Land Use and Land Cover Change Monitoring and Prediction of a UNESCO World Heritage Site: Kaziranga Eco-Sensitive Zone Using Cellular Automata-Markov Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Image Preprocessing
2.2.2. Image Classification
2.3. LULC Change Detection
Accuracy Assessment
2.4. Prediction of LULC Change Using the CA-Markov Chain Model
Calibration and Validation of the Model
3. Results and Discussion
3.1. Assessing the Spatio-Temporal Distribution of LULC Change
3.2. Accuracy Assessment
3.3. Future LULC Change Projections
3.3.1. LULC Transition Probabilities
3.3.2. Spatio-Temporal Analysis of the Predicted LULC
3.3.3. Validation and Evaluation of the Predicted LULC Map
3.4. Land Use and Land Cover Transformation and Temperature-Precipitation Changes
3.5. Future Prediction of LULC in the Year 2030, 2040, and 2050
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinayak, B.; Lee, H.S.; Gedem, S. Prediction of land use and land cover changes in Mumbai city, India, using remote sensing data and a multilayer perceptron neural network-based Markov Chain model. Sustainability 2021, 13, 471. [Google Scholar] [CrossRef]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.; Chen, C.; Chen, J.; Wu, Z.; Wang, F.; Li, S. Multi-Scenario Simulation of Land-Use Change and Delineation of Urban Growth Boundaries in County Area: A Case Study of Xinxing County, Guangdong Province. Land 2022, 11, 1598. [Google Scholar] [CrossRef]
- Lin, X.; Xu, M.; Cao, C.; Singh, R.P.; Chen, W.; Ju, H. Land-use/land-cover changes and their influence on the ecosystem in Chengdu City, China during the period of 1992–2018. Sustainability 2018, 10, 3580. [Google Scholar] [CrossRef] [Green Version]
- Di Gregorio, A.; Jansen, L.J. Land Cover Classification System (LCCS): Classification Concepts and User Manual. Fao 2000, 53, 179. [Google Scholar]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. Springerplus 2016, 5, 812. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.N.; Rai, P.K. A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arab. J. Geosci. 2016, 9, 249. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.Q.; Chen, R. A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol. Modell. 2014, 283, 1–7. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon 2020, 6, e05092. [Google Scholar] [CrossRef]
- Moein, M.; Asgarian, A.; Sakieh, Y.; Soffianian, A. Scenario-Based Analysis of Land-Use Competition in Central Iran: Finding the Trade-off between Urban Growth Patterns and Agricultural Productivity; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 39. [Google Scholar] [CrossRef]
- Krishna, V.; Kumar, A.; Pandey, R.; Singh, S.K.; Dwevedi, R. The evolution of ecological sensitive zones in India: A case study of Western Ghats. Int. J. Fauna Biol. Stud. 2017, 4, 20–25. [Google Scholar]
- Areendran, G.; Raj, K.; Sharma, A.; Bora, P.J.; Sarmah, A.; Sahana, M.; Ranjan, K. Documenting the land use pattern in the corridor complexes of Kaziranga National Park using high resolution satellite imagery. Trees For. People 2020, 2, 100039. [Google Scholar] [CrossRef]
- Basumatary, H.; Sah, R.K.; Das, A.K. Analyzing Area Dynamics on a Protected Floodplain Using Long-Term Sequential Data: The Case of Kaziranga National Park. J. Indian Soc. Remote Sens. 2019, 47, 1557–1566. [Google Scholar] [CrossRef]
- Mahendra, H.N.; Shivakumar, B.R.; Praveen, J. Pixel-based Classification of Multispectral Remotely Sensed Data Using Support Vector Machine Classifier. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 2016, 4, 94–98. [Google Scholar] [CrossRef]
- Tewabe, D.; Fentahun, T. Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia. Cogent Environ. Sci. 2020, 6, 1778998. [Google Scholar] [CrossRef]
- Saadat, H.; Adamowsk, J.; Bonnell, R.; Sharifi, F.; Namdar, M.; Ale-Ebrahim, S. Land Use and Land Cover Classification over a Large Area in Iran BASED on Single Date Analysis of Satellite Imagery; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Kumar, P.; Rai, A.; Chand, S. The Egyptian Journal of Remote Sensing and Space Sciences Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. Egypt. J. Remote Sens. Sp. Sci. 2020, 23, 133–143. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; Wiley: Hoboken, NJ, USA, 2015; Volume 81. [Google Scholar] [CrossRef]
- Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat. Hazards Risk 2014, 5, 145–156. [Google Scholar] [CrossRef]
- Han, J.; Hayashi, Y.; Cao, X.; Imura, H. Evaluating Land-Use Change in Rapidly Urbanizing China: Case Study of Shanghai. J. Urban Plan. Dev. 2009, 135, 166–171. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2001, 80, 185–201. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Tadese, S.; Soromessa, T.; Bekele, T. Analysis of the Current and Future Prediction. Sci. World J. 2021, 2021, 6685045. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Fitzsimmons, P.J.; Getoor, R.K. Homogeneous random measures and strongly supermedian kernels of a markov process. Electron. J. Probab. 2003, 8, 1–54. [Google Scholar] [CrossRef]
- Singh, S.K.; Mustak, S.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting Spatial and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using Earth Observation Datasets and Geo-information. Environ. Process. 2015, 2, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Omar, N.Q.; Ahamad, M.S.S.; Hussin, W.M.A.W.; Samat, N.; Ahmad, S.Z.B. Markov CA, Multi Regression, and Multiple Decision Making for Modeling Historical Changes in Kirkuk City, Iraq. J. Indian Soc. Remote Sens. 2014, 42, 165–178. [Google Scholar] [CrossRef]
- Bashir, O.; Bangroo, S.A.; Guo, W.; Meraj, G.; Ayele, G.T.; Naikoo, N.B.; Shafai, S.; Singh, P.; Muslim, M.; Taddese, H.; et al. Simulating Spatiotemporal Changes in Land Use and Land Cover of the North-Western Himalayan Region Using Markov Chain Analysis. Land 2022, 11, 2276. [Google Scholar] [CrossRef]
- Wangyel, S.; Munkhnasan, L.; Lee, W. Land use and land cover change detection and prediction in Bhutan’ s high altitude city of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2020, 2, 100017. [Google Scholar] [CrossRef]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use And Land Cover Classification System For Use With Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1983.
- Debnath, J.; Sahariah, D.; Lahon, D.; Nath, N.; Chand, K.; Meraj, G. Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Basumatary, H.; Devi, H.S.; Borah, S.B.; Das, A.K. Land cover dynamics and their driving factors in a protected floodplain ecosystem. River Res. Appl. 2021, 37, 627–643. [Google Scholar] [CrossRef]
- Meraj, G.; Farooq, M.; Singh, S.K.; Islam, M.; Kanga, S. Modeling the sediment retention and ecosystem provisioning services in the Kashmir valley, India, Western Himalayas. Modeling Earth Syst. Environ. 2022, 8, 3859–3884. [Google Scholar] [CrossRef]
- Kushwaha, S.P.S.; Roy, P.S.; Boruah, P.; Lahan, P. Land area change and rhino habitat suitability analysis in Kaziranga National Park, Assam. Tigerpaper 2000, 27, 9–17. [Google Scholar]
- Coleman, J.M. Brahmaputra river: Channel processes and sedimentation. Sediment. Geol. 1969, 3, 129–239. [Google Scholar] [CrossRef]
- Meraj, G. Assessing the Impacts of Climate Change on Ecosystem Service Provisioning in Kashmir Valley India. Ph.D. Thesis. 2021. Available online: http://hdl.handle.net/10603/354338 (accessed on 15 October 2022).
- Deka, R.L.; Nath, K.K. Variability of climatic elements at Jorhat. J. Agrometeorol. 2008, 10, 89–92. [Google Scholar] [CrossRef]
- Parida, B.R.; Oinam, B. Unprecedented drought in North East India compared to Western India. Curr. Sci. 2015, 109, 2121–2126. [Google Scholar] [CrossRef]
- Ahmed, R. Elephant Crop Raiding and Railways Traffic: Temporal Determinants of Elephant-train Collisions in Eastern Karbi Anglong, India. Appl. Ecol. Environ. Sci. 2020, 8, 81–86. [Google Scholar] [CrossRef]
- Banerjee, S.; Niyogi, R.; Sarkar, M.S.; John, R. Assessing the vulnerability of protected areas in the eastern Himalayas based on their biological, anthropogenic, and environmental aspects. Trees For. People 2022, 8, 100228. [Google Scholar] [CrossRef]
- Chakravartty, A. kaziranga_Eviction Paper.pdf. 2020. Available online: https://india.mongabay.com/2020/11/latest-kaziranga-expansion-brings-back-fear-of-evictions-among-residents/ (accessed on 25 February 2021).
- Meraj, G. Ecosystem service provisioning–underlying principles and techniques. SGVU J. Clim. Chang. Water 2020, 7, 56–64. [Google Scholar]
- Meraj, G.; Romshoo, S.A.; Yousuf, A.R.; Altaf, S.; Altaf, F. Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat. Hazards 2015, 77, 153–175. [Google Scholar] [CrossRef]
- Fayaz, M.; Meraj, G.; Khader, S.A.; Farooq, M. ARIMA and SPSS statistics based assessment of landslide occurrence in western Himalayas. Environ. Chall. 2022, 9, 100624. [Google Scholar] [CrossRef]
- Meraj, G.; Kanga, S.; Ambadkar, A.; Kumar, P.; Singh, S.K.; Farooq, M.; Johnson, B.A.; Rai, A.; Sahu, N. Assessing the Yield of Wheat Using Satellite Remote Sensing-Based Machine Learning Algorithms and Simulation Modeling. Remote Sens. 2022, 14, 3005. [Google Scholar] [CrossRef]
- Tomar, P.; Singh, S.K.; Kanga, S.; Meraj, G.; Kranjčić, N.; Đurin, B.; Pattanaik, A. GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India. Sustainability 2021, 13, 12850. [Google Scholar] [CrossRef]
- Meraj, G.; Romshoo, S.A.; Yousuf, A.R. Geoinformatics approach to qualitative forest density loss estimation and protection cum conservation strategy-a case study of Pir Panjal range, J&K, India. Int. J. Curr. Res. Rev. 2012, 4, 47–61. [Google Scholar]
- Altaf, F.; Meraj, G.; Romshoo, S.A. Morphometric analysis to infer hydrological behaviour of Lidder watershed, Western Himalaya, India. Geogr. J. 2013, 2013, 178021. [Google Scholar] [CrossRef] [Green Version]
- Kanga, S.; Meraj, G.; Farooq, M.; Singh, S.K.; Nathawat, M.S. Disasters in the Complex Himalayan Terrains. In Disaster Management in the Complex Himalayan Terrains; Springer: Cham, Switzerland, 2022; pp. 3–10. [Google Scholar]
- Zhang, J.; Zhang, X.; Tan, X.; Yuan, X. A New Approach to Monitoring Urban Built-Up Areas in Kunming and Yuxi from 2012 to 2021: Promoting Healthy Urban Development and Efficient Governance. Int. J. Environ. Res. Public Health 2022, 19, 12198. [Google Scholar] [CrossRef] [PubMed]
- Sajan, B.; Mishra, V.N.; Kanga, S.; Meraj, G.; Singh, S.K.; Kumar, P. Cellular Automata-Based Artificial Neural Network Model for Assessing Past, Present, and Future Land Use/Land Cover Dynamics. Agronomy 2022, 12, 2772. [Google Scholar] [CrossRef]
- Rather, M.A.; Meraj, G.; Farooq, M.; Shiekh, B.A.; Kumar, P.; Kanga, S.; Singh, S.K.; Sahu, N.; Tiwari, S.P. Identifying the Potential Dam Sites to Avert the Risk of Catastrophic Floods in the Jhelum Basin, Kashmir, NW Himalaya, India. Remote Sens. 2022, 14, 1538. [Google Scholar] [CrossRef]
- Meraj, G.; Khan, T.; Romshoo, S.A.; Farooq, M.; Rohitashw, K.; Sheikh, B.A. An Integrated Geoinformatics and Hydrological Modelling-Based Approach for Effective Flood Management in the Jhelum Basin, NW Himalaya. Proceedings 2019, 7, 8. [Google Scholar]
S. No | Sensor | Path/Row | Acquisition Date | Spatial Resolution |
---|---|---|---|---|
1 | TM | 136/41 | 30-12-1990 | 30 |
2 | TM | 136/41 | 08-01-2000 | 30 |
3 | TM | 136/41 | 15-01-2010 | 30 |
4 | OLI | 136/41 | 04-02-2020 | 30 |
LULC Class | 1990 | 2000 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | |
Waterbody | 229.77 | 10.55 | 199.74 | 9.17 | 164.29 | 7.54 | 187.5 | 8.61 |
Sand/Dry river Beds | 144.15 | 6.62 | 203.07 | 9.32 | 205.41 | 9.43 | 293.66 | 13.48 |
Forest | 655.69 | 30.12 | 625.87 | 28.73 | 557.41 | 25.59 | 701.34 | 32.19 |
Grassland | 551.17 | 25.32 | 685.92 | 31.48 | 803.93 | 36.9 | 496.26 | 22.78 |
Agricultural Land | 407.51 | 18.72 | 202.29 | 9.29 | 145.07 | 6.66 | 143.12 | 6.57 |
Built-up Area | 188.84 | 8.67 | 261.68 | 12.01 | 302.4 | 13.88 | 356.97 | 16.38 |
LULC Class | 1990–2000 | 2000–2010 | 2010–2020 | 1990–2020 | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | |
Waterbody | −30.03 | −13.07 | −35.45 | −17.75 | 23.21 | 14.13 | −42.27 | −18.4 |
Sand/Dry river beds | 58.92 | 40.87 | 2.34 | 1.15 | 88.25 | 42.96 | 149.51 | 103.72 |
Forest | −29.82 | −4.55 | −68.46 | −10.94 | 143.93 | 25.82 | 45.65 | 6.96 |
Grassland | 134.75 | 24.45 | 118.01 | 17.2 | −307.67 | −38.27 | −54.91 | −9.96 |
Agricultural Land | −205.22 | −50.36 | −57.22 | −28.29 | −1.95 | −1.34 | −264.39 | −64.88 |
Built-up Area | 72.84 | 38.57 | 40.72 | 15.56 | 54.57 | 18.05 | 168.13 | 89.03 |
LULC Class Transformation | 1990–2000 | 2000–2010 | 2010–2020 | 1990–2020 |
---|---|---|---|---|
Area (km2) | Area (km2) | Area (km2) | Area (km2) | |
Waterbody—Sand/Dry river beds | 76.73 | 67.5 | 47.16 | 68.08 |
Waterbody—Forest | 0.86 | 6.28 | 1.55 | 10.46 |
Waterbody—Grassland | 60.69 | 60.88 | 48.01 | 57.2 |
Waterbody—Agricultural Land | 0.25 | 0.14 | 0.45 | 4.08 |
Waterbody—Built-up Area | 2.86 | 6.76 | 5.46 | 12.7 |
Sand/Dry river beds—Waterbody | 37.18 | 41.93 | 45.71 | 30.36 |
Sand/Dry river beds—Forest | 0.1 | 0.33 | 4.52 | 5.17 |
Sand/Dry river beds—Grassland | 49.47 | 76.91 | 55.68 | 43.12 |
Sand/Dry river beds—Agricultural Land | 0.47 | 0.33 | 0.79 | 3.03 |
Sand/Dry river beds—Built-up Area | 2.83 | 11.34 | 15.11 | 10.25 |
Forest—Waterbody | 1.91 | 0.83 | 8.29 | 4.42 |
Forest—Sand/Dry river beds | 0.74 | 0.47 | 0.24 | 1.71 |
Forest—Grassland | 65.67 | 121.49 | 18.08 | 18.51 |
Forest—Agricultural Land | 2.03 | 0.38 | 13.15 | 57.68 |
Forest—Built-up Area | 25.16 | 20.41 | 7.12 | 15.77 |
Grassland—Waterbody | 63.64 | 59.14 | 58.23 | 60.32 |
Grassland—Sand/Dry river beds | 62.28 | 58.19 | 55.04 | 55.68 |
Grassland—Forest | 12.9 | 46.49 | 173.28 | 77.43 |
Grassland—Agricultural Land | 24.89 | 7.43 | 143.81 | 28.06 |
Grassland—Built-up Area | 31.3 | 76.06 | 83.71 | 34.89 |
Agricultural Land—Waterbody | 2.8 | 0.48 | 1.63 | 12.48 |
Agricultural Land—Sand/Dry river beds | 2.05 | 0.62 | 0.12 | 3.47 |
Agricultural Land—Forest | 32.03 | 0.39 | 5.2 | 54.58 |
Agricultural Land—Grassland | 100.5 | 26.32 | 0.06 | 4.00 |
Agricultural Land—Built-up Area | 116.11 | 55.32 | 15.8 | 96.45 |
Built-up Area—Waterbody | 1.46 | 1.95 | 2.04 | 2.16 |
Built-up Area—Sand/Dry river beds | 0.13 | 0.56 | 0.04 | 0.08 |
Built-up Area—Forest | 0.18 | 0.84 | 0.45 | 0.97 |
Built-up Area—Grassland | 0.43 | 0.59 | 0.07 | 0.82 |
Built-up Area—Agricultural Land | 0.54 | 0.08 | 0.3 | 0.92 |
LULC Classes | 1990 | 2000 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Producers Accuracy | Users Accuracy | Producers Accuracy | Users Accuracy | Producers Accuracy | Users Accuracy | Producers Accuracy | Users Accuracy | |
Waterbody | 94.00 | 97.00 | 71.74 | 74.16 | 99.00 | 100.00 | 98.15 | 99.00 |
Sand/Dry river beds | 78.00 | 87.00 | 83.02 | 74.58 | 94.00 | 82.00 | 90.12 | 88.25 |
Forest | 94.00 | 81.00 | 96.88 | 100.00 | 100.00 | 83.00 | 93.23 | 89.56 |
Grassland | 95.00 | 94.00 | 95.00 | 100.00 | 96.00 | 100.00 | 91.36 | 86.63 |
Agricultural Land | 97.00 | 86.00 | 87.89 | 74.36 | 97.00 | 91.00 | 94.69 | 87.78 |
Built-up Area | 85.00 | 80.00 | 75.00 | 72.00 | 89.00 | 85.00 | 87.00 | 86.00 |
Overall Accuracy | 91.00% | 86.00% | 94.00% | 92.00% | ||||
Kappa Accuracy | 90.00% | 85.00% | 93.00% | 91.00% |
2020/2030 | Waterbody | Sand/Dry River Beds | Forest | Grassland | Agricultural Land | Built-Up Area |
---|---|---|---|---|---|---|
Waterbody | 34.9 | 29.79 | 1.11 | 30.44 | 00.3 | 3.46 |
Sand/Dry river beds | 23.51 | 37.07 | 2.36 | 28.89 | 00.42 | 7.75 |
Forest | 1.01 | 0.04 | 91.38 | 3.29 | 02.5 | 1.29 |
Grassland | 7.45 | 7.04 | 21.99 | 34.58 | 18.02 | 10.91 |
Agricultural Land | 1.16 | 1.00 | 3.66 | 00.03 | 83.8 | 11.25 |
Built-up Area | 0.20 | 0.04 | 0.1 | 00.02 | 00.00 | 38.4 |
2020/2030 | Waterbody | Sand/Dry River Beds | Grassland | Forest | Agricultural Land | Built-Up Area |
---|---|---|---|---|---|---|
Waterbody | 72,855 | 62,192 | 2320 | 63,547 | 636 | 7213 |
Sand/Dry river beds | 48,195 | 76,006 | 4839 | 59,230 | 854 | 15,890 |
Grassland | 12,494 | 369 | 755,651 | 27,166 | 20,636 | 10,642 |
Forest | 32,969 | 31,126 | 97,289 | 152,999 | 79,731 | 48,281 |
Agricultural Land | 4883 | 429 | 15,399 | 146 | 352,753 | 47,346 |
Built-up Area | 232 | 108 | 149 | 104 | 141 | 104,727 |
2020/2040 | Waterbody | Sand/Dry River Beds | Forest | Grassland | Agricultural Land | Built-Up Area |
---|---|---|---|---|---|---|
Waterbody | 21.69 | 23.7 | 9.41 | 29.84 | 7.15 | 8.21 |
Sand/Dry river beds | 19.59 | 23.04 | 11.00 | 28.04 | 8.43 | 9.89 |
Forest | 2.27 | 0.78 | 84.55 | 4.63 | 5.4 | 2.36 |
Grassland | 8.05 | 7.65 | 30.50 | 17.14 | 25.58 | 11.08 |
Agricultural Land | 2.16 | 0.85 | 8.38 | 0.7 | 74.08 | 13.84 |
Built-up Area | 00.08 | 0.01 | 0.02 | 0.03 | 0.01 | 19.34 |
2020/2040 | Waterbody | Sand/Dry River Beds | Forest | Grassland | Agricultural Land | Built-Up Area |
---|---|---|---|---|---|---|
Waterbody | 45,272 | 49,474 | 19,645 | 62,296 | 14,932 | 17,144 |
Sand/Dry river beds | 40,170 | 47,237 | 22,560 | 57,487 | 17,278 | 20,280 |
Forest | 18,788 | 6483 | 699,213 | 38,279 | 44,637 | 19,557 |
Grassland | 35,617 | 33,863 | 134,929 | 75,816 | 113,161 | 49,008 |
Agricultural Land | 9079 | 3571 | 35,274 | 2927 | 311,832 | 58,272 |
Built-up Area | 296 | 190 | 159 | 150 | 180 | 52,754 |
2020/2050 | Waterbody | Sand/Dry River Beds | Forest | Grassland | Agricultural Land | Built-Up Area |
---|---|---|---|---|---|---|
Waterbody | 16.1 | 17.63 | 17.65 | 24.19 | 14.51 | 9.92 |
Sand/Dry river beds | 15.22 | 16.7 | 19.01 | 22.82 | 15.85 | 10.41 |
Forest | 2.81 | 1.42 | 78.93 | 5.33 | 8.27 | 3.25 |
Grassland | 7.33 | 6.85 | 34.76 | 11.75 | 29.04 | 10.27 |
Agricultural Land | 2.85 | 1.55 | 12.96 | 1.63 | 67.04 | 13.97 |
Built-up Area | 0.06 | 0.09 | 0.01 | 0.03 | 0.02 | 13.45 |
2020/2050 | Waterbody | Sand/Dry River Beds | Forest | Grassland | Agricultural Land | Built-Up Area |
---|---|---|---|---|---|---|
Waterbody | 33,607 | 36,808 | 36,838 | 50,500 | 30,297 | 20,713 |
Sand/Dry river beds | 31,208 | 34,229 | 38,964 | 46,777 | 32,491 | 21,344 |
Forest | 23,230 | 11,704 | 652,722 | 44,079 | 68,365 | 26,858 |
Grassland | 32,434 | 30,311 | 153,792 | 51,977 | 128,467 | 45,412 |
Agricultural Land | 11,994 | 6514 | 54,563 | 6860 | 282,212 | 58,813 |
Built-up Area | 262 | 185 | 114 | 103 | 170 | 36,676 |
LULC Classes | 2020 (Actual) | 2030 (Predicted) | 2040 (Predicted) | 2050 (Predicted) | Change from 2020–2050 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | |
Waterbody | 187.50 | 8.61 | 139.14 | 6.39 | 118.61 | 5.45 | 107.62 | 4.94 | 79.88 | 3.67 |
Sand/Dry river beds | 293.66 | 13.48 | 170.47 | 7.83 | 146.78 | 6.74 | 208.57 | 9.58 | 85.09 | 3.90 |
Forest | 701.34 | 32.19 | 642.15 | 29.49 | 620.45 | 28.50 | 546.27 | 25.09 | 155.07 | 7.10 |
Grassland | 496.26 | 22.78 | 664.38 | 30.51 | 612.26 | 28.12 | 659.13 | 30.27 | −162.87 | −7.49 |
Agricultural Land | 143.12 | 6.57 | 257.18 | 11.81 | 319.64 | 14.68 | 251.15 | 11.53 | −108.03 | −4.96 |
Built-up Area | 356.97 | 16.38 | 303.92 | 13.95 | 359.52 | 16.51 | 404.59 | 18.58 | −47.62 | −2.20 |
Agreement/Disagreement | Value (%) | |
---|---|---|
AC * | 14.59 | |
AQ | 07.66 | |
AS | 0.00 | |
AG | 76.55 | |
DG | 0.47 | |
DS | 0.00 | |
DQ | 01.04 | |
LULC Classes | Area of the Predicted LULC 2020 (Km2) | Area of the Actual LULC 2020 (Km2) |
---|---|---|
Waterbody | 200.4 | 187.5 |
Sand/Dry river beds | 280.8 | 293.66 |
Forest | 710.23 | 701.34 |
Grassland | 505.56 | 496.26 |
Agricultural Land | 151.74 | 143.12 |
Built-up Area | 330.12 | 356.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, N.; Sahariah, D.; Meraj, G.; Debnath, J.; Kumar, P.; Lahon, D.; Chand, K.; Farooq, M.; Chandan, P.; Singh, S.K.; et al. Land Use and Land Cover Change Monitoring and Prediction of a UNESCO World Heritage Site: Kaziranga Eco-Sensitive Zone Using Cellular Automata-Markov Model. Land 2023, 12, 151. https://doi.org/10.3390/land12010151
Nath N, Sahariah D, Meraj G, Debnath J, Kumar P, Lahon D, Chand K, Farooq M, Chandan P, Singh SK, et al. Land Use and Land Cover Change Monitoring and Prediction of a UNESCO World Heritage Site: Kaziranga Eco-Sensitive Zone Using Cellular Automata-Markov Model. Land. 2023; 12(1):151. https://doi.org/10.3390/land12010151
Chicago/Turabian StyleNath, Nityaranjan, Dhrubajyoti Sahariah, Gowhar Meraj, Jatan Debnath, Pankaj Kumar, Durlov Lahon, Kesar Chand, Majid Farooq, Pankaj Chandan, Suraj Kumar Singh, and et al. 2023. "Land Use and Land Cover Change Monitoring and Prediction of a UNESCO World Heritage Site: Kaziranga Eco-Sensitive Zone Using Cellular Automata-Markov Model" Land 12, no. 1: 151. https://doi.org/10.3390/land12010151
APA StyleNath, N., Sahariah, D., Meraj, G., Debnath, J., Kumar, P., Lahon, D., Chand, K., Farooq, M., Chandan, P., Singh, S. K., & Kanga, S. (2023). Land Use and Land Cover Change Monitoring and Prediction of a UNESCO World Heritage Site: Kaziranga Eco-Sensitive Zone Using Cellular Automata-Markov Model. Land, 12(1), 151. https://doi.org/10.3390/land12010151