Practicing Critical Zone Observation in Agricultural Landscapes: Communities, Technology, Environment and Archaeology
Abstract
:1. Introduction
1.1. Research Aims and Questions
- How can information on buried archaeological remains, largely invisible when viewed from the ground, support the aims of sustainable agricultural land management?
- How can contemporary archaeologists work at an extensive scale, commensurate with that of current landscape change, while maintaining the level of detail needed to tease out specific human impacts?
- How can land managers and farmers benefit from the use of archaeological methods and insights when working to develop more sustainable practices?
1.2. Research Context and Motivations
1.2.1. Changing Values
1.2.2. Changing Sensing Applications to Reflect Changing Values and Aims
2. Method: Developing a Conceptual Framework to Bridge Models of Landscape Change Used in Archaeology and Agriculture
2.1. Why a New Conceptual Framework Is Necessary
2.2. The Critical Zone as a Unifying Framework
2.3. Benefits of the Proposed Conceptual Framework
3. Method: Assessing Stakeholder Needs, Current Practice, and Barriers to Change
4. Results: What Sensing Data Is Needed?
4.1. For Farmers and Landowners
4.2. For Development-Led Archaeologists and Archaeological Researchers
4.3. For Managers in Organisations with a Land Management Remit
4.4. For Service Providers
5. Discussion: Perceived Potential Benefits of and Barriers to Coordination
5.1. Adopting Sensing Methods and Technologies
5.2. Coordinating Data Collection and Analysis
5.3. Data Management Governance and Infrastructures
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Power, A.G. Ecosystem Services and Agriculture: Tradeoffs and Synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Huang, J.; Tichit, M.; Poulot, M.; Darly, S.; Li, S.; Petit, C.; Aubry, C. Comparative Review of Multifunctionality and Ecosystem Services in Sustainable Agriculture. J. Environ. Manag. 2015, 149, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Schaller, L.; Targetti, S.; Villanueva, A.J.; Zasada, I.; Kantelhardt, J.; Arriaza, M.; Bal, T.; Fedrigotti, V.B.; Giray, F.H.; Häfner, K.; et al. Agricultural Landscapes, Ecosystem Services and Regional Competitiveness—Assessing Drivers and Mechanisms in Nine European Case Study Areas. Land Use Policy 2018, 76, 735–745. [Google Scholar] [CrossRef]
- Henle, K.; Alard, D.; Clitherow, J.; Cobb, P.; Firbank, L.; Kull, T.; McCracken, D.; Moritz, R.F.A.; Niemelä, J.; Rebane, M.; et al. Identifying and Managing the Conflicts between Agriculture and Biodiversity Conservation in Europe–A Review. Agric. Ecosyst. Environ. 2008, 124, 60–71. [Google Scholar] [CrossRef]
- Hauck, J.; Schmidt, J.; Werner, A. Using Social Network Analysis to Identify Key Stakeholders in Agricultural Biodiversity Governance and Related Land-Use Decisions at Regional and Local Level. Ecol. Soc. 2016, 21, 49. [Google Scholar] [CrossRef]
- Šūmane, S.; Kunda, I.; Knickel, K.; Strauss, A.; Tisenkopfs, T.; Rios, I.d.I.; Rivera, M.; Chebach, T.; Ashkenazy, A. Local and Farmers’ Knowledge Matters! How Integrating Informal and Formal Knowledge Enhances Sustainable and Resilient Agriculture. J. Rural Stud. 2018, 59, 232–241. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Feliciano, D. Factors Influencing the Adoption of Sustainable Agricultural Practices: The Case of Seven Horticultural Farms in the United Kingdom. Scott. Geogr. J. 2022, 138, 291–320. [Google Scholar] [CrossRef]
- Karimi, A.; Yazdandad, H.; Fagerholm, N. Evaluating Social Perceptions of Ecosystem Services, Biodiversity, and Land Management: Trade-Offs, Synergies and Implications for Landscape Planning and Management. Ecosyst. Serv. 2020, 45, 101188. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production, and Tradeoffs at Landscape Scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Plieninger, T.; Torralba, M.; Hartel, T.; Fagerholm, N. Perceived Ecosystem Services Synergies, Trade-Offs, and Bundles in European High Nature Value Farming Landscapes. Landsc. Ecol. 2019, 34, 1565–1581. [Google Scholar] [CrossRef]
- Zwetsloot, M.J.; van Leeuwen, J.; Hemerik, L.; Martens, H.; Simó Josa, I.; Van de Broek, M.; Debeljak, M.; Rutgers, M.; Sandén, T.; Wall, D.P.; et al. Soil Multifunctionality: Synergies and Trade-Offs across European Climatic Zones and Land Uses. Eur. J. Soil Sci. 2021, 72, 1640–1654. [Google Scholar] [CrossRef]
- Nellis, M.D.; Lulla, K.; Jensen, J. Interfacing Geographic Information Systems and Remote Sensing for Rural Land-Use Analysis. Photogramm. Eng. Remote Sens. 1990, 56, 329–331. [Google Scholar]
- Steven, M.; Clark, J.A. Applications of Remote Sensing in Agriculture; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Mulla, D.J. Twenty Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Coble, K.H.; Mishra, A.K.; Ferrell, S.; Griffin, T. Big Data in Agriculture: A Challenge for the Future. Appl. Econ. Perspect. Policy 2018, 40, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Dahlhaus, P. The Role of FAIR Data towards Sustainable Agricultural Performance: A Systematic Literature Review. Agriculture 2022, 12, 309. [Google Scholar] [CrossRef]
- Araújo, S.O.; Peres, R.S.; Barata, J.; Lidon, F.; Ramalho, J.C. Characterising the Agriculture 4.0 Landscape—Emerging Trends, Challenges and Opportunities. Agronomy 2021, 11, 667. [Google Scholar] [CrossRef]
- Durrant, A.; Markovic, M.; Matthews, D.; May, D.; Leontidis, G.; Enright, J. How Might Technology Rise to the Challenge of Data Sharing in Agri-Food? Glob. Food Secur. 2021, 28, 100493. [Google Scholar] [CrossRef]
- Roussaki, I.; Doolin, K.; Skarmeta, A.; Routis, G.; Lopez-Morales, J.A.; Claffey, E.; Mora, M.; Martinez, J.A. Building an Interoperable Space for Smart Agriculture. Digit. Commun. Netw. 2022, in press. [Google Scholar] [CrossRef]
- Delgado, J.; Short, N.; Roberts, D.; Vandenberg, B. Big Data Analysis for Sustainable Agriculture on a Geospatial Cloud Framework. Front. Sustain. Food Syst. 2019, 3, 54. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O.; Gifford, L.; Kavvada, A.; Jarvis, I. No Pixel Left behind: Toward Integrating Earth Observations for Agriculture into the United Nations Sustainable Development Goals Framework. Remote Sens. Environ. 2019, 235, 111470. [Google Scholar] [CrossRef]
- Shen, Y. Transdisciplinary Convergence: Intelligent Infrastructure for Sustainable Development. Data Intell. 2021, 3, 261–273. [Google Scholar] [CrossRef]
- Moore, T.; Guichard, V.; Sanchís, J.Á. The Place of Archaeology in Integrated Cultural Landscape Management. J. Eur. Landsc. 2020, 1, 9–28. [Google Scholar] [CrossRef]
- European Union. The New Common Agricultural Policy: 2023-27. Available online: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/new-cap-2023-27_en (accessed on 12 February 2022).
- Dempsey, B. Understanding Conflicting Views in Conservation: An Analysis of England. Land Use Policy 2021, 104, 105362. [Google Scholar] [CrossRef]
- Dessart, F.J.; Barreiro-Hurlé, J.; van Bavel, R. Behavioural Factors Affecting the Adoption of Sustainable Farming Practices: A Policy-Oriented Review. Eur. Rev. Agric. Econ. 2021, 46, 417–471. [Google Scholar] [CrossRef] [Green Version]
- Hasler, B.; Termansen, M.; Nielsen, H.Ø.; Daugbjerg, C.; Wunder, S.; Latacz-Lohmann, U. European Agri-Environmental Policy: Evolution, Effectiveness, and Challenges. Rev. Environ. Econ. Policy 2022, 16, 105–125. [Google Scholar] [CrossRef]
- Heyl, K.; Döring, T.; Garske, B.; Stubenrauch, J.; Ekardt, F. The Common Agricultural Policy beyond 2020: A Critical Review in Light of Global Environmental Goals. Rev. Eur. Comp. Int. Environ. Law 2021, 30, 95–106. [Google Scholar] [CrossRef]
- Brown, C.; Kovács, E.; Herzon, I.; Villamayor-Tomas, S.; Albizua, A.; Galanaki, A.; Grammatikopoulou, I.; McCracken, D.; Olsson, J.A.; Zinngrebe, Y. Simplistic Understandings of Farmer Motivations Could Undermine the Environmental Potential of the Common Agricultural Policy. Land Use Policy 2021, 101, 105136. [Google Scholar] [CrossRef]
- Cusworth, G. Falling Short of Being the ‘Good Farmer’: Losses of Social and Cultural Capital Incurred through Environmental Mismanagement, and the Long-Term Impacts Agri-Environment Scheme Participation. J. Rural Stud. 2020, 75, 164–173. [Google Scholar] [CrossRef]
- Cusworth, G.; Dodsworth, J. Using the ‘Good Farmer’ Concept to Explore Agricultural Attitudes to the Provision of Public Goods. A Case Study of Participants in an English Agri-Environment Scheme. Agric. Hum. Values 2021, 38, 929–941. [Google Scholar] [CrossRef]
- de Krom, M.P.M.M. Farmer Participation in Agri-Environmental Schemes: Regionalisation and the Role of Bridging Social Capital. Land Use Policy 2017, 60, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Weith, T.; Barkmann, T.; Gaasch, N.; Rogga, S.; Strauß, C.; Zscheischler, J. (Eds.) Sustainable Land Management in a European Context: A Co-Design Approach; Springer Nature: Berlin/Heidelberg, Germany, 2021; Available online: https://library.oapen.org/handle/20.500.12657/41734 (accessed on 10 October 2022).
- David, B.; Thomas, J. Handbook of Landscape Archaeology; Routledge: London, UK, 2016; ISBN 9781315427737. [Google Scholar]
- Bloemers, T.; Kars, H.; der Valk, A.V. The Cultural Landscape & Heritage Paradox: Protection and Development of the Dutch Archaeological-Historical Landscape and Its European Dimension; Amsterdam University Press: Amsterdam, The Netherlands, 2010; ISBN 978-90-8964-155-7. [Google Scholar]
- Hicks, D.; McAtackney, L.; Fairclough, G. (Eds.) Envisioning Landscape: Situations and Standpoints in Archaeology and Heritage; Routledge: New York, NY, USA, 2016; ISBN 978-1-315-42953-3. [Google Scholar]
- Belford, P. Ensuring Archaeology in the Planning System Delivers Public Benefit. Public Archaeol. 2019, 18, 191–216. [Google Scholar] [CrossRef]
- DeSilvey, C.; Fredheim, H.; Fluck, H.; Hails, R.; Harrison, R.; Samuel, I.; Blundell, A. When Loss Is More: From Managed Decline to Adaptive Release. Hist. Environ. Policy Pract. 2021, 12, 418–433. [Google Scholar] [CrossRef]
- Orr, S.A.; Richards, J.; Fatorić, S. Climate Change and Cultural Heritage: A Systematic Literature Review (2016–2020). Hist. Environ. Policy Pract. 2021, 12, 434–477. [Google Scholar] [CrossRef]
- Richards, J.; Orr, S.A.; Viles, H. Reconceptualising the Relationships between Heritage and Environment within an Earth System Science Framework. J. Cult. Herit. Manag. Sustain. Dev. 2020, 10, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Watson, S. Public Benefit: The Challenge for Development-Led Archaeology in the UK. Internet Archaeol. 2021, 57. [Google Scholar] [CrossRef]
- Tapete, D. Earth Observation, Remote Sensing, and Geoscientific Ground Investigations for Archaeological and Heritage Research. Geosciences 2019, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Opitz, R.; Herrmann, J. Recent Trends and Long-Standing Problems in Archaeological Remote Sensing. J. Comput. Appl. Archaeol. 2018, 1, 19–42. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A.; Lysandrou, V. Remote Sensing Archaeology: Tracking and Mapping Evolution in European Scientific Literature from 1999 to 2015. J. Archaeol. Sci. Rep. 2015, 4, 192–200. [Google Scholar] [CrossRef]
- Clapp, J.; Ruder, S.-L. Precision Technologies for Agriculture: Digital Farming, Gene-Edited Crops, and the Politics of Sustainability. Glob. Environ. Polit. 2020, 20, 49–69. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Ehlers, M.-H.; Huber, R.; Finger, R. Agricultural Policy in the Era of Digitalisation. Food Policy 2021, 100, 102019. [Google Scholar] [CrossRef]
- Huvila, I. Management of Archaeological Information and Knowledge in Digital Environment. In Knowledge Management, Arts, and Humanities: Interdisciplinary Approaches and the Benefits of Collaboration; Handzic, M., Carlucci, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 147–169. ISBN 978-3-030-10922-6. [Google Scholar]
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground. Front. Environ. Sci. 2016, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Greiner, L.; Keller, A.; Grêt-Regamey, A.; Papritz, A. Soil Function Assessment: Review of Methods for Quantifying the Contributions of Soils to Ecosystem Services. Land Use Policy 2017, 69, 224–237. [Google Scholar] [CrossRef]
- Lambers, K. Airborne and Spaceborne Remote Sensing and Digital Image Analysis in Archaeology. In Digital Geoarchaeology: New Techniques for Interdisciplinary Human-Environmental Research; Siart, C., Forbriger, M., Bubenzer, O., Eds.; Natural Science in Archaeology; Springer International Publishing: Cham, Swizerland, 2018; pp. 109–122. ISBN 978-3-319-25316-9. [Google Scholar]
- Siart, C.; Forbriger, M.; Bubenzer, O. Digital Geoarchaeology: New Techniques for Interdisciplinary Human-Environmental Research; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Donoghue, D.; Shennan, I. The Application of Remote Sensing to Environmental Archaeology. Geoarchaeology 1988, 3, 275–285. [Google Scholar] [CrossRef]
- Pricope, N.G.; Mapes, K.L.; Woodward, K.D. Remote Sensing of Human–Environment Interactions in Global Change Research: A Review of Advances, Challenges and Future Directions. Remote Sens. 2019, 11, 2783. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Emami, M.; Daccache, A.; He, L. Soil Properties Prediction for Precision Agriculture Using Visible and Near-Infrared Spectroscopy: A Systematic Review and Meta-Analysis. Agronomy 2021, 11, 433. [Google Scholar] [CrossRef]
- Emilien, A.-V.; Thomas, C.; Thomas, H. UAV & Satellite Synergies for Optical Remote Sensing Applications: A Literature Review. Sci. Remote Sens. 2021, 3, 100019. [Google Scholar] [CrossRef]
- Revill, A.; Florence, A.; MacArthur, A.; Hoad, S.; Rees, R.; Williams, M. Quantifying Uncertainty and Bridging the Scaling Gap in the Retrieval of Leaf Area Index by Coupling Sentinel-2 and UAV Observations. Remote Sens. 2020, 12, 1843. [Google Scholar] [CrossRef]
- Kerry, R.; Escolà, A. (Eds.) Sensing Approaches for Precision Agriculture; Progress in Precision Agriculture; Springer International Publishing: Cham, Swizerland, 2021; ISBN 978-3-030-78430-0. [Google Scholar]
- Monteleone, S.; de Moraes, E.A.; Tondato de Faria, B.; Aquino Junior, P.T.; Maia, R.F.; Neto, A.T.; Toscano, A. Exploring the Adoption of Precision Agriculture for Irrigation in the Context of Agriculture 4.0: The Key Role of Internet of Things. Sensors 2020, 20, 7091. [Google Scholar] [CrossRef] [PubMed]
- Nowak, B. Precision Agriculture: Where Do We Stand? A Review of the Adoption of Precision Agriculture Technologies on Field Crops Farms in Developed Countries. Agric. Res. 2021, 10, 515–522. [Google Scholar] [CrossRef]
- Deiana, R.; Leucci, G.; Martorana, R. New Perspectives on Geophysics for Archaeology: A Special Issue. Surv. Geophys. 2018, 39, 1035–1038. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.R.; Linford, P.; Linford, N.; David, A.; Gaffney, C.F.; Sarris, A.; Fassbinder, J. EAC Guidelines for the Use of Geophysics in Archaeology: Questions to Ask and Points to Consider; EAC Guidelines 2; Europae Archaeologia Consilium (EAC), Association Internationale sans But Lucratif (AISBL): Namur, Belgium, 2015; ISBN 978-963-9911-73-4. [Google Scholar]
- Angelstam, P.; Munoz-Rojas, J.; Pinto-Correia, T. Landscape Concepts and Approaches Foster Learning about Ecosystem Services. Landsc. Ecol. 2019, 34, 1445–1460. [Google Scholar] [CrossRef] [Green Version]
- Kadykalo, A.N.; López-Rodriguez, M.D.; Ainscough, J.; Droste, N.; Ryu, H.; Ávila-Flores, G.; Le Clec’h, S.; Muñoz, M.C.; Nilsson, L.; Rana, S.; et al. Disentangling ‘Ecosystem Services’ and ‘Nature’s Contributions to People’. Ecosyst. People 2020, 16, 269–287. [Google Scholar] [CrossRef] [Green Version]
- Braat, L.C.; de Groot, R. The Ecosystem Services Agenda:Bridging the Worlds of Natural Science and Economics, Conservation and Development, and Public and Private Policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Gray, M. The Confused Position of the Geosciences within the “Natural Capital” and “Ecosystem Services” Approaches. Ecosyst. Serv. 2018, 34, 106–112. [Google Scholar] [CrossRef]
- Leviston, Z.; Walker, I.; Green, M.; Price, J. Linkages between Ecosystem Services and Human Wellbeing: A Nexus Webs Approach. Ecol. Indic. 2018, 93, 658–668. [Google Scholar] [CrossRef]
- Costanza, R. Valuing Natural Capital and Ecosystem Services toward the Goals of Efficiency, Fairness, and Sustainability. Ecosyst. Serv. 2020, 43, 101096. [Google Scholar] [CrossRef]
- Latour, B. Down to Earth: Politics in the New Climatic Regime; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 978-1-5095-3059-5. [Google Scholar]
- Aguilar, R.G.; Owens, R.; Giardino, J.R. The Expanding Role of Anthropogeomorphology in Critical Zone Studies in the Anthropocene. Geomorphology 2020, 366, 107165. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Zamanian, K. Reviews and Syntheses: Agropedogenesis—Humankind as the Sixth Soil-Forming Factor and Attractors of Agricultural Soil Degradation. Biogeosciences 2019, 16, 4783–4803. [Google Scholar] [CrossRef] [Green Version]
- Adderley, W.P.; Wilson, C.A.; Simpson, I.A.; Davidson, D.A. Chapter 26—Anthropogenic Features. In Interpretation of Micromorphological Features of Soils and Regoliths, 2nd ed.; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 753–777. ISBN 978-0-444-63522-8. [Google Scholar]
- Vanwalleghem, T.; Gómez, J.A.; Infante Amate, J.; González de Molina, M.; Vanderlinden, K.; Guzmán, G.; Laguna, A.; Giráldez, J.V. Impact of Historical Land Use and Soil Management Change on Soil Erosion and Agricultural Sustainability during the Anthropocene. Anthropocene 2017, 17, 13–29. [Google Scholar] [CrossRef]
- The Critical Zone|National Critical Zone Observatory. Available online: https://czo-archive.criticalzone.org/national/research/the-critical-zone-1national/ (accessed on 13 February 2022).
- Alcántara-Ayala, I.; Berhe, A.A.; Derry, L.; Ganti, V.; Horton, A.A.; Sim, M.S. Reflections on Earth Surface Research. Nat. Rev. Earth Environ. 2021, 2, 15–20. [Google Scholar] [CrossRef]
- Giardino, J.R.; Houser, C. Chapter 1—Introduction to the Critical Zone. In Developments in Earth Surface Processes; Giardino, J.R., Houser, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 19, pp. 1–13. [Google Scholar]
- Anders, A.M.; Bettis, E.A.; Grimley, D.A.; Stumpf, A.J.; Kumar, P. Impacts of Quaternary History on Critical Zone Structure and Processes: Examples and a Conceptual Model From the Intensively Managed Landscapes Critical Zone Observatory. Front. Earth Sci. 2018, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Baatz, R.; Sullivan, P.L.; Li, L.; Weintraub, S.R.; Loescher, H.W.; Mirtl, M.; Groffman, P.M.; Wall, D.H.; Young, M.; White, T.; et al. Steering Operational Synergies in Terrestrial Observation Networks: Opportunity for Advancing Earth System Dynamics Modelling. Earth Syst. Dyn. 2018, 9, 593–609. [Google Scholar] [CrossRef] [Green Version]
- Brantley, S.L.; Goldhaber, M.B.; Ragnarsdottir, K.V. Crossing Disciplines and Scales to Understand the Critical Zone. Elements 2007, 3, 307–314. [Google Scholar] [CrossRef]
- Duffy, C.; Shi, Y.; Davis, K.; Slingerland, R.; Li, L.; Sullivan, P.L.; Goddéris, Y.; Brantley, S.L. Designing a Suite of Models to Explore Critical Zone Function. Procedia Earth Planet. Sci. 2014, 10, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Krzywoszynska, A. Caring for Soil Life in the Anthropocene: The Role of Attentiveness in More-than-Human Ethics. Trans. Inst. Br. Geogr. 2019, 44, 661–675. [Google Scholar] [CrossRef]
- Krzywoszynska, A. Nonhuman Labor and the Making of Resources: Making Soils a Resource through Microbial Labor. Environ. Humanit. 2020, 12, 227–249. [Google Scholar] [CrossRef]
- Salazar, J.F.; Granjou, C.; Kearnes, M.; Krzywoszynska, A.; Tironi, M. Thinking with Soils: Material Politics and Social Theory; Bloomsbury Publishing: London, UK, 2020; ISBN 978-1-350-10958-2. [Google Scholar]
- Minor, J.; Pearl, J.K.; Barnes, M.L.; Colella, T.R.; Murphy, P.C.; Mann, S.; Barron-Gafford, G.A. Critical Zone Science in the Anthropocene: Opportunities for Biogeographic and Ecological Theory and Praxis to Drive Earth Science Integration. Prog. Phys. Geogr. Earth Environ. 2020, 44, 50–69. [Google Scholar] [CrossRef]
- Brantley, S.L.; McDowell, W.H.; Dietrich, W.E.; White, T.S.; Kumar, P.; Anderson, S.P.; Chorover, J.; Lohse, K.A.; Bales, R.C.; Richter, D.D.; et al. Designing a Network of Critical Zone Observatories to Explore the Living Skin of the Terrestrial Earth. Earth Surf. Dyn. 2017, 5, 841–860. [Google Scholar] [CrossRef] [Green Version]
- Gaillardet, J.; Braud, I.; Hankard, F.; Anquetin, S.; Bour, O.; Dorfliger, N.; de Dreuzy, J.r.; Galle, S.; Galy, C.; Gogo, S.; et al. OZCAR: The French Network of Critical Zone Observatories. Vadose Zone J. 2018, 17, 180067. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, J.V.; Hoggarth, J.A.; Zori, D.; Binetti, K.M.; Stinchcomb, G. Integrating Human Activities, Archeology, and the Paleo-Critical Zone Paradigm. Front. Earth Sci. 2018, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Fitzhugh, B.; Butler, V.L.; Bovy, K.M.; Etnier, M.A. Human Ecodynamics: A Perspective for the Study of Long-Term Change in Socioecological Systems. J. Archaeol. Sci. Rep. 2019, 23, 1077–1094. [Google Scholar] [CrossRef]
- McGlade, J. Archaeology and the Ecodynamics of Human-Modified Landscapes. Antiquity 1995, 69, 113–132. [Google Scholar] [CrossRef]
- Emmett, R.S.; Nye, D.E. The Environmental Humanities: A Critical Introduction; MIT Press: Cambridge, MA, USA, 2017; ISBN 978-0-262-03676-4. [Google Scholar]
- Heise, U.K.; Christensen, J.; Niemann, M. The Routledge Companion to the Environmental Humanities; Taylor & Francis: New York, NY, USA, 2017; ISBN 978-1-317-66019-4. [Google Scholar]
- Naveh, Z. Ten Major Premises for a Holistic Conception of Multifunctional Landscapes. Landsc. Urban Plan. 2001, 57, 269–284. [Google Scholar] [CrossRef]
- Naveh, Z.; Lieberman, A.S. Landscape Ecology: Theory and Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 978-1-4757-2331-1. [Google Scholar]
- Sanderson, J. Landscape Ecology: A Top Down Approach; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-1-4200-4867-4. [Google Scholar]
- Edgeworth, M. More than Just a Record: Active Ecological Effects of Archaeological Strata. In Historical Archaeology and Environment; de Souza, M.A.T., Costa, D.M., Eds.; Springer International Publishing: Cham, Swizerland, 2018; pp. 19–40. ISBN 978-3-319-90857-1. [Google Scholar]
- Edgeworth, M. Transgressing Time: Archaeological Evidence in/of the Anthropocene. Annu. Rev. Anthropol. 2021, 50, 93–108. [Google Scholar] [CrossRef]
- Arènes, A.; Latour, B.; Gaillardet, J. Giving Depth to the Surface: An Exercise in the Gaia-Graphy of Critical Zones. Anthr. Rev. 2018, 5, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Latour, B. Some Advantages of the Notion of “Critical Zone” for Geopolitics. Procedia Earth Planet. Sci. 2014, 10, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Latour, B. Is Geo-Logy the New Umbrella for All the Sciences? Hints for a Neo-Humboldtian University. In The PhD at the End of the World: Provocations for the Doctorate and a Future Contested; Barnacle, R., Cuthbert, D., Eds.; Debating Higher Education: Philosophical Perspectives; Springer International Publishing: Cham, Switzerland, 2021; pp. 9–23. ISBN 978-3-030-62219-0. [Google Scholar]
- Latour, B.; Weibel, P. Critical Zones: The Science and Politics of Landing on Earth; MIT Press: Cambridge, MA, USA, 2020; ISBN 978-0-262-04445-5. [Google Scholar]
- Gras, C.; Cáceres, D.M. Technology, Nature’s Appropriation and Capital Accumulation in Modern Agriculture. Curr. Opin. Environ. Sustain. 2020, 45, 1–9. [Google Scholar] [CrossRef]
- Karlsson, L.; Naess, L.O.; Nightingale, A.; Thompson, J. ‘Triple Wins’ or ‘Triple Faults’? Analysing the Equity Implications of Policy Discourses on Climate-Smart Agriculture (CSA). J. Peasant Stud. 2018, 45, 150–174. [Google Scholar] [CrossRef]
- Khanna, M. Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications. Appl. Econ. Perspect. Policy 2021, 43, 1221–1242. [Google Scholar] [CrossRef]
- Birner, R.; Daum, T.; Pray, C. Who Drives the Digital Revolution in Agriculture? A Review of Supply-Side Trends, Players and Challenges. Appl. Econ. Perspect. Policy 2021, 43, 1260–1285. [Google Scholar] [CrossRef]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Chapter Four—Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 143, pp. 175–245. [Google Scholar] [CrossRef]
- Basso, B.; Fiorentino, C.; Cammarano, D.; Schulthess, U. Variable Rate Nitrogen Fertilizer Response in Wheat Using Remote Sensing. Precis. Agric. 2016, 17, 168–182. [Google Scholar] [CrossRef]
- Billings, S.A.; Lajtha, K.; Malhotra, A.; Berhe, A.A.; de Graaff, M.-A.; Earl, S.; Fraterrigo, J.; Georgiou, K.; Grandy, S.; Hobbie, S.E.; et al. Soil Organic Carbon Is Not Just for Soil Scientists: Measurement Recommendations for Diverse Practitioners. Ecol. Appl. 2021, 31, e02290. [Google Scholar] [CrossRef]
- Mandal, A.; Majumder, A.; Dhaliwal, S.S.; Toor, A.S.; Mani, P.K.; Naresh, R.K.; Gupta, R.K.; Mitran, T. Impact of Agricultural Management Practices on Soil Carbon Sequestration and Its Monitoring through Simulation Models and Remote Sensing Techniques: A Review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1–49. [Google Scholar] [CrossRef]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the Adoption of Precision Agricultural Technologies: A Cross Regional Study of EU Farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J.; Erickson, B. Setting the Record Straight on Precision Agriculture Adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef] [Green Version]
- Browning, D.M.; Russell, E.S.; Ponce-Campos, G.E.; Kaplan, N.; Richardson, A.D.; Seyednasrollah, B.; Spiegal, S.; Saliendra, N.; Alfieri, J.G.; Baker, J.; et al. Monitoring Agroecosystem Productivity and Phenology at a National Scale: A Metric Assessment Framework. Ecol. Indic. 2021, 131, 108147. [Google Scholar] [CrossRef]
- Salinero-Delgado, M.; Estévez, J.; Pipia, L.; Belda, S.; Berger, K.; Paredes Gómez, V.; Verrelst, J. Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression. Remote Sens. 2022, 14, 146. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Koutsias, N.; Deng, K.A.K.; Bao, Y. 8-Hyperspectral Remote Sensing in Precision Agriculture: Present Status, Challenges, and Future Trends. In Hyperspectral Remote Sensing; Pandey, P.C., Srivastava, P.K., Balzter, H., Bhattacharya, B., Petropoulos, G.P., Eds.; Earth Observation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–146. ISBN 978-0-08-102894-0. [Google Scholar] [CrossRef]
- Robertson, D. Outcomes for the Historic Environment. Archaeology East Anglia Report, 47. 2020. Available online: https://www.algao.org.uk/sites/default/files/documents/HEFERSHINE_report_v5.pdf (accessed on 4 January 2023).
- Rocks-Macqueen, D.; Lewis, B. Archaeology in Development Management: Its Contribution in England, Scotland & Wales; Landward Research Ltd.: Sheffield, UK, 2019; ISBN 978-0-9572452-5-9. [Google Scholar]
- Schmidt, A.; Marshall, A. The Impact of Resolution on the Interpretation of Archaeological Prospection Data. In Archaeological Sciences 1995. Proceedings of a Conference on the Application of Scientific Techniques to the Study of Archaeology, Liverpool, UK, July 1995, OXBOW Monogr; Sinclair, A., Slater, E., Gowlett, J., Eds.; Oxbow Books: Oxford, UK, 1997; pp. 343–348. [Google Scholar]
- McGrath, C.N.; Scott, C.; Cowley, D.; Macdonald, M. Towards a Satellite System for Archaeology? Simulation of an Optical Satellite Mission with Ideal Spatial and Temporal Resolution, Illustrated by a Case Study in Scotland. Remote Sens. 2020, 12, 4100. [Google Scholar] [CrossRef]
- Verdonck, L.; De Smedt, P.; Verhegge, J. Chapter 6—Making Sense of Anomalies: Practices and Challenges in the Archaeological Interpretation of Geophysical Data. In Innovation in Near-Surface Geophysics; Persico, R., Piro, S., Linford, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 151–194. ISBN 978-0-12-812429-1. [Google Scholar]
- Cuca, B.; Hadjimitsis, D.G. Space Technology Meets Policy: An Overview of Earth Observation Sensors for Monitoring of Cultural Landscapes within Policy Framework for Cultural Heritage. J. Archaeol. Sci. Rep. 2017, 14, 727–733. [Google Scholar] [CrossRef] [Green Version]
- Détang-Dessendre, C.; Guyomard, H.; Geerling-Eiff, F.; Poppe, K. EU Agriculture and Innovation: What Role for the CAP? 2018, INRA and WUR. Available online: https://hal.inrae.fr/hal-02789078. (accessed on 4 January 2023).
- Pe’er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Hagedorn, G.; Hansjürgens, B.; Herzon, I.; Lomba, Â.; et al. Action Needed for the EU Common Agricultural Policy to Address Sustainability Challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Movilla-Pateiro, L.; Mahou-Lago, X.M.; Doval, M.I.; Simal-Gandara, J. Toward a Sustainable Metric and Indicators for the Goal of Sustainability in Agricultural and Food Production. Crit. Rev. Food Sci. Nutr. 2021, 61, 1108–1129. [Google Scholar] [CrossRef]
- Allemang, D.; Teegarden, B. A Global Data Ecosystem for Agriculture and Food. F1000Research 2017, 6, 1844. [Google Scholar] [CrossRef]
- Mietzsch, E.; Martini, D.; Kolshus, K.; Turbati, A.; Subirats, I. How Agricultural Digital Innovation Can Benefit from Semantics: The Case of the AGROVOC Multilingual Thesaurus. Eng. Proc. 2021, 9, 17. [Google Scholar] [CrossRef]
- Fulton, J.P.; Port, K. Precision Agriculture Data Management. In Precision Agriculture Basics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 169–187. ISBN 978-0-89118-367-9. [Google Scholar] [CrossRef]
- Bramer, I.; Anderson, B.J.; Bennie, J.; Bladon, A.J.; De Frenne, P.; Hemming, D.; Hill, R.A.; Kearney, M.R.; Körner, C.; Korstjens, A.H.; et al. Chapter Three—Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales. In Advances in Ecological Research; Bohan, D.A., Dumbrell, A.J., Woodward, G., Jackson, M., Eds.; Next Generation Biomonitoring: Part 1; Academic Press: Cambridge, MA, USA, 2018; Volume 58, pp. 101–161. [Google Scholar] [CrossRef]
- Cavazzi, S.; Corstanje, R.; Mayr, T.; Hannam, J.; Fealy, R. Are Fine Resolution Digital Elevation Models Always the Best Choice in Digital Soil Mapping? Geoderma 2013, 195–196, 111–121. [Google Scholar] [CrossRef]
- Pradervand, J.-N.; Dubuis, A.; Pellissier, L.; Guisan, A.; Randin, C. Very High Resolution Environmental Predictors in Species Distribution Models: Moving beyond Topography? Prog. Phys. Geogr. Earth Environ. 2014, 38, 79–96. [Google Scholar] [CrossRef]
- Bazzato, E.; Rosati, L.; Canu, S.; Fiori, M.; Farris, E.; Marignani, M. High Spatial Resolution Bioclimatic Variables to Support Ecological Modelling in a Mediterranean Biodiversity Hotspot. Ecol. Model. 2021, 441, 109354. [Google Scholar] [CrossRef]
- He, Y.; Weng, Q. High Spatial Resolution Remote Sensing: Data, Analysis, and Applications; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-0-429-89300-1. [Google Scholar]
- McDowell, N.G.; Coops, N.C.; Beck, P.S.A.; Chambers, J.Q.; Gangodagamage, C.; Hicke, J.A.; Huang, C.; Kennedy, R.; Krofcheck, D.J.; Litvak, M.; et al. Global Satellite Monitoring of Climate-Induced Vegetation Disturbances. Trends Plant Sci. 2015, 20, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, J.D.; Jakobsson, U.; Novák, D.; Štular, B.; Wright, H. Digital Archiving in Archaeology: The State of the Art. Introduction. Internet Archaeol. 2021. [Google Scholar] [CrossRef]
- Brady, M.V.; Hristov, J.; Wilhelmsson, F.; Hedlund, K. Roadmap for Valuing Soil Ecosystem Services to Inform Multi-Level Decision-Making in Agriculture. Sustainability 2019, 11, 5285. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.D. Archiving Archaeological Data in the United Kingdom. Internet Archaeol. 2021, 58. [Google Scholar] [CrossRef]
- Richards, J.D. Twenty Years Preserving Data: A View from the United Kingdom. Adv. Archaeol. Pract. 2017, 5, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Minghini, M.; Cetl, V.; Kotsev, A.; Tomas, R.; Lutz, M. INSPIRE: The Entry Point to Europe’s Big Geospatial Data Infrastructure. In Handbook of Big Geospatial Data; Springer, Cham: Berlin/Heidelberg, Germany, 2021; pp. 619–641. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhan, Q.; Zhang, L.; Yao, X.; Li, G. A Unified Representation Method for Interdisciplinary Spatial Earth Data. Big Earth Data 2022, 1–20. [Google Scholar] [CrossRef]
- McKeague, P.; Corns, A.; Larsson, Å.; Moreau, A.; Posluschny, A.; Van Daele, K.; Evans, T. One Archaeology: A Manifesto for the Systematic and Effective Use of Mapped Data from Archaeological Fieldwork and Research. Information 2020, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Tamene, L.; Ali, A.; Tena, W.; Abera, W. Report on Data Ecosystem Mapping: Mapping of Agricultural Data and Data Holding Institutions; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2021. [Google Scholar]
- Specka, X.; Gärtner, P.; Hoffmann, C.; Svoboda, N.; Stecker, M.; Einspanier, U.; Senkler, K.; Zoarder, M.A.M.; Heinrich, U. The BonaRes Metadata Schema for Geospatial Soil-Agricultural Research Data—Merging INSPIRE and DataCite Metadata Schemes. Comput. Geosci. 2019, 132, 33–41. [Google Scholar] [CrossRef]
- Bruseker, G.; Carboni, N.; Guillem, A. Cultural Heritage Data Management: The Role of Formal Ontology and CIDOC CRM. In Heritage and Archaeology in the Digital Age: Acquisition, Curation, and Dissemination of Spatial Cultural Heritage Data; Vincent, M.L., López-Menchero Bendicho, V.M., Ioannides, M., Levy, T.E., Eds.; Quantitative Methods in the Humanities and Social Sciences; Springer International Publishing: Cham, Swizerland, 2017; pp. 93–131. ISBN 978-3-319-65370-9. [Google Scholar] [CrossRef]
- Bartolini, N.; DeSilvey, C. Landscape Futures: Decision-Making in Uncertain Times, a Literature Review. Landsc. Res. 2021, 46, 8–24. [Google Scholar] [CrossRef]
- Harrison, R.; DeSilvey, C.; Holtorf, C.; Macdonald, S.; Bartolini, N.; Breithoff, E.; Fredheim, H.; Lyons, A.; May, S.; Morgan, J.; et al. Heritage Futures: Comparative Approaches to Natural and Cultural Heritage Practices; UCL Press: London, UK, 2020; ISBN 9781787356016. [Google Scholar]
- Tully, G.; Piai, C.; Rodríguez-Hernández, J.; Delhommeau, E. Understanding Perceptions of Cultural Landscapes in Europe: A Comparative Analysis Using ‘Oppida’ Landscapes. Hist. Environ. Policy Pract. 2019, 10, 198–223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opitz, R.; De Smedt, P.; Mayoral-Herrera, V.; Campana, S.; Vieri, M.; Baldwin, E.; Perna, C.; Sarri, D.; Verhegge, J. Practicing Critical Zone Observation in Agricultural Landscapes: Communities, Technology, Environment and Archaeology. Land 2023, 12, 179. https://doi.org/10.3390/land12010179
Opitz R, De Smedt P, Mayoral-Herrera V, Campana S, Vieri M, Baldwin E, Perna C, Sarri D, Verhegge J. Practicing Critical Zone Observation in Agricultural Landscapes: Communities, Technology, Environment and Archaeology. Land. 2023; 12(1):179. https://doi.org/10.3390/land12010179
Chicago/Turabian StyleOpitz, Rachel, Philippe De Smedt, Victorino Mayoral-Herrera, Stefano Campana, Marco Vieri, Eamonn Baldwin, Carolina Perna, Daniele Sarri, and Jeroen Verhegge. 2023. "Practicing Critical Zone Observation in Agricultural Landscapes: Communities, Technology, Environment and Archaeology" Land 12, no. 1: 179. https://doi.org/10.3390/land12010179
APA StyleOpitz, R., De Smedt, P., Mayoral-Herrera, V., Campana, S., Vieri, M., Baldwin, E., Perna, C., Sarri, D., & Verhegge, J. (2023). Practicing Critical Zone Observation in Agricultural Landscapes: Communities, Technology, Environment and Archaeology. Land, 12(1), 179. https://doi.org/10.3390/land12010179