Assessment of Topographic Effect on Habitat Quality in Mountainous Area Using InVEST Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Data Processing
2.3. Methodology
2.4. Measurement of Land Use Change
2.5. InVEST Model
2.6. Topographic Distribution Index
2.7. Mann–Kendall Test
- (1)
- , extremely significant increase;
- (2)
- , significant increase;
- (3)
- , no significant change.
3. Results
3.1. Habitat Quality Distribution and Its Changes
- (1)
- Land-use change
- (2)
- Changes in habitat quality
3.2. Distribution of Habitat Quality on Different Levels of Terrain
- (1)
- Terrain position calculation
- (2)
- Topographic gradient effects of habitat quality distribution
4. Discussion
4.1. Topographic Differentiation of Habitat Quality
4.2. Impact of Human Activities on Habitat Quality
4.3. Effects of Natural Factors on Changes in the Habitat Quality of Highlands
4.4. Policy Suggestions for improving the Quality of the Mountain Habitat
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, F.; Xu, E. Comparison of spatial-temporal evolution of habitat quality between Xinjiang corps and non-corps region based on land use. Chin. J. Appl. Ecol. 2020, 31, 2341–2351. [Google Scholar] [CrossRef]
- Niquisse, S.; Cabral, P. Assessment of changes in ecosystem service monetary values in Mozambique. Environ. Dev. 2018, 25, 12–22. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuna, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Env. 2016, 540, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Lyons, J.; Kanehl, P.; Gatti, R. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 1997, 22, 6–12. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Xu, H.; Zhu, C.; Dong, B.; Lin, Y.; Si, B.; Deng, J.; Wang, K. Impacts of urban expansion forms on ecosystem services in urban agglomerations: A case study of Shanghai-Hangzhou Bay urban agglomeration. Remote Sens. 2021, 13, 1908. [Google Scholar] [CrossRef]
- Thomas, E.; Jansen, M.; Chiriboga-Arroyo, F.; Wadt, L.; Corvera-Gomringer, R.; Atkinson, R.J.; Bonser, S.P.; Velasquez Ramirez, M.G.; Ladd, B. Habitat quality differentiation and consequences for ecosystem service provision of an Amazonian hyperdominant tree species. Front. Plant Sci. 2021, 12, 621064. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Yong, Z.; Yuetian, D. Study on the spatio-temporal patterns of habitat quality and its terrain gradient effects of the middle of the Yangtze River economic belt based on the InVEST model. Resour. Environ. Yangtze Basin 2019, 28, 12648. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, S.; Guo, M.; Tian, J.; Zhang, Y. Spatiotemporal differentiation of territorial space development intensity and its habitat quality response in Northeast China. Land 2021, 10, 573. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, W. Effects of land use/cover on regional habitat quality under different geomorphic types based on InVEST model. Remote Sens. 2022, 14, 1279. [Google Scholar] [CrossRef]
- Hongjuan, G.; Huiqing, H.; Hongyan, Y.; Moran, H. Distribution characteristic of important ecosystem services in terrain gradient in Wujiang River Basin. Ecol. Sci. 2016, 35, 154–159. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, W.; Liu, Y.; Wang, S.; Wang, J.; Zhai, R. Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China. Sci. Total Environ. 2018, 644, 556–566. [Google Scholar] [CrossRef]
- Xiao, P.; Zhou, Y.; Li, M.; Xu, J. Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST model. Environ. Dev. Sustain. 2022, 4, 07. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Li, G.; Chen, C.; Li, M.; Luo, J. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010. J. Geogr. Sci. 2020, 30, 601–620. [Google Scholar] [CrossRef]
- Fu, B.J.; Zhang, L.W. Land-use change and ecosystem services: Concepts, methods and progress. Prog. Geogr. 2014, 33, 441–446. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, L.; Liu, J.; Zhuang, Z.; Huang, Q.; Li, M. Constructing ecological networks based on habitat quality assessment: A case study of Changzhou, China. Sci. Rep. 2017, 7, 46073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyers, B. Natural capital: Theory and practice of mapping ecosystem services. J. Integr. Environ. Sci. 2013, 10, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the State of Minnesota. Environ. Resour. Econ. 2013, 48, 219–242. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Guldmann, J.M.; Li, S.; Zhu, J. Carbon dynamics in the Northeastern Qinghai–Tibetan Plateau from 1990 to 2030 using Landsat land use/cover change data. Remote Sens. 2020, 12, 528. [Google Scholar] [CrossRef] [Green Version]
- Berta Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Hu, P.; Li, F.; Sun, X.; Liu, Y.; Chen, X.; Hu, D. Assessment of land-use/cover changes and its ecological effect in rapidly urbanized areas—Taking Pearl River Delta urban agglomeration as a case. Sustainability 2021, 13, 5075. [Google Scholar] [CrossRef]
- Chang, Z.; Ji, Z.; Yu, Z.; Chun, L. Topographic gradient effects of typical watershed ecosystem services in the eastern Tibetan Plateau—A case study of the upper reaches of Minjiang River. Resour. Environ. Yangtze Basin. 2017, 26, 1687–1699. [Google Scholar] [CrossRef]
- Cai, X.; Jie, G.; Yan, L.; Ling, Y.; Bing, G. Spatial distribution characteristics of typical ecosystem services based on terrain gradients of Bailongjiang Watershed in Gansu. Acta Ecol. Sin. 2020, 40, 4291–4301. [Google Scholar] [CrossRef]
- Güntner, A.; Seibert, J.; Uhlenbrook, S. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resour. Res. 2004, 40, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Muyi, H.; Wenze, Y.; Shaoru, F.; Jia, H.Z. Spatial-temporal evolution of habitat quality and analysis of landscape patterns in Dabie Mountain area of West Anhui province based on InVEST model. Acta Ecol. Sin. 2020, 40, 2895–2906. [Google Scholar]
- Shi, R. Ecological environment problems of the Three Gorges Reservoir Area and countermeasures. Procedia Environ. Sci. 2011, 10, 1431–1434. [Google Scholar] [CrossRef] [Green Version]
- Haryadi, D.; Ibrahim, I.; Darwance, D. Strategic ecological issues: Environmental problems in a perspective of regional development in Bangka Belitung. In Proceedings of the 2020 8th International Conference on Environment Pollution and Prevention (ICEPP 2020)—E3S Web of Conferences, Sydney, Australia, 3–5 December 2020; EDP Sciences: Les Ulis, France, 2021; Volume 241, p. 05001. [Google Scholar]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Kou, W. Assessment of spatial–temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- England, P.; Molnar, P. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature 1990, 344, 140. [Google Scholar] [CrossRef]
- Clark, M.K.; Royden, L.H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology 2000, 28, 703–706. [Google Scholar] [CrossRef]
- Holt, W.E.; Chamot-Rooke, N.; Le, P.X.; Haines, A.J.; Shen, T.B.; Ren, J. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J. Geophys. Res. Solid Earth 2000, 105, 19185–19209. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X.; Tang, W.; Chen, Z.L. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. J. Geophys. Res. Solid Earth 2003, 108, 2217–2232. [Google Scholar] [CrossRef]
- Kirby, E.; Ouimet, W. Tectonic geomorphology along the eastern margin of Tibet: Insights into the pattern and processes of active deformation adjacent to the Sichuan Basin. Geol. Soc. Lond. Spec. Publ. 2011, 353, 165–188. [Google Scholar] [CrossRef]
- Zhang, J.F.; Deng, W.; Zhu, C.L.; Zhao, Y.L. Spatial relationship and its dynamic features of ecosystem services and human wellbeing in the upper reaches of Minjiang River. Mt. Res. 2017, 3, 388–398. [Google Scholar] [CrossRef]
- Xia, W.Y.; Li, L.; Lei, X.Z. Analysis of landscape pattern changes and driving forces in the upper reaches of Minjiang River from 1990 to 2014. Rural Water Conserv. Hydropower China 2019, 11, 119–124, 128. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; Le, B.J.; Wu, J.; Yu, D.; Zhou, W.; Zhou, L.; Wu, S. The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China. J. For. Res. 2019, 30, 2227–2236. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the characteristic spatiotemporal variation in habitat quality using the InVEST model—A case study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Foster, E.; Love, J.; Rader, R.; Reid, N.; Drielsma, M.J. Integrating a generic focal species, metapopulation capacity, and connectivity to identify opportunities to link fragmented habitat. Landsc. Ecol. 2017, 32, 1837–1847. [Google Scholar] [CrossRef]
- Wei, Q.Q.; Abudureheman, M.; Halike, A.; Yao, K.X.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, D. Research on the topographic differentiation of land use in the Chongqing mountainous metropolitan area. Res. Soil Water Conserv. 2013, 20, 86–91. [Google Scholar]
- Chen, X.X.; Zhang, X.J.; Han, W.H. Analysis of topographic gradient characteristics of land use change in rapid urbanization area: Taking Yuci District as an example. Chin. J. Ecol. Agric. 2020, 28, 1637–1648. [Google Scholar] [CrossRef]
- Gong, J.; Gao, Y.; Zhang, L.; Xie, Y.C.; Zhao, C.X.; Qing, D.W. Distribution characteristics of ecological risks in land-use based on terrain gradient and landscape structure: Taking the Bailongjiang watershed as an example. J. Lanzhou Univ. (Nat. Sci.) 2014, 50, 692–698. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Lond. Griffin 1970, 4, 19–33. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.Q.; Cohen, W.B. Detecting trends in woodland disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Zhang, F.F.; Zhao, X.Y. A review of ecological effect of peasant’s livelihood transformation in China. Acta Ecol. Sin. 2015, 35, 3157–3164. [Google Scholar] [CrossRef]
Threats | Maximum Distance of Influence | Weights | Types of Spatial Decay |
---|---|---|---|
Cultivated land | 3 | 0.3 | Linear |
Urban land | 10 | 0.8 | Exponential |
Rural residential area | 6 | 0.6 | Exponential |
Industrial land | 7 | 0.6 | Exponential |
Main roads | 7 | 0.5 | Linear |
Primary Land Type | Secondary Land Type | Habitat Suitability | Sensitivity | ||||
---|---|---|---|---|---|---|---|
Cultivated Land | Rural Residential Area | Urban Land | Industrial Land | Main Roads | |||
Cultivated land | Paddy field | 0.4 | 0.3 | 0.4 | 0.5 | 0.2 | 0.1 |
Dryland | 0.6 | 0.3 | 0.4 | 0.5 | 0.2 | 0.1 | |
Woodland | Woodland | 1.0 | 0.8 | 0.85 | 0.9 | 0.8 | 0.6 |
Shrubland | 1.0 | 0.4 | 0.5 | 0.6 | 0.4 | 0.2 | |
Open woodland | 1.0 | 0.9 | 0.9 | 1.0 | 0.8 | 0.7 | |
Other woodlands | 1.0 | 0.9 | 0.9 | 1.0 | 0.9 | 0.7 | |
Grassland | High-cover grassland | 0.8 | 0.4 | 0.5 | 0.6 | 0.4 | 0.2 |
Medium-cover grassland | 0.7 | 0.5 | 0.5 | 0.7 | 0.5 | 0.3 | |
Low-cover grassland | 0.6 | 0.5 | 0.5 | 0.6 | 0.4 | 0.4 | |
Water area | Canal | 1.0 | 0.7 | 0.8 | 0.9 | 0.6 | 0.5 |
Lake | 1.0 | 0.7 | 0.8 | 0.9 | 0.6 | 0.5 | |
Reservoir pit | 1.0 | 0.7 | 0.8 | 0.9 | 0.7 | 0.6 | |
Beach | 0.6 | 0.7 | 0.8 | 0.8 | 0.7 | 0.6 | |
Beach land | 0.6 | 0.7 | 0.7 | 0 | 0.7 | 0.6 | |
Constructed land | Urban land | 0 | 0 | 0 | 0 | 0 | 0 |
Rural residential area | 0 | 0 | 0 | 0 | 0 | 0 | |
Other constructed land | 0 | 0 | 0 | 0 | 0 | 0 | |
Unused land | Glaciers and permanent snow | 0.1 | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Q.; Kan, A.; Yu, X.; Liu, F.; Huang, H.; Li, W.; Gao, R. Assessment of Topographic Effect on Habitat Quality in Mountainous Area Using InVEST Model. Land 2023, 12, 186. https://doi.org/10.3390/land12010186
Xiang Q, Kan A, Yu X, Liu F, Huang H, Li W, Gao R. Assessment of Topographic Effect on Habitat Quality in Mountainous Area Using InVEST Model. Land. 2023; 12(1):186. https://doi.org/10.3390/land12010186
Chicago/Turabian StyleXiang, Qing, Aike Kan, Xiaoxiang Yu, Fei Liu, Hong Huang, Wei Li, and Rong Gao. 2023. "Assessment of Topographic Effect on Habitat Quality in Mountainous Area Using InVEST Model" Land 12, no. 1: 186. https://doi.org/10.3390/land12010186
APA StyleXiang, Q., Kan, A., Yu, X., Liu, F., Huang, H., Li, W., & Gao, R. (2023). Assessment of Topographic Effect on Habitat Quality in Mountainous Area Using InVEST Model. Land, 12(1), 186. https://doi.org/10.3390/land12010186