for ecosystem service assessments: A case study for the Southern Rocky Mountains. Reg. Environ. Chang. 2016, 16, 2005–2018. [Google Scholar] [CrossRef]
- Brown, G.; Montag, J.M.; Lyon, K. Public Participation GIS: A Method for Identifying Ecosystem Services. Soc. Nat. Resour. 2012, 25, 633–651. [Google Scholar] [CrossRef]
- He, S.; Su, Y. Understanding Residents’ Perceptions of the Ecosystem to Improve Park–People Relationships in Wuyishan National Park, China. Land 2022, 11, 532. [Google Scholar] [CrossRef]
- Brown, G.; Weber, D.; de Bie, K. Assessing the value of public lands using public participation GIS (PPGIS) and social landscape metrics. Appl. Geogr. 2014, 53, 77–89. [Google Scholar] [CrossRef]
- Brown, G.; Kelly, M.; Whitall, D. Which ‘public’? Sampling effects in public participation GIS (PPGIS) and volunteered geographic information (VGI) systems for public lands management. J. Environ. Plan. Manag. 2014, 57, 190–214. [Google Scholar] [CrossRef]
- Pineda-Guerrero, A.; Escobedo, F.J.; Carriazo, F. Governance, Nature’s Contributions to People, and Investing in Conservation Influence the Valuation of Urban Green Areas. Land 2021, 10, 14. [Google Scholar] [CrossRef]
- Mendoza, J.E.; Etter, A. Multitemporal analysis (1940–1996) of land cover changes in the southwestern Bogotá High-plain. Landsc. Urban Plan. 2002, 59, 147–158. [Google Scholar] [CrossRef]
- DANE Departamento Administrativo Nacional de Estadística de Colombia (Colombian National Administrative Department for Statistics). Censo Nacional 2018. Available online: https://sitios.dane.gov.co/cnpv/app/views/informacion/perfiles/11_infografia.pdf (accessed on 3 July 2022).
- Rubiano, K.; Clerici, N.; Norden, N.; Etter, A. Secondary Forest and Shrubland Dynamics in a Highly Transformed Landscape in the Northern Andes of Colombia (1985–2015). Forests 2017, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Champ, P.; Boyle, K.J.; Brown, T.C. A Primer on Nonmarket Valuation; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Loomis, J.; Kent, P.; Strange, L.; Fausch, K.; Covich, A. Measuring the total economic value of restoring ecosystem services in an impaired river basin: Results from a contingent valuation survey. Ecol. Econ. 2000, 33, 103–117. [Google Scholar] [CrossRef]
- Rodríguez-De-Francisco, J.C.; Duarte-Abadía, B.; Boelens, R. Payment for Ecosystem Services and the Water-Energy-Food Nexus: Securing Resource Flows for the Affluent? Water 2019, 11, 1143. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 3 July 2022).
- RStudio Team. RStudio: Integrated Development for R; RStudio: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 3 July 2022).
- Puhani, P. The Heckman Correction for Sample Selection and Its Critique. J. Econ. Surv. 2000, 14, 53–68. [Google Scholar] [CrossRef]
- Hanemann, W.M. Willingness to pay and willingness to accept: How much can they differ? Am. Econ. Rev. 1991, 81, 635–647. [Google Scholar] [CrossRef]
- Hiebert, J.; Allen, K. Valuing Environmental Amenities across Space: A Geographically Weighted Regression of Housing Preferences in Greenville County, SC. Land 2019, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Wolf, I.D.; Wohlfart, T.; Brown, G.; Lasa, A.B. The use of public participation GIS (PPGIS) for park visitor management: A case study of mountain biking. Tour. Manag. 2015, 51, 112–130. [Google Scholar] [CrossRef]
- Beeco, J.A.; Brown, G. Integrating space, spatial tools, and spatial analysis into the human dimensions of parks and outdoor recreation. Appl. Geogr. 2013, 38, 76–85. [Google Scholar] [CrossRef]
- Ribaudo, M.; Greene, C.; Hansen, L.; Hellerstein, D. Ecosystem services from agriculture: Steps for expanding markets. Ecol. Econ. 2010, 69, 2085–2092. [Google Scholar] [CrossRef]
- Althaus, S.L. Information Effects in Collective Preferences. Am. Political Sci. Rev. 1998, 92, 545–558. [Google Scholar] [CrossRef]
- Crook, S.; Levine, A.; Lopez-Carr, D. Perceptions and Application of the Ecosystem Services Approach among Pacific Northwest National Forest Managers. Sustainability 2021, 13, 1259. [Google Scholar] [CrossRef]
Natural disaster mitigation: | Invest in programs that control flooding and mitigating mass wasting events |
Environmental education: | Invest in environmental education and nature immersion programs |
Agricultural production: | Invest in the production of agricultural goods |
Climate change: | Invest in climate change adaptation programs |
Water supply programs: | Invest in programs and increase water supply |
Wood and timber supply: | Invest in fuelwood and timber production program |
Landscape legacy and heritage: | Invest in programs that preserve a landscape’s history and patrimony |
Protecting biodiversity: | Invest in programs and preserve and conserve biodiversity and natural habitats |
Recreation and ecotourism: | Invest in programs that promote ecotourism and recreation |
Variable | Mean (Prelim) | Mean (Final) | Mean (Study Area) | Comments (Source) |
---|---|---|---|---|
Female | 0.58 | 0.545 | 0.485 | Average for Bogota DC.Error! Hyperlink reference not valid. |
Years resided | 22.752 | 23.633 | N/A | No comparable census information. |
Age (years) | 33.298 | 34.698 | 31 | Average age in Colombia, since census data reports age ranges for Bogota and Cundinamarca. |
Wages ($COP) | 5.472 | 5.498 | N/A | Wages = the number of legal monthly minimum wages. This number times COP$877,802 = mean monthly household income. |
Foreigner (%) | 0.021 | 0.017 | 0.023 | Average for Colombia |
Urban (%) | 0.891 | 0.892 | 0.71 | Average for Department of Cundinamarca |
Rentals (%) | 0.31 | 0.306 | 0.35 | Average for Colombia |
Variable | Mean (Prelim) | SD (Prelim) | OBS (Prelim) | Mean (Final) | SD (Final) |
---|---|---|---|---|---|
WTP ($COP) | 14,501.18 | 15,151.85 | 2542 | 14,863.50 | 15,213.49 |
SLI | 0.851 | 0.127 | 2397 | 0.851 | 0.128 |
Incorrect locations | 1.809 | 0.904 | 2397 | N/A | N/A |
Agricultural production | 5.681 | 10.275 | 3396 | 5.444 | 10.821 |
Water supply programs | 22.514 | 18.669 | 3396 | 22.778 | 20.102 |
Landscape Legacy | 9.299 | 11.877 | 3396 | 8.911 | 12.25 |
Environmental education | 9.817 | 12.154 | 3396 | 9.627 | 13.136 |
Wood and timber production | 3.19 | 8.173 | 3396 | 3.182 | 8.454 |
Natural disaster mitigation | 10.909 | 13.06 | 3396 | 11.167 | 13.946 |
Protecting biodiversity | 18.938 | 16.554 | 3396 | 18.771 | 17.451 |
Climate change | 13.208 | 15.834 | 3396 | 13.772 | 16.894 |
Recreation and ecotourism | 6.444 | 11.505 | 3396 | 6.349 | 11.788 |
Investment Program | Is Spatial Literacy Statistically Significant? | Spatial Literacy Coefficient | Other Statistically Significant Variables |
---|---|---|---|
Agricultural production | Yes | −0.074 * | Constant |
Water supply programs | Yes | −0.084 * | Constant |
Landscape Legacy | Yes | 0.148 * | Constant |
Environmental education | No | −0.031 | High wages, gender, student, constant |
Wood and timber production | No | 0.014 | Student, constant |
Natural disaster mitigation | No | 0.016 | Gender, constant |
Protecting biodiversity | No | 0.003 | Gender, constant |
Climate change | No | −0.039 | Rent, constant |
Recreation and ecotourism | No | 0.046 | Age, student, constant |
Investment Program | Is Spatial Literacy Statistically Significant? | Spatial Literacy Coefficient | Other Statistically Significant Variables |
---|---|---|---|
Agricultural production | Yes | −0.008 *** | High wage, rent, constant |
Water supply programs | Yes | −0.018 *** | Rent, constant |
Landscape Legacy | Yes | 0.011 *** | No other significant variables |
Environmental education | Yes | −0.004 ** | gender, student |
Wood and timber production | No | 0.0003 | Student |
Natural disaster mitigation | No | 0.00004 | High wage, student, rent |
Protecting biodiversity | No | −0.001 | Constant |
Climate change | No | −0.002 | Student, constant |
Recreation and ecotourism | Yes | 0.004 * | Age, constant |
Investment Program | Is Spatial Literacy Statistically Significant? | Spatial Literacy Coefficient | Is the Inverse Mills Ratio Significant? | Other Statistically Significant Variables |
---|---|---|---|---|
Agricultural production | Yes | −0.790 ** | Yes | Age, high wage, resident, gender, student, foreign, rent, constant |
Water supply programs | No | 0.298 | No | Constant |
Landscape Legacy | No | −0.176 | No | No other significant variables |
Environmental education | Yes | −0.472 ** | Yes | Age, high wage, resident, gender, high education, student, foreign, constant |
Wood and timber production | Yes | −0.076 * | Yes | High wage, resident, gender, student, foreign, constant |
Natural disasters | No | 0.017 | No | No other significant variables |
Protecting biodiversity | No | 0.105 | No | No other significant variables |
Climate change | No | −0.002 | No | No other significant variables |
Recreation and ecotourism | No | −0.079 | No | Student |
Variable | Dependent Variable: WTP |
---|---|
Spatial literacy index | 29.468 (24.074) |
Age | −76.123 ** (31.461) |
High wage | 3340.250 *** (629.831) |
Residency | 23.477 (21.873) |
Gender (male = 1) | −276.111 (615.111) |
High education | 1226.859 * (672.200) |
Student | 4417.949 *** (940.626) |
Foreigner | 834.787 (2,352.096) |
Rent | −358.337 (699.960) |
Constant | 11,026.690 (2,493.242) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sloggy, M.R.; Escobedo, F.J.; Sánchez, J.J. The Role of Spatial Information in Peri-Urban Ecosystem Service Valuation and Policy Investment Preferences. Land 2022, 11, 1267. https://doi.org/10.3390/land11081267
Sloggy MR, Escobedo FJ, Sánchez JJ. The Role of Spatial Information in Peri-Urban Ecosystem Service Valuation and Policy Investment Preferences. Land. 2022; 11(8):1267. https://doi.org/10.3390/land11081267
Chicago/Turabian StyleSloggy, Matthew R., Francisco J. Escobedo, and José J. Sánchez. 2022. "The Role of Spatial Information in Peri-Urban Ecosystem Service Valuation and Policy Investment Preferences" Land 11, no. 8: 1267. https://doi.org/10.3390/land11081267
APA StyleSloggy, M. R., Escobedo, F. J., & Sánchez, J. J. (2022). The Role of Spatial Information in Peri-Urban Ecosystem Service Valuation and Policy Investment Preferences. Land, 11(8), 1267. https://doi.org/10.3390/land11081267