Effects of Soil Map Scales on Estimating Soil Organic Carbon Stocks in Southeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Estimation of Soil Organic Carbon Density and Stocks
2.3.2. Methods of Aggregating Soil Profile Data to Represent Map Units
2.3.3. Statistical Analysis
3. Results
3.1. Scale-Dependence of SOC Dynamics
3.2. Estimates of SOCS at the Soil Group Level
3.3. Spatial Patterns of SOC Estimations
4. Discussion
4.1. Effects of Map Generalization on SOC Estimations as the Soil Map Scale Decreases
4.2. Other Factors Influencing SOC Estimations Caused by Different Scales
4.3. Implications for Soil Resources Management
4.4. Advantages and Limitations of Our Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Soil Groups of GSCC | Number of Soil Profiles | Soil Order of U.S. Taxonomy | WRB Soil Groups |
---|---|---|---|
Red Soils | 372 | Alfisols, Ultisols, Inceptisols | Cambisols |
Yellow Soils | 126 | Alfisols, Inceptisols | Cambisols |
Purple Soils | 84 | Inceptisols, Entisols | Cambisols |
Limestone Soils | 22 | Mollisols, Inceptisols | Cambisols |
Skel Soils | 114 | Inceptisols, Entisols | Regosols |
Red Clay Soils | 4 | Inceptisols, Alfisols | Cambisols |
Mountain Meadow Soils | 4 | Histosols, Inceptisols | Cambisols |
Fluvio-aquic Soils | 189 | Inceptisols, Entisols | Cambisols |
Coastal Saline Soils | 64 | Inceptisols | Solonchaks |
Paddy Soils | 1175 | Anthrosols | Anthrosols |
References
- Zhang, L.; Liu, Y.; Li, X.; Huang, L.; Yu, D.; Shi, X.; Chen, H.; Xing, S. Effects of soil map scales on simulating soil organic carbon changes of upland soils in Eastern China. Geoderma 2018, 312, 159–169. [Google Scholar] [CrossRef]
- Silatsa, F.B.T.; Yemefack, M.; Tabi, F.O.; Heuvelink, G.B.M.; Leenaars, J.G.B. Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon. Geoderma 2020, 367, 114260. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, R.; Cao, H.; Huang, C.; Yang, Q.; Wang, M.; Koopal, L.K. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. Catena 2014, 121, 22–30. [Google Scholar] [CrossRef]
- Hein, C.J.; Usman, M.; Eglinton, T.I.; Haghipour, N.; Galy, V.V. Millennial-scale hydroclimate control of tropical soil carbon storage. Nature 2020, 581, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, H.; Pan, Y.; Krause-Jensen, D.; He, Z.; Fan, W.; Xiao, X.; Chung, I.; Marbà, N.; Serrano, O.; et al. Opportunities for blue carbon strategies in China. Ocean Coast. Manag. 2020, 194, 105241. [Google Scholar] [CrossRef]
- Gentile, R.M.; Malepfane, N.M.; van den Dijssel, C.; Arnold, N.; Liu, J.; Müller, K. Comparing deep soil organic carbon stocks under kiwifruit and pasture land uses in New Zealand. Agric. Ecosyst. Environ. 2021, 306, 107190. [Google Scholar] [CrossRef]
- Guo, P.; Li, M.; Luo, W.; Tang, Q.; Liu, Z.; Lin, Z. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma 2015, 237–238, 49–59. [Google Scholar] [CrossRef]
- Dos Santos, C.C.; Souza De Lima Ferraz Junior, A.; Oliveira Sá, S.; Andrés Muñoz Gutiérrez, J.; Braun, H.; Sarrazin, M.; Brossard, M.; Desjardins, T. Soil carbon stock and Plinthosol fertility in smallholder land-use systems in the eastern Amazon, Brazil. Carbon Manag. 2018, 9, 655–664. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N. Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. J. Geogr. Sci. 2019, 29, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Zhao, Y.; Shi, X.; Yu, D.; Li, C.; Wang, S.; Tan, M.; Sun, W. Map scale effects of soil databases on modeling organic carbon dynamics for paddy soils of China. Catena 2013, 104, 67–76. [Google Scholar] [CrossRef]
- Gristina, L.; Scalenghe, R.; García Díaz, A.; Matranga, M.G.; Ferraro, V.; Guaitoli, F.; Novara, A. Soil organic carbon stocks under recommended management practices in different soils of semiarid vineyards. Land Degrad. Dev. 2020, 31, 1906–1914. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Xu, L.; Zhuang, Q.; He, N. Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China. Sci. Total Environ. 2021, 758, 143644. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, J.M.; Kleinman, P.J.A.; Bryant, R.B. Sources of Uncertainty Affecting Soil Organic Carbon Estimates in Northern New York. Soil Sci. Soc. Am. J. 2003, 67, 1206–1212. [Google Scholar] [CrossRef]
- Yu, D.; Ni, Y.; Shi, X.; Wang, N.; Warner, E.; Liu, Y.; Zhang, L. Optimal Soil Raster Unit Resolutions in Estimation of Soil Organic Carbon Pool at Different Map Scales. Soil Sci. Soc. Am. J. 2014, 78, 1079–1086. [Google Scholar] [CrossRef]
- Li, L.; Burger, M.; Du, S.; Zou, W.; You, M.; Hao, X.; Lu, X.; Zheng, L.; Han, X. Change in soil organic carbon between 1981 and 2011 in croplands of Heilongjiang Province, northeast China. J. Sci. Food Agric. 2016, 96, 1275–1283. [Google Scholar] [CrossRef]
- Zhao, M.; Qiu, S.; Wang, S.; Li, D.; Zhang, G. Spatial-temporal change of soil organic carbon in Anhui Province of East China. Geoderma Reg. 2021, 26, e415. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2014, 65, 10–21. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, X.; Weindorf, D.C.; Yu, D.; Sun, W.; Wang, H. Map Scale Effects on Soil Organic Carbon Stock Estimation in North China. Soil Sci. Soc. Am. J. 2006, 70, 1377–1386. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, N.; Zhang, L.; Yuan, P.; Yao, C.; Xing, S.; Qiu, L.; Chen, H.; Fan, X. Scale effects of estimation of soil organic carbon storage in Fujian Province, China. Acta Pedol. Sin. 2018, 55, 606–619. [Google Scholar]
- Zhong, B.; Xu, Y. Scale Effects of Geographical Soil Datasets on Soil Carbon Estimation in Louisiana, USA: A Comparison of STATSGO and SSURGO. Pedosphere 2011, 21, 491–501. [Google Scholar] [CrossRef]
- Yu, D.; Pan, Y.; Zhang, H.; Wang, X.; Ni, Y.; Zhang, L.; Shi, X. Equality testing for soil grid unit resolutions to polygon unit scales with DNDC modeling of regional SOC pools. Chin. Geogr. Sci. 2017, 27, 552–568. [Google Scholar] [CrossRef]
- Illiger, P.; Schmidt, G.; Walde, I.; Hese, S.; Kudrjavzev, A.E.; Kurepina, N.; Mizgirev, A.; Stephan, E.; Bondarovich, A.; Frühauf, M. Estimation of regional soil organic carbon stocks merging classified land-use information with detailed soil data. Sci. Total Environ. 2019, 695, 133755. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, R.; Barbetti, R.; Fantappiè, M.; L’Abate, G.; Costantini, E.A.C. Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps. Geoderma 2015, 237–238, 237–245. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, H.; Song, X.; Xing, S.; Fan, M.; Heiling, M.; Liu, L.; Zhang, L.; Mao, Y. Estimating soil organic carbon and nitrogen stock based on high-resolution soil databases in a subtropical agricultural area of China. Soil Tillage Res. 2022, 219, 105321. [Google Scholar] [CrossRef]
- Rasaei, Z.; Rossiter, D.G.; Farshad, A. Rescue and renewal of legacy soil resource inventories in Iran as an input to digital soil mapping. Geoderma Reg. 2020, 21, e262. [Google Scholar] [CrossRef]
- Sulaeman, Y.; Minasny, B.; McBratney, A.B.; Sarwani, M.; Sutandi, A. Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma 2013, 192, 77–85. [Google Scholar] [CrossRef]
- Zhi, J.; Jing, C.; Lin, S.; Zhang, C.; Wu, J. Estimates of Soil Organic Carbon Stocks in Zhejiang Province of China Based on 1:50 000 Soil Database Using the PKB Method. Pedosphere 2015, 25, 12–24. [Google Scholar] [CrossRef]
- Li, W.; Jia, S.; He, W.; Raza, S.; Zamanian, K.; Zhao, X. Analysis of the consequences of land-use changes and soil types on organic carbon storage in the Tarim River Basin from 2000 to 2020. Agric. Ecosyst. Environ. 2022, 327, 107824. [Google Scholar] [CrossRef]
- Zhang, L.; Zhuang, Q.; Zhao, Q.; He, Y.; Yu, D.; Shi, X.; Xing, S. Uncertainty of organic carbon dynamics in Tai-Lake paddy soils of China depends on the scale of soil maps. Agric. Ecosyst. Environ. 2016, 222, 13–22. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Liu, B.; Ye, A.; Yuan, H. A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma 2012, 171–172, 85–91. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, S.; Yang, Y.; Zhao, R.; Shi, Z.; Viscarra Rossel, R.A. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980’s China. Geoderma 2019, 335, 47–56. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, S.; Yang, Y.; Zhou, Y.; Shi, Z. High-resolution three-dimensional mapping of soil organic carbon in China: Effects of SoilGrids products on national modeling. Sci. Total Environ. 2019, 685, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yan, Y.; Li, X.; Shi, X.; Zhang, Z.; Weindorf, D.C.; Wang, H.; Xu, S. Influence of climate on soil organic carbon in Chinese paddy soils. Chin. Geogr. Sci. 2017, 27, 351–361. [Google Scholar] [CrossRef]
- Shi, X.; Yu, D.; Xu, S.; Warner, E.; Wang, H.; Sun, W.; Zhao, Y.; Gong, Z. Cross-reference for relating Genetic Soil Classification of China with WRB at different scales. Geoderma 2010, 155, 344–350. [Google Scholar] [CrossRef]
- Zhi, J.; Jing, C.; Lin, S.; Zhang, C.; Liu, Q.; DeGloria, S.D.; Wu, J. Estimating soil organic carbon stocks and spatial patterns with statistical and GIS-based methods. PLoS ONE 2014, 9, e97757. [Google Scholar] [CrossRef]
- Wu, J.Y.H.; Zhi, J.; Jing, C.; Chen, H.; Xu, J.; Lin, S.; Li, D.; Zhang, C.; Xiao, R.; Huang, H. A 1:50000 scale soil database of Zhejiang Province, China. Acta Pedol. Sin. 2013, 50, 30–40. [Google Scholar]
- Morisada, K.; Ono, K.; Kanomata, H. Organic carbon stock in forest soils in Japan. Geoderma 2004, 119, 21–32. [Google Scholar] [CrossRef]
- Albaladejo, J.; Ortiz, R.; Garcia-Franco, N.; Navarro, A.R.; Almagro, M.; Pintado, J.G.; Martínez-Mena, M. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. J. Soils Sediments 2013, 13, 265–277. [Google Scholar] [CrossRef]
- Du, H.; Wang, T.; Xue, X.; Li, S. Estimation of soil organic carbon, nitrogen, and phosphorus losses induced by wind erosion in Northern China. Land Degrad. Dev. 2019, 30, 1006–1022. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Altememe, A.H.; Bawazir, A.A.; Chandler, R.D.; Cope, M.P.; Post, C.J.; Stiglitz, R.Y.; Zurqani, H.A.; Schlautman, M.A. Comparing soil carbon estimates in glaciated soils at a farm scale using geospatial analysis of field and SSURGO data. Geoderma 2016, 281, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Chartin, C.; Van Oost, K.; van Wesemael, B. High-resolution soil organic carbon mapping at the field scale in Southern Belgium (Wallonia). Geoderma 2022, 422, 115929. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars, J.G.; Walsh, M.G.; et al. SoilGrids1km--global soil information based on automated mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Miller, M.A.E.; Križan, J.; Shepherd, K.D.; Sila, A.; Kilibarda, M.; Antonijević, O.; Glušica, L.; Dobermann, A.; Haefele, S.M.; et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci. Rep. 2021, 11, 6130. [Google Scholar] [CrossRef] [PubMed]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Papritz, A.; Lehmann, P.; Hengl, T.; Bonetti, S.; Or, D. Global mapping of soil water characteristics parameters—Fusing curated data with machine learning and environmental covariates. Remote Sens. 2022, 14, 1947. [Google Scholar] [CrossRef]
- Guevara, M.; Arroyo, C.; Brunsell, N.; Cruz, C.O.; Domke, G.; Equihua, J.; Etchevers, J.; Hayes, D.; Hengl, T.; Ibelles, A.; et al. Soil organic carbon across Mexico and the conterminous United States (1991–2010). Glob. Biogeochem. Cycles 2020, 34, e2019GB006219. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Zhang, L.; Yu, D.; Shi, X.; Li, J.; Xing, S.; Wang, G. Impacts of source of soil data and scale of mapping on assessment of organic carbon storage in upland soil. Acta Pedol. Sin. 2016, 53, 58–71. [Google Scholar]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Mendes De Jesus, J.; Tamene, L.; et al. Mapping soil properties of Africa at 250 m resolution: Random Forests significantly improve current predictions. PLoS ONE 2015, 10, e125814. [Google Scholar]
- Hengl, T.; Toomanian, N.; Reuter, H.I.; Malakouti, M.J. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma 2007, 140, 417–427. [Google Scholar] [CrossRef]
- Ramcharan, A.; Hengl, T.; Nauman, T.; Brungard, C.; Waltman, S.; Wills, S.; Thompson, J. Soil property and class maps of the conterminous United States at 100-meter spatial resolution. Soil Sci. Soc. Am. J. 2018, 82, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Rathore, P.; Roy, D.; Chakraborty, D.; Jatav, R.S.; Sethi, D.; Kumar, P. Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies. Catena 2022, 217, 106485. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.; Molnar, C. Beyond prediction: Methods for interpreting complex models of soil variation. Geoderma 2022, 422, 115953. [Google Scholar] [CrossRef]
Map Scale | Area of Soils/km2 | Number of Polygons | Mean Area of Polygons/km2 | Number of Map Units | Map Units 1 | Source |
---|---|---|---|---|---|---|
1:50,000 | 100,740 | 156,581 | 0.7 | 277 | Soil species | County-level soil survey office of Zhejiang Province (1983–1985) |
1:250,000 | 101,763 | 14,454 | 7.2 | 143 | Soil species, family | Soil Survey Office of Zhejiang Province (1989) |
1:500,000 | 102,062 | 6680 | 15.6 | 112 | Soil species, family | Soil Survey Office of Zhejiang Province (1992) |
1:1,000,000 | 102,343 | 3683 | 28.3 | 94 | Soil species, family, subgroup | Soil Survey Office of Zhejiang Province (1989) |
1:4,000,000 | 103,091 | 233 | 448.7 | 16 | Subgroup | Institute of Soil Science, Chinese Academy of Sciences (1978) |
1:10,000,000 | 104,154 | 53 | 1976.6 | 7 | Subgroup, group | Institute of Soil Science, Chinese Academy of Sciences (1988) |
Soil Group | 1:50,000 | 1:250,000 | 1:500,000 | 1:1,000,000 | 1:4,000,000 | 1:10,000,000 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area of Soils/km2 | SOCS/Tg | Area of Soils/km2 | SOCS/Tg | Area of Soils/km2 | SOCS/Tg | Area of Soils/km2 | SOCS/Tg | Area of Soils/km2 | SOCS/Tg | Area of Soils/km2 | SOCS/Tg | |
Red Soils | 39,710.4 | 267.12 | 41,048.3 | 281.30 | 43,455.3 | 291.19 | 43,768.2 | 291.94 | 41,898.5 | 293.27 | 68,631.2 | 488.38 |
Yellow Soils | 10,013.5 | 140.15 | 10,566.9 | 162.28 | 10,756.3 | 154.81 | 10,593.1 | 201.48 | 11,431.2 | 206.08 | 8181.2 | 147.49 |
Purple Soils | 3597.7 | 18.01 | 3550.9 | 18.51 | 3639.4 | 18.96 | 3710.2 | 19.21 | 5677.4 | 29.11 | 0 | 0 |
Limestone Soils | 1571.0 | 13.45 | 1905.2 | 16.31 | 1844.4 | 15.28 | 1861.6 | 15.57 | 1846.1 | 15.36 | 0 | 0 |
Skel Soils | 13,539.2 | 71.49 | 13,635.8 | 58.01 | 11,900.6 | 51.89 | 11,604.2 | 65.22 | 10,251.1 | 52.65 | 0 | 0 |
Red Clay Soils | 197.6 | 0.81 | 199.4 | 0.82 | 222.1 | 0.91 | 236.3 | 0.97 | 0 | 0 | 0 | 0 |
Mountain Meadow Soils | 3.3 | 0.34 | 5.0 | 0.52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fluvio-aquic Soils | 4318.3 | 31.66 | 3343.0 | 23.45 | 3397.9 | 24.40 | 3384.7 | 25.86 | 1817.2 | 15.79 | 0 | 0 |
Coastal Saline Soils | 2793.3 | 21.19 | 2718.3 | 19.51 | 2630.5 | 19.06 | 2483.4 | 16.78 | 1899.0 | 13.08 | 3217.1 | 22.16 |
Paddy Soils | 24,995.8 | 241.66 | 24,789.7 | 237.65 | 24,215.5 | 244.84 | 24,701.1 | 242.23 | 28,270.4 | 278.06 | 24,124.4 | 265.71 |
Total | 100,740.0 | 805.88 | 101,762.5 | 818.34 | 102,062.0 | 821.34 | 102,342.8 | 879.25 | 103,090.9 | 903.40 | 104,153.9 | 923.74 |
Map Scale | Number of Polygons for Water Bodies | Number of Polygons for Built-Up Land | Total Number of Polygons for Water Bodies and Built-Up Land | Total Area of Polygons for Water Bodies and Built-Up Land/km2 | Mean Area of Polygons for Water Bodies and Built-Up Land/km2 |
---|---|---|---|---|---|
1:50,000 | 3580 | 2186 | 5766 | 3605.5 | 0.6 |
1:250,000 | 233 | 42 | 275 | 2494.3 | 9.1 |
1:500,000 | 150 | 4 | 154 | 2242.1 | 14.6 |
1:1,000,000 | 46 | 1 | 47 | 2015.1 | 42.9 |
1:4,000,000 | 16 | 0 | 16 | 1449.1 | 90.6 |
1:10,000,000 | 1 | 0 | 1 | 607.1 | 607.1 |
Map Scale | Mean or Median Method | PKB Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Soil Profiles | SOCD (kg/m2) | Number of Soil Profiles | SOCD (kg/m2) | |||||||
Minimum | Maximum | Mean | Standard Deviation | Minimum | Maximum | Mean | Standard Deviation | |||
1:50,000 | 2154 | 0.10 | 279.52 | 9.07 | 9.42 | 2154 | 0.10 | 279.52 | 9.07 | 9.42 |
1:250,000 | 1838 | 0.10 | 279.52 | 9.03 | 9.74 | 1505 | 0.20 | 279.52 | 8.45 | 6.03 |
1:500,000 | 1548 | 0.20 | 145.87 | 9.18 | 7.71 | 1217 | 0.20 | 145.87 | 8.48 | 6.98 |
1:1,000,000 | 1352 | 0.20 | 145.87 | 9.22 | 8.10 | 1026 | 0.20 | 93.19 | 8.80 | 7.18 |
1:4,000,000 | 1260 | 0.20 | 145.87 | 9.26 | 8.35 | 482 | 0.20 | 93.19 | 9.78 | 9.20 |
1:10,000,000 | 710 | 0.87 | 93.19 | 9.94 | 7.99 | 294 | 0.87 | 60.26 | 8.73 | 5.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, J.; Cao, X.; Wugu, E.; Zhang, Y.; Wang, L.; Qu, L.; Wu, J. Effects of Soil Map Scales on Estimating Soil Organic Carbon Stocks in Southeastern China. Land 2022, 11, 1285. https://doi.org/10.3390/land11081285
Zhi J, Cao X, Wugu E, Zhang Y, Wang L, Qu L, Wu J. Effects of Soil Map Scales on Estimating Soil Organic Carbon Stocks in Southeastern China. Land. 2022; 11(8):1285. https://doi.org/10.3390/land11081285
Chicago/Turabian StyleZhi, Junjun, Xinyue Cao, Enmiao Wugu, Yue Zhang, Lin Wang, Le’an Qu, and Jiaping Wu. 2022. "Effects of Soil Map Scales on Estimating Soil Organic Carbon Stocks in Southeastern China" Land 11, no. 8: 1285. https://doi.org/10.3390/land11081285
APA StyleZhi, J., Cao, X., Wugu, E., Zhang, Y., Wang, L., Qu, L., & Wu, J. (2022). Effects of Soil Map Scales on Estimating Soil Organic Carbon Stocks in Southeastern China. Land, 11(8), 1285. https://doi.org/10.3390/land11081285