Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China
Abstract
:1. Introduction
2. Research Methods and Data Sources
2.1. Study Area
2.2. Methods
2.2.1. Research Framework
2.2.2. Method of Evaluating the Ecosystem Service Value
2.2.3. Method of Evaluating the Ecological Risk
2.2.4. Grey Relational Degree Model
2.2.5. Spatial–Temporal Heterogeneity Index
2.2.6. Disequilibrium Index and Inconsistency Index
2.3. Data Sources and Processing
3. Results
3.1. Spatial–Temporal Change of ESV
3.2. Spatial–Temporal Change of ER
3.3. Multivariate Correlation Analysis of ESV and ER
3.3.1. Grey Relational Analysis of ESV and ER
3.3.2. Analysis of Spatial–Temporal Heterogeneity
3.3.3. Disequilibrium and Inconsistency Analysis
4. Discussion
4.1. Reasonableness of Revision of ESV and ER
4.2. Multivariate Correlation between ESV and ER
4.3. Deficiencies and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, B.J.; Liu, G.H.; Wang, X.K.; Ouyang, Z.Y. Ecological issues and risk assessment in China. Int. J. Sust. Dev. World. 2004, 11, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zong, M.; Hu, Y.; Liu, Y.; Wu, J. Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China. Sustainability 2015, 7, 8312–8334. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.L.; Wan, K.D.; Yang, J.Y. Measurement and evolution of eco-efficiency of coal industry ecosystem in China. J. Clean. Prod. 2019, 209, 803–818. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.; Banzhaf, S. What are ecosystem services? The need for standardized environmental accounting units. Ecol. Econ. 2007, 63, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Conner, A.J.; Glare, T.R.; Nap, J.P. The release of genetically modified crops into the environment—Part II. Overview of ecological risk assessment. Plant J. 2003, 33, 19–46. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.-X.; Zhang, L.-M.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243. [Google Scholar] [CrossRef]
- Pomara, L.Y.; Lee, D.C. The Role of Regional Ecological Assessment in Quantifying Ecosystem Services for Forest Management. Land 2021, 10, 725. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Solomon, N.; Segnon, A.C.; Birhane, E. Ecosystem Service Values Changes in Response to Land-Use/Land-Cover Dynamics in Dry Afromontane Forest in Northern Ethiopia. Int. J. Environ. Res. Public Health 2019, 16, 4653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakes, T.; Kim, H.-O. The urban environmental indicator “Biotope Area Ratio”—An enhanced approach to assess and manage the urban ecosystem services using high resolution remote-sensing. Ecol. Indic. 2012, 13, 93–103. [Google Scholar] [CrossRef]
- Aziz, T.; Van Cappellen, P. Comparative valuation of potential and realized ecosystem services in Southern Ontario, Canada. Environ. Sci. Policy 2019, 100, 105–112. [Google Scholar] [CrossRef]
- Bryan, B.A.; Ye, Y.; Zhang, J.; Connor, J.D. Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosyst. Serv. 2018, 32, 144–157. [Google Scholar] [CrossRef]
- Scholte, S.S.K.; van Teeffelen, A.J.A.; Verburg, P.H. Integrating socio-cultural perspectives into ecosystem service valuation: A review of concepts and methods. Ecol. Econ. 2015, 114, 67–78. [Google Scholar] [CrossRef]
- Garcia-Diez, V.; Garcia-Llorente, M.; Gonzalez, J.A. Participatory Mapping of Cultural Ecosystem Services in Madrid: Insights for Landscape Planning. Land 2020, 9, 244. [Google Scholar] [CrossRef]
- Mann, D.; Anees, M.M.; Rankavat, S.; Joshi, P.K. Spatio-temporal variations in landscape ecological risk related to road network in the Central Himalaya. Hum. Ecol. Risk Assess. 2021, 27, 289–306. [Google Scholar] [CrossRef]
- Zeng, C.; He, J.; He, Q.; Mao, Y.; Yu, B. Assessment of Land Use Pattern and Landscape Ecological Risk in the Chengdu-Chongqing Economic Circle, Southwestern China. Land 2022, 11, 659. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Coupling Coordination Analysis and Prediction of Landscape Ecological Risks and Ecosystem Services in the Min River Basin. Land 2022, 11, 222. [Google Scholar] [CrossRef]
- Galic, N.; Schmolke, A.; Forbes, V.; Baveco, H.; van den Brink, P.J. The role of ecological models in linking ecological risk assessment to ecosystem services in agroecosystems. Sci. Total Environ. 2012, 415, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, T.; Xu, W.H.; Zhang, H.; Xiao, Y.; Kong, L.Q.; Ouyang, Z.Y. A Framework for Regional Ecological Risk Warning Based on Ecosystem Service Approach: A Case Study in Ganzi, China. Sustainability 2018, 10, 2699. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Hu, M.; Wang, Y. Integrating ecosystem services value and uncertainty into regional ecological risk assessment: A case study of Hubei Province, Central China. Sci. Total Environ. 2020, 740, 140126. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Diaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Cao, E.; Xie, Y.; Xu, C.; Li, H.; Yan, L. Integrating ecosystem services and landscape ecological risk into adaptive management: Insights from a western mountain-basin area, China. J. Environ. Manag. 2021, 281, 111817. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Z.Q.; Li, P.Y.; Li, G.S.; Yuan, D.Z.; Guo, J.X. Assessment and Effect of Mining Subsidence on Farmland in Coal-Crop Overlapped Areas: A Case of Shandong Province, China. Agriculture 2022, 12, 1235. [Google Scholar] [CrossRef]
- Cui, X.Q.; Peng, S.P.; Lines, L.R.; Zhu, G.W.; Hu, Z.Q.; Cui, F. Understanding the Capability of an Ecosystem Nature-Restoration in Coal Mined Area. Sci. Rep. 2019, 9, 19690. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Lu, H.; Wang, W.; Feng, S.; Lei, K. Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: An information network environ analysis. Ecol. Model. 2021, 455, 109633. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Q.; Qiao, N.; Wang, Z.; Sha, W.; Luo, K.; Wang, H.; Feng, Z. Ecological risk assessment of coal mine area based on “source-sink” landscape theory e A case study of Pingshuo mining area. J. Clean. Prod. 2021, 295, 126371. [Google Scholar] [CrossRef]
- He, T.; Xiao, W.; Zhao, Y.; Chen, W.; Deng, X.; Zhang, J. Continues monitoring of subsidence water in mining area from the eastern plain in China from 1986 to 2018 using Landsat imagery and Google Earth Engine. J. Clean. Prod. 2021, 279, 123610. [Google Scholar] [CrossRef]
- Xiao, W.; Fu, Y.H.; Wang, T.; Lv, X.J. Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: A case study in the Yanzhou coalfield. Land Use Policy 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Bian, Z.F.; Lu, Q.Q. Ecological effects analysis of land use change in coal mining area based on ecosystem service valuing: A case study in Jiawang. Environ. Earth Sci. 2013, 68, 1619–1630. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Huang, X.; Wang, X.F.; Zhang, X.R.; Zhou, C.W.; Ma, J.H.; Feng, X.M. Ecological risk assessment and identification of risk control priority areas based on degradation of ecosystem services: A case study in the Tibetan Plateau. Ecol. Indic. 2022, 141, 109078. [Google Scholar] [CrossRef]
- Xu, J.X.; Zhao, H.; Yin, P.C.; Wu, L.X.; Li, G. Landscape ecological quality assessment and its dynamic change in coal mining area: A case study of Peixian. Environ. Earth Sci. 2019, 78, 708. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Yang, W.F.; Mu, Y.; Zhang, W.K.; Wang, W.W.; Liu, J.; Peng, J.H.; Liu, X.S.; He, T.T. Assessment of Ecological Cumulative Effect due to Mining Disturbance Using Google Earth Engine. Remote Sens. 2022, 14, 4381. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Li, H.; Fu, M.C.; Ma, X.H.; Wang, L. Evaluation of Ecosystem Service Change Patterns in a Mining-Based City: A Case Study of Wu’an City. Land 2022, 11, 895. [Google Scholar] [CrossRef]
- Qu, Z.; Zhao, Y.; Luo, M.; Han, L.; Yang, S.; Zhang, L. The Effect of the Human Footprint and Climate Change on Landscape Ecological Risks: A Case Study of the Loess Plateau, China. Land 2022, 11, 217. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Fang, B.; Wang, Q.; Chen, Z. Impacts of ecological programs on land use and ecosystem services since the 1980s: A case-study of a typical catchment on the Loess Plateau, China. Land Degrad. Dev. 2022, 33, 3271–3282. [Google Scholar] [CrossRef]
- Avkopashvili, M.; Avkopashvili, G.; Avkopashvili, I.; Asanidze, L.; Matchavariani, L.; Gongadze, A.; Gakhokidze, R. Mining-Related Metal Pollution and Ecological Risk Factors in South-Eastern Georgia. Sustainability 2022, 14, 5621. [Google Scholar] [CrossRef]
- Wu, Y.; Gu, C.; Zhang, Y. Towards Sustainable Management of Urban Ecological Space: A Zoning Approach Hybridized by Ecosystem Service Value and Ecological Risk Assessment. Land 2022, 11, 1220. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Mei, Z.K.; Xu, X.Y.; Feng, Y.Z.; Ren, G.X. Landscape Ecological Risk Assessment Based on Land Use Change in the Yellow River Basin of Shaanxi, China. Int. J. Environ. Res. Public Health 2022, 19, 9547. [Google Scholar] [CrossRef]
- Akcakaya, H.R. Linking population-level risk assessment with landscape and habitat models. Sci. Total Environ. 2001, 274, 283–291. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y.; Han, L.; Song, S.; Yang, L.; Li, G.; Wang, Y. Impacts of Urbanization on River Systems in the Taihu Region, China. Water 2015, 7, 1340–1358. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Yang, S.; Lin, J.; Yin, S. Spatial and Temporal Evolutionary Characteristics and Its Influencing Factors of Economic Spatial Polarization in the Yangtze River Delta Region. Int. J. Environ. Res. Public Health 2022, 19, 6997. [Google Scholar] [CrossRef]
- Acheampong, M.; Yu, Q.; Enomah, L.D.; Anchang, J.; Eduful, M. Land use/cover change in Ghana’s oil city: Assessing the impact of neoliberal economic policies and implications for sustainable development goal number one—A remote sensing and GIS approach. Land Use Policy 2018, 73, 373–384. [Google Scholar] [CrossRef]
- Smardon, R. Ecosystem Services for Scenic Quality Landscape Management: A Review. Land 2021, 10, 1123. [Google Scholar] [CrossRef]
- Comberti, C.; Thornton, T.F.; Echeverria, V.W.; Patterson, T. Ecosystem services or services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Glob. Environ. Chang. 2015, 34, 247–262. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antwi, E.K.; Krawczynski, R.; Wiegleb, G. Detecting the effect of disturbance on habitat diversity and land cover change in a post-mining area using GIS. Landsc. Urban Plan. 2008, 87, 22–32. [Google Scholar] [CrossRef]
- Liao, J.; Jia, Y.; Tang, L.; Huang, Q.; Wang, Y.; Huang, N.; Hua, L. Assessment of urbanization-induced ecological risks in an area with significant ecosystem services based on land use/cover change scenarios. Int. J. Sust. Dev. World. 2018, 25, 448–457. [Google Scholar] [CrossRef]
- Jia, Y.Y.; Tang, X.L.; Liu, W. Spatial-Temporal Evolution and Correlation Analysis of Ecosystem Service Value and Landscape Ecological Risk in Wuhu City. Sustainability 2020, 12, 2803. [Google Scholar] [CrossRef] [Green Version]
- Deacon, S.; Norman, S.; Nicolette, J.; Reub, G.; Greene, G.; Osborn, R.; Andrews, P. Integrating ecosystem services into risk management decisions: Case study with Spanish citrus and the insecticide chlorpyrifos. Sci. Total Environ. 2015, 505, 732–739. [Google Scholar] [CrossRef]
Mining Area | Surface Subsidence Area of Mining Area (hm2) | Affected Area of Agricultural Land (km2) | Affected Area of Water Bodies (km2) | ||
---|---|---|---|---|---|
Subsidence Depth < 1.5 m | 1.5 m ≦ Subsidence Depth ≦ 3.0 m | Subsidence Depth > 3.0 m | |||
Longdong Mine | 204.05 | 138.98 | 396.3 | 11.99 | 7.71 |
Yaoqiao Mine | 1720.8 | 590.18 | 506.09 | 23.94 | 19.71 |
Xuzhuang Mine | 355.62 | 282.28 | 428.73 | 13.72 | 8.92 |
Kongzhuang Mine | 353.29 | 0.04 | 0 | 10.68 | 13.78 |
Sanhejian Mine | 1658.79 | 416.39 | 366.76 | 15.73 | 4.69 |
Zhangshuanglou Mine | 1465.02 | 537.04 | 328.59 | 18.77 | 6.05 |
Longgu Mine | 542.58 | 19.55 | 0.48 | 4.49 | 5.93 |
Peicheng Mine | 382.92 | 6.15 | 0 | 29.69 | 1.83 |
Year | Proportion of Sown Area (%) | Net Profit (CNY/hm2) | Yield Correction Factor | Economic Correction Factor | Fertility Correction Factor | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rice | Wheat | Corn | Rice | Wheat | Corn | Rice | Wheat | Corn | |||
2010 | 0.46 | 0.44 | 0.10 | 270.20 | 351.79 | 159.01 | 0.82 | 0.94 | 0.90 | 0.87 | 0.76 |
2015 | 0.34 | 0.51 | 0.14 | 701.30 | 207.11 | 436.21 | 0.68 | 0.86 | 0.87 | 1.19 | 1.12 |
2020 | 0.34 | 0.48 | 0.18 | 1319.21 | 1565.20 | 602.03 | 0.93 | 0.99 | 0.93 | 1.04 | 1.03 |
Mining Heights | Plane Mining Ratio | |||
---|---|---|---|---|
>60~100% | 30~60% | 10~30% | 0~<10% | |
≥3.50 m | Extremely High | High | Medium | Low |
1.30~3.50 m | High | Medium | Medium | Low |
≤1.30 m | Medium | Low | Low | Low |
Land Use Type | Regional Status | Regional Status | ||
---|---|---|---|---|
Cultivated land | No mining disturbance area | 0.27 | Mining disturbance area | 0.29 |
Forest | 0.07 | 0.10 | ||
Waters area | 0.13 | 0.14 | ||
Built-up land | 0.20 | 0.19 | ||
Bare land | 0.33 | 0.28 |
Years | Statistic Type | Landscape Type | Total | ||||
---|---|---|---|---|---|---|---|
Cultivated Land | Forestland | Water Area | Built-Up Land | Bare Land | |||
2010 | Area (km2) | 904.51 | 25.81 | 423.11 | 331.82 | 120.53 | 1805.78 |
ESV (108) | 2.31 | 0.38 | 23.92 | 0 | 0.96 | 27.57 | |
2015 | Area (km2) | 904.66 | 28.98 | 428.49 | 302.80 | 140.85 | 1805.78 |
ESV (108) | 2.31 | 0.42 | 24.22 | 0 | 1.12 | 28.07 | |
2020 | Area (km2) | 908.13 | 28.51 | 407.82 | 322.49 | 138.83 | 1805.78 |
ESV (108) | 2.32 | 0.42 | 23.06 | 0 | 1.02 | 26.82 | |
2010-2020 | Area Change (%) | 0.40 | 10.49 | -3.61 | -2.81 | 6.34 | 10.81 |
ESV Change (%) | 0.39 | 10.61 | -3.59 | 0.00 | 6.37 | 13.78 |
Years | Statistic Type | Land Use Type | ||||
---|---|---|---|---|---|---|
Cultivated Land | Forestland | Water Area | Built-Up Land | Bare Land | ||
2010 | ER | 527.15 | 2.22 | 920.69 | 2067.66 | 171.91 |
Proportion (%) | 14.29 | 0.06 | 24.95 | 56.04 | 4.66 | |
2015 | ER | 527.23 | 2.49 | 932.39 | 1886.85 | 200.85 |
Proportion (%) | 14.85 | 0.07 | 26.27 | 53.15 | 5.66 | |
2020 | ER | 529.26 | 2.45 | 887.41 | 2009.51 | 182.81 |
Proportion (%) | 14.66 | 0.07 | 24.57 | 55.64 | 5.06 | |
2010-2020 | ER Variation | 2.11 | 0.23 | −33.28 | −58.15 | 10.9 |
Change Ratio (%) | 0.40 | 10.36 | −3.61 | −2.81 | 6.34 |
Years | θ Value | Value of Services Category (Unit Area Values) | ||||
---|---|---|---|---|---|---|
Total ESV | Provisioning Services | Regulating Services | Support Services | Cultural Services | ||
2010 | 0.3 | 0.655 | 0.724 | 0.517 | 0.714 | 0.769 |
0.5 | 0.735 | 0.752 | 0.584 | 0.746 | 0.781 | |
0.7 | 0.782 | 0.765 | 0.623 | 0.796 | 0.786 | |
2015 | 0.3 | 0.645 | 0.722 | 0.508 | 0.712 | 0.767 |
0.5 | 0.727 | 0.751 | 0.577 | 0.744 | 0.798 | |
0.7 | 0.775 | 0.764 | 0.617 | 0.759 | 0.785 | |
2020 | 0.3 | 0.656 | 0.724 | 0.518 | 0.714 | 0.768 |
0.5 | 0.735 | 0.752 | 0.583 | 0.745 | 0.780 | |
0.7 | 0.781 | 0.765 | 0.621 | 0.761 | 0.786 |
Type | 2010 | 2015 | 2020 | 2010-2015 | 2015-2020 | 2010-2020 |
---|---|---|---|---|---|---|
Change Rate (%) | Change Rate (%) | Change Rate (%) | ||||
ESV disequilibrium index | 2.90 | 2.98 | 3.19 | 2.67 | 6.85 | 9.70 |
ER disequilibrium index | 1.34 | 1.32 | 1.30 | −1.05 | −1.84 | −2.88 |
ESV-ER disequilibrium index | 4.27 | 4.35 | 4.15 | 1.77 | −4.50 | −2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ding, Z.; Zhang, S.; Hou, H.; Chen, Z.; Wu, Q. Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China. Land 2023, 12, 74. https://doi.org/10.3390/land12010074
Wang X, Ding Z, Zhang S, Hou H, Chen Z, Wu Q. Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China. Land. 2023; 12(1):74. https://doi.org/10.3390/land12010074
Chicago/Turabian StyleWang, Xueqing, Zhongyi Ding, Shaoliang Zhang, Huping Hou, Zanxu Chen, and Qinyu Wu. 2023. "Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China" Land 12, no. 1: 74. https://doi.org/10.3390/land12010074
APA StyleWang, X., Ding, Z., Zhang, S., Hou, H., Chen, Z., & Wu, Q. (2023). Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China. Land, 12(1), 74. https://doi.org/10.3390/land12010074