Uncovering Network Heterogeneity of China’s Three Major Urban Agglomerations from Hybrid Space Perspective-Based on TikTok Check-In Records
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Modeling the check-in network
- (1)
- Address resolution. Based on the check-in data, we locate the city from where the check-in users originate and the city to which the check-in location belongs ). City names are geocoded through the AMap Web API (https://restapi.amap.com/v3/geocode/geo?parameters, access date: 21 September 2022) to get latitude and longitude coordinates.
- (2)
- Data filtering. The data from the same city as and are eliminated, and the 23,301 records from different cities are retained as cross-city check-in data.
- (3)
- Network modeling. We aggregate cross-city check-in data according to city units and transform it into an OD matrix. Point O is the city from which the check-in users originated (), point D is the city to which the check-in location belongs ().
2.3.2. Evaluating the Characteristics of the Check-In Network
- Hierarchical property
- 2.
- Community scale
- 3.
- Node centrality
3. Results
3.1. Hierarchical Attributes
3.2. Communities Scale
3.3. Node Centrality
- 4.
- Node weighted degree and NSI
- 5.
- PageRank
4. Discussion
4.1. Key Findings and Significance of This Study
4.2. Spatial Organizational Pattern of Three Major Urban Agglomerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castells, M. The Informational City: Information Technology, Economic Restructuring, and the Urban-Regional Process; Blackwell Oxford: Oxford, UK, 1989. [Google Scholar]
- Castells, M. The Rise of the Network Society; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Derudder, B. Mapping Global Urban Networks: A Decade of Empirical World Cities Research. Geogr. Compass 2008, 2, 559–574. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Supriyadi, A.; Zhang, K.; Tang, Z. Evolution and Optimization of Urban Network Spatial Structure: A Case Study of Financial Enterprise Network in Yangtze River Delta, China. ISPRS Int. J. Geo-Inf. 2020, 9, 611. [Google Scholar] [CrossRef]
- Balland, P.-A.; Boschma, R.; Ravet, J. Network dynamics in collaborative research in the EU, 2003–2017. Eur. Plan. Stud. 2019, 27, 1811–1837. [Google Scholar] [CrossRef] [Green Version]
- Li, X.D. Spatial structure of the Yangtze river delta city network based on the pattern of listed companies network. Prog. Geogr. 2017, 33, 1587–1600. [Google Scholar] [CrossRef]
- Yeh, A.G.; Yang, F.F.; Wang, J. Producer service linkages and city connectivity in the mega-city region of China: A case study of the Pearl River Delta. Urban Stud. 2015, 52, 2458–2482. [Google Scholar] [CrossRef]
- Castells, M. Informationalism, networks, and the network society: A theoretical blueprint. Netw. Soc. Cross-Cult. Persxpect. 2004, 3–45. [Google Scholar] [CrossRef]
- Hall, P.G.; Pain, K. The Polycentric Metropolis: Learning from Mega-City Regions in Europe; Routledge: Oxford, UK, 2006. [Google Scholar]
- Taylor, P.J.; Hoyler, M.; Verbruggen, R. External Urban Relational Process: Introducing Central Flow Theory to Complement Central Place Theory. Urban Stud. 2010, 47, 2803–2818. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Cheng, Y. Characteristics and Performance of City Network from the Perspective of High-way Freight—The Case of Three Major Urban Agglomerations in China. Urban Plan. Forum. 2020, 10, 32–39. [Google Scholar] [CrossRef]
- Chen, W.; Liu, W.; Ke, W.; Wang, N. Understanding spatial structures and organizational patterns of city networks in China: A highway passenger flow perspective. J. Geogr. Sci. 2018, 28, 477–494. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Lu, S.; Yang, X.; Zhao, Z. Exploring Railway Network Dynamics in China from 2008 to 2017. ISPRS Int. J. Geo-Inform. 2018, 7, 320. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, J.; Qiu, G. China’s high-speed rail network construction and planning over time: A network analysis. J. Transp. Geogr. 2018, 70, 40–54. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, X.; Song, X. Spatial Organizational Characteristics of the Yangtze River Delta Urban Agglomeration Based on Intercity Trips. City Plan. Rev. 2021, 45, 43–53. [Google Scholar] [CrossRef]
- Teixeira, S.H.D.O.; Catelan, M.J. New Articulations of the Brazilian Cities Network: An Analysis of the Heterarchies by the Airflow System. Soc. Nat. 2019, 31, e42622. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, G.; Zhao, H. Spatial Network Structures of Urban Agglomeration Based on the Improved Gravity Model: A Case Study in China’s Two Urban Agglomerations. Complexity 2021, 2021, 6651444. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, X.; Derudder, B.; Zhong, Y.; Shen, W. Mapping producer services networks in mainland Chinese cities. Urban Stud. 2015, 52, 3018–3034. [Google Scholar] [CrossRef]
- Zhao, M.; Derudder, B.; Huang, J. Examining the transition processes in the Pearl River Delta polycentric mega-city region through the lens of corporate networks. Cities 2017, 60, 147–155. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, S.; Fang, X.; Chen, W. Interaction of economic agglomeration, energy conservation and emission reduction: Evidence from three major urban agglomerations in China. Energy 2022, 241, 122519. [Google Scholar] [CrossRef]
- Cao, Z.; Dai, L.; Wu, K.; Peng, Z. Structural Features and Driving Factors of the Evolution of the Global Interurban Knowledge Collaboration Network. Geogr. Res. 2022, 41, 1072–1091. [Google Scholar] [CrossRef]
- Read, R. Knowledge counts: Influential actors in the education for all global monitoring report knowledge network. Int. J. Educ. Dev. 2019, 64, 96–105. [Google Scholar] [CrossRef]
- Tang, C.; Dou, J. Exploring the Polycentric Structure and Driving Mechanism of Urban Regions from the Perspective of Innovation Network. Front. Phys. 2022, 10, 855380. [Google Scholar] [CrossRef]
- Liu, L.; Luo, J.; Xiao, X.; Hu, B.; Qi, S.; Lin, H.; Zu, X. Spatio-Temporal Evolution of Urban Innovation Networks: A Case Study of the Urban Agglomeration in the Middle Reaches of the Yangtze River, China. Land 2022, 11, 597. [Google Scholar] [CrossRef]
- Yan, S.; Jin, C. Characteristics of Spatial Network Structure of Tourist Flow in Urban Area of Luoyang. Sci. Geogr. Sin. 2019, 39, 1602–1611. [Google Scholar] [CrossRef]
- Chen, H.; Wang, M.; Zheng, S. Research on the Spatial Network Effect of Urban Tourism Flows from Shanghai Disneyland. Sustainability 2022, 14, 13973. [Google Scholar] [CrossRef]
- Wei, T. Application of GIS in Spatial Characteristics of Tourist Flow Based on Online Booking Data: A Case Study of Yangtze River Delta. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 22, 1–11. [Google Scholar] [CrossRef]
- Seok, H.; Barnett, G.A.; Nam, Y. A social network analysis of international tourism flow. Qual. Quant. 2021, 55, 419–439. [Google Scholar] [CrossRef]
- He, B.; Liu, K.; Xue, Z.; Liu, J.; Yuan, D.; Yin, J.; Wu, G. Spatial and Temporal Characteristics of Urban Tourism Travel by Taxi—A Case Study of Shenzhen. ISPRS Int. J. Geo-Inf. 2021, 10, 445. [Google Scholar] [CrossRef]
- Gan, C.; Voda, M.; Wang, K.; Chen, L.; Ye, J. Spatial network structure of the tourism economy in urban agglomeration: A social network analysis. J. Hosp. Tour. Manag. 2021, 47, 124–133. [Google Scholar] [CrossRef]
- Lin, Q.; Xiang, M.; Zhang, L.; Yao, J.; Wei, C.; Ye, S.; Shao, H. Research on Urban Spatial Connection and Network Structure of Urban Agglomeration in Yangtze River Delta—Based on the Perspective of Information Flow. Int. J. Environ. Res. Public Health 2021, 18, 10288. [Google Scholar] [CrossRef]
- Chu, N.; Wu, X.; Zhang, P.; Zhang, P. Urban Spatial Network Characteristics from the Perspectives of Reality and Virtual Flow in Northeast China. Econ. Geogr. 2022, 42, 66–74. [Google Scholar] [CrossRef]
- An, D.; Hu, Y.; Wan, Y. Urban Network Association and Spillover Effects of Economic growth in China: A Study Based on Big Data and Network Analysis. Geogr. Res. 2022, 41, 2465–2481. [Google Scholar] [CrossRef]
- Duan, D.; Du, D.; Chen, Y.; Zhai, Q. Spatial-temporal complexity and growth mechanism of city innovation network in china. Sci. Geogr. Sin. 2018, 38, 1759–1768. [Google Scholar] [CrossRef]
- Zhou, C.; Zeng, G.; Cao, X. Chinese inter-city innovation networks structure and city innovation capability. Geogr. Res. 2017, 36, 1297–1308. [Google Scholar] [CrossRef]
- Chen, H.; Wu, S. Comparison of the Development Level and Structural Characteristics of Urban Networks in the three Metropolitan Areas: An Empirical Study Based on Six Major Segments of the Producer Service Industry. Econ. Geogr. 2020, 40, 110–118. [Google Scholar] [CrossRef]
- Ren, H.; Ye, M.; Yu, Y. Spatial Structure and Evolution Characteristics of Financial Network in Three Major Urban Agglomerations of China: A Case Study of Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl River Delta. Econ. Geogr. 2021, 41, 63–73. [Google Scholar] [CrossRef]
- Fang, Y.; Su, X.; Huang, Z.; Guo, B. Structural Characteristics and Resilience Evaluation of Tourism Flow Networks in Five Major Urban Agglomerations in Coastal China: From the Perspective of Evolutionary Resilience. Econ. Geogr. 2022, 42, 203–211. [Google Scholar] [CrossRef]
- Ash, J.; Kitchin, R.; Leszczynski, A. Digital turn, digital geographies? Prog. Hum. Geogr. 2018, 42, 25–43. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.D.S.E. From Cyber to Hybrid: Mobile Technologies as Interfaces of Hybrid Spaces. Space Cult. 2006, 9, 261–278. [Google Scholar] [CrossRef] [Green Version]
- Soja, E.W. Thirdspace: Journeys to Los Angeles and other Real-and-Imagined Places. Cap. Cl. 1998, 22, 137–139. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, M. Geomedia and thirdspace: The progress of research of geographies of media and communication in the West. Prog. Geogr. 2022, 41, 1082–1096. [Google Scholar] [CrossRef]
- Paldino, S.; Bojic, I.; Sobolevsky, S.; Ratti, C.; González, M.C. Urban magnetism through the lens of geo-tagged photography. EPJ Data Sci. 2015, 4, 5. [Google Scholar] [CrossRef]
- Sulis, P.; Manley, E.; Zhong, C.; Batty, M. Using mobility data as proxy for measuring urban vitality. J. Spat. Inf. Sci. 2018, 16, 137–162. [Google Scholar] [CrossRef]
- Long, Y.; Huang, C. Does block size matter? The impact of urban design on economic vitality for Chinese cities. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 406–422. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chong, Z.; Li, X.; Nie, G. Spatial patterns and determinant factors of population flow networks in China: Analysis on Tencent Location Big Data. Cities 2020, 99, 102640. [Google Scholar] [CrossRef]
- Jiang, H.; Luo, S.; Qin, J.; Liu, R.; Yi, D.; Liu, Y.; Zhang, J. Exploring the Inter-Monthly Dynamic Patterns of Chinese Urban Spatial Interaction Networks Based on Baidu Migration Data. ISPRS Int. J. Geo-Inf. 2022, 11, 486. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, W. Spatial Characteristics of the Tourism Flows in China: A Study Based on the Baidu Index. ISPRS Int. J. Geo-Inf. 2021, 10, 378. [Google Scholar] [CrossRef]
- Deng, C.; Song, X.; Xie, B.; Li, M.; Zhong, X. City Network Link Analysis of Urban Agglomeration in the Middle Yangtze River Basin Based on the Baidu Post Bar Data. Geogr. Res. 2018, 37, 1181–1192. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Tian, S.; Gong, Y. Network structure and influencing factors of urban human habitat activities in the three provinces of Northeast China: Based on Baidu Post Bar data. Prog. Geogr. 2019, 38, 1726–1734. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhao, M. City Networks in Cyberspace: Using Douban-Event to Measure the Cross-City Activities in Urban Agglomeration of China. Hum. Geogr. 2016, 31, 102–108. [Google Scholar] [CrossRef]
- Wang, P.; Liu, K.; Wang, D.; Fu, Y. Measuring Urban Vibrancy of Residential Communities Using Big Crowdsourced Geotagged Data. Front. Big Data 2021, 34. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, G.; De Jong, M.; Li, X.; Zhang, P. Examining the Density and Diversity of Human Activity in the Built Environment: The Case of the Pearl River Delta, China. Sustainability 2020, 12, 3700. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhang, E.; Long, Y. Revealing virtual visiting preference: Differentiating virtual and physical space with massive TikTok records in Beijing. Cities 2022, 130, 103983. [Google Scholar] [CrossRef]
- Ding, Z.; Ma, F.; Zhang, G. Spatial Differences and Influencing Factors of Urban Network Attention by Douyin Fans in China. Geogr. Res. 2022, 41, 2548–2567. [Google Scholar]
- Peng, H.; Lu, L.; Lu, X.; Ling, S.; Li, Z.; Deng, H. The network structure of cross-border tourism flow based on the social network method:A case of Lugu Lake Region. Sci. Geogr. Sin. 2014, 34, 1041–1050. [Google Scholar] [CrossRef]
- Wang, J.; Mo, H.; Wang, F.; Jin, F. Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach. J. Transp. Geogr. 2011, 19, 712–721. [Google Scholar] [CrossRef]
- Duan, D.; Chen, Y.; Du, D. Regional Integration Process of China’s Three Major Urban Agglomerations from the Perspective of Technology Transfer. Sci. Geogr. Sin. 2019, 39, 1581–1591. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, Y.; Liu, X.; Ma, Y. Spatio-temporal pattern and influencing factors of cooperation network of China’s inbound tourism cities. Acta Geogr. Sin. 2022, 77, 2034–2049. [Google Scholar]
- Forstall, R.L.; Greene, R.P.; Pick, J.B. Which Are the Largest? Why Lists of Major Urban Areas Vary so Greatly. Tijdschr. Voor Econ. En Soc. Geogr. 2009, 100, 277–297. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
Oid | Date | User_City | Check-In_City |
---|---|---|---|
1 | 2022/8/1 | Zhaoqing | Zhuhai |
2 | 2022/8/1 | Foshan | Zhaoqing |
3 | 2022/8/1 | Jiangmen | Guangzhou |
4 | 2022/8/1 | Guangzhou | Shenzhen |
5 | 2022/8/1 | Shenzhen | Guangzhou |
6 | 2022/8/1 | Dongguan | Huizhou |
7 | 2022/8/1 | Foshan | Guangzhou |
8 | 2022/8/1 | Guangzhou | Foshan |
9 | 2022/8/1 | Zhongshan | Huizhou |
10 | 2022/8/1 | Guangzhou | Foshan |
Eigenvalues | YRD | PRD | BTH |
---|---|---|---|
Number of nodes | 26 | 9 | 14 |
Average degree | 10.077 | 5.111 | 6 |
Average weighted degree | 433 | 264.556 | 293.357 |
Fit coefficient (a) | −0.91903 | −0.96918 | −1.02552 |
Index | YRD | BTH | PRD |
---|---|---|---|
Average clustering coefficient | 0.658 (0.377) 1 | 0.626 (0.435) | 0.597 (0.586) |
Average path length | 1.6 (1.623) | 1.556 (1.571) | 1.361 (1.375) |
Urban Agglomeration | Community Number | Number of Nodes | Density | Flow | Flow Ratio | Core City |
---|---|---|---|---|---|---|
YRD | 1 | 11 | 0.82 | 4519 | 39.96% | Shanghai, Suzhou, Nanjing |
YRD | 2 | 8 | 0.75 | 2688 | 23.77% | Hangzhou |
YRD | 3 | 7 | 0.355 | 522 | 4.62% | Hefei |
PRD | 1 | 6 | 0.835 | 2569 | 39.95% | Guangzhou |
PRD | 2 | 3 | 1 | 1728 | 26.87% | Shenzhou |
BTH | 1 | 11 | 0.59 | 3421 | 83.01% | Beijing |
BTH | 2 | 3 | 0.665 | 125 | 3.03% | —— |
YRD 1 | PRD | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
City | WID 2 | WOD 2 | WD 2 | NSI | PR | City | WID | WOD | WD | NSI | PR |
Shanghai | 904 | 2208 | 3112 | −0.42 | 0.091 | Guangzhou | 1243 | 2003 | 3246 | −0.234 | 0.214 |
Hangzhou | 1271 | 1588 | 2859 | −0.11 | 0.109 | Foshan | 1254 | 754 | 2008 | 0.249 | 0.158 |
Suzhou | 1116 | 1005 | 2121 | 0.052 | 0.082 | Dongguan | 1059 | 821 | 1880 | 0.126 | 0.14 |
Naning | 641 | 894 | 1535 | −0.17 | 0.058 | Shenzhen | 777 | 1649 | 2426 | −0.359 | 0.136 |
Wuxi | 654 | 585 | 1239 | 0.056 | 0.054 | Huizhou | 974 | 310 | 1284 | 0.517 | 0.112 |
Yancheng | 389 | 584 | 973 | −0.2 | 0.032 | Zhongshan | 445 | 222 | 667 | 0.334 | 0.085 |
Hefei | 430 | 497 | 927 | −0.07 | 0.036 | Jiangmen | 233 | 223 | 456 | 0.021 | 0.056 |
Ningbo | 510 | 401 | 911 | 0.12 | 0.056 | Zhuhai | 221 | 154 | 375 | 0.178 | 0.049 |
Jiaxing | 501 | 405 | 906 | 0.106 | 0.035 | Zhaoqing | 225 | 295 | 520 | −0.134 | 0.046 |
Changzhou | 539 | 301 | 840 | 0.283 | 0.044 | Average value | 715 | 715 | 1429 | 0.077 | 0.111 |
Jinhua | 408 | 363 | 771 | 0.058 | 0.037 | BTH | |||||
Nantong | 506 | 229 | 735 | 0.377 | 0.035 | City | WID | WOD | WD | NSI | PR |
Huzhou | 570 | 154 | 724 | 0.575 | 0.041 | Beijing | 664 | 1668 | 2332 | −0.43 | 0.223 |
Shaoxing | 473 | 197 | 670 | 0.412 | 0.042 | Langfang | 539 | 464 | 1003 | 0.074 | 0.081 |
Taizhou-J 3 | 246 | 284 | 530 | −0.07 | 0.024 | Baoding | 474 | 499 | 973 | −0.025 | 0.072 |
Taizhou-Z 3 | 291 | 204 | 495 | 0.176 | 0.029 | Shijiazhuang | 318 | 358 | 676 | −0.059 | 0.063 |
Zhoushan | 431 | 52 | 483 | 0.785 | 0.045 | Tianjin | 339 | 224 | 563 | 0.204 | 0.059 |
Wuhu | 225 | 229 | 454 | −0.01 | 0.022 | Zhangjiakou | 386 | 52 | 438 | 0.762 | 0.065 |
Chuzhou | 223 | 224 | 447 | −0 | 0.02 | Chengde | 346 | 77 | 423 | 0.635 | 0.155 |
Yangzhou | 172 | 269 | 441 | −0.22 | 0.016 | Handan | 202 | 209 | 411 | −0.017 | 0.042 |
Anqing | 161 | 222 | 383 | −0.16 | 0.017 | Xingtai | 206 | 142 | 348 | 0.183 | 0.039 |
Xuancheng | 190 | 158 | 348 | 0.092 | 0.018 | Tangshan | 166 | 128 | 294 | 0.129 | 0.051 |
Zhenjiang | 210 | 99 | 309 | 0.359 | 0.021 | Cangzhou | 141 | 152 | 293 | −0.037 | 0.029 |
Maanshan | 77 | 101 | 178 | −0.14 | 0.013 | Qinhuangdao | 248 | 18 | 266 | 0.864 | 0.081 |
Chizhou | 104 | 57 | 161 | 0.292 | 0.012 | Hengshui | 92 | 64 | 156 | 0.179 | 0.022 |
Tongling | 68 | 0 | 68 | 1 | 0.01 | Anyang | 0 | 66 | 66 | −1 | 0.011 |
Average value | 435 | 435 | 870 | 0.122 | 0.038 | Average value | 294 | 294 | 589 | 0.105 | 0.071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, B.; Chen, R.; Xu, G. Uncovering Network Heterogeneity of China’s Three Major Urban Agglomerations from Hybrid Space Perspective-Based on TikTok Check-In Records. Land 2023, 12, 134. https://doi.org/10.3390/land12010134
Xiang B, Chen R, Xu G. Uncovering Network Heterogeneity of China’s Three Major Urban Agglomerations from Hybrid Space Perspective-Based on TikTok Check-In Records. Land. 2023; 12(1):134. https://doi.org/10.3390/land12010134
Chicago/Turabian StyleXiang, Bowen, Rushuang Chen, and Gaofeng Xu. 2023. "Uncovering Network Heterogeneity of China’s Three Major Urban Agglomerations from Hybrid Space Perspective-Based on TikTok Check-In Records" Land 12, no. 1: 134. https://doi.org/10.3390/land12010134