Influential Factors in the Evaluation of Agricultural Lands in the Huambo Province, Angola
Abstract
:1. Introduction
1.1. Preponderant Factors in Agricultural Fields Appraisal
1.2. The Positive Amenities
1.3. The Negative Externalities
1.4. Public Policies
1.5. The Proximity to the Urban Centres
2. Methodology
3. Empirical Study
3.1. Descriptive Analysis of the Results of the Agricultural Land Survey
3.2. Exploratory Factor Analysis
3.3. Mean Differences
3.3.1. The Difference in Means in the Variables Encountered When Purchasing Agricultural Land between Males and Females
3.3.2. Difference between People Who Only Work in Agriculture and Those Who Have Another Job in Addition to Agriculture
3.4. Results Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tione, S.E.; Holden, S.T. Urban proximity, demand for land and land shadow prices in Malawi. Land Use Policy 2020, 94, 104509. [Google Scholar] [CrossRef]
- Lima, D.A.; Nóbrega, M.L. Análise do preço de terras agrícolas no tocantins: Decifrando os caminhos do agronegócio. Raega-O Espaço Geográfico Em Análise 2017, 40, 163–176. [Google Scholar] [CrossRef]
- Sardaro, R.; La Sala, P.; Roselli, L. How does the land market capitalize environmental, historical and cultural components in rural areas? Evidences from Italy. J. Environ. Manag. 2020, 269, 110776. [Google Scholar] [CrossRef]
- Del Río, B.S.G.; Marqués-Pérez, I. Spatial analysis of agricultural land prices. Econ. Agrar. Y Recur. Nat.-Agric. Resour. Econ. 2018, 18, 135–159. [Google Scholar] [CrossRef]
- Xu, F.; Ho, H.C.; Chi, G.; Wang, Z. Abandoned rural residential land: Using machine learning techniques to identify rural residential land vulnerable to be abandoned in mountainous areas. Habitat Int. 2019, 84, 43–56. [Google Scholar]
- Somantri, L.; Ridwana, R.; Himayah, S. Land value analysis in the suburban of Bandung and agricultural land availability impact. IOP Conf. Ser. Earth Environ. Sci. 2021, 683, 012088. [Google Scholar] [CrossRef]
- Herzberg, R.; Pham, T.G.; Kappas, M.; Wyss, D.; Tran, C.T.M. Multi-criteria decision analysis for the land evaluation of potential agricultural land use types in a hilly area of Central Vietnam. Land 2019, 8, 90. [Google Scholar] [CrossRef]
- Tavares, V.C.; Tavares, F.; Santos, E. The Value of Farmland and Its Determinants—The Current State of the Art. Land 2022, 11, 1908. [Google Scholar] [CrossRef]
- Everest, B.; Everest, T. Çiftçilerin Arazi Kullanım Türlerine Karar Vermelerinde Etkili Olan Faktörlerin Analizi: Kumkale Ovası Örneği. ANADOLU Ege Tarımsal Araştırma Enstitüsü Derg. 2020, 30, 221–228. [Google Scholar] [CrossRef]
- Lima, A.; Soares, V.S. Modelo de avaliação hedónico de terrenos rústicos e seus desafios: O estudo de caso da realidade da Região do Porto, Norte de Portugal. Popul. E Soc. 2015, 23, 145–159. [Google Scholar]
- Relógio, A.T.; Tavares, F.O. An Evaluation of Passenger Satisfaction among Users of Huambo Airport in Angola. Urban Sci. 2023, 7, 57. [Google Scholar] [CrossRef]
- Silva, M.L.; Rocha, R.R.; Cordeiro, S.A.; Silva, M.L.; Bezerra, A.F. Estudo comparativo de três métodos de avaliação de terras florestais. Cerne 2011, 17, 209–213. [Google Scholar] [CrossRef]
- Santos, E.; Tavares, F.; Tavares, V.; Ratten, V. Comparative Analysis of the Importance of Determining Factors in the Choice and Sale of Apartments. Sustainability 2021, 13, 8731. [Google Scholar] [CrossRef]
- Meneses, T.G. Desarrollo de la valoración catastral de fincas rústicas. Aplicación a la Comunidad Foral de Navarra. CT Catastro 2003, 63–74. [Google Scholar]
- Tavares, F.O.; Almeida, L.; Pinto, A.; Tavares, V.C. The Role of Stakeholders in Thermal Tourism: A Bibliography Review. In Stakeholder Entrepreneurship; Ratten, V., Braga, V., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Caballer, V. Nuevas endências en la valoración territorial. CT/Catastro 2002, 45, 135–146. [Google Scholar]
- Middelberg, S.L. Agricultural land valuation methods used by financiers: The case of South Africa. Agrekon 2014, 53, 101–115. [Google Scholar] [CrossRef]
- Kilić, J.; Rogulj, K.; Jajac, N. Fuzzy expert system for land valuation in land consolidation processes. Croat. Oper. Res. Rev. 2019, 10, 89–103. [Google Scholar] [CrossRef]
- Pacheco, L.; Lote, E.; Tavares, F. Empresas Agrícolas e Desenvolvimento Económico: Potencialidades da Província do Huambo, em Angola. Rev. Em Agronegócio E Meio Ambiente Mar. 2017, 10, 1051–1076. [Google Scholar] [CrossRef]
- Sal, A.G.; García, A.G. A comprehensive assessment of multifunctional agricultural land-use systems in Spain using a multi-dimensional evaluative model. Agric. Ecosyst. E Environ. 2007, 120, 82–91. [Google Scholar] [CrossRef]
- Ardakani, Z.; Bartolini, F.; Brunori, G. New Evaluation of Small Farms: Implication for an Analysis of Food Security. Agriculture 2020, 10, 74. [Google Scholar] [CrossRef]
- Gracia, A.; Pérez, L.; Sanjuán, A.I.; Hurlé, J.B. Análisis hedónico de los precios de la tierra en la provincia de Zaragoza. Estud. Agrosoc. Pesq. 2004, 202, 51–69. [Google Scholar]
- Buday, Š.; Roháčiková, O.; Rumanovská, Ľ. Analysis of the agricultural land market transactions in selected regions of Slovakia in the years 2007–2016. Acta Reg. Environ. 2018, 15, 28–37. [Google Scholar] [CrossRef]
- Tavares, F.; Santos, E.M. Validation of an Information Asymmetry Scale in the Portuguese Real Estate Market. Rev. Bus. Manag. 2021, 23, 586–599. [Google Scholar] [CrossRef]
- Gripp, J.R.J.; Marques, M.É.T.; Gonçalves, R.P.; Andrade, R.J. Avaliação de imóveis rurais. In Congresso Brasileiro de Cadastro Técnico Multifinalitário; UFSC: Florianópolis, Brazil, 2006; Volume 15. [Google Scholar]
- Ruivo, P. Amenidades rurais-que contributo? Estudo de caso em territórios rurais. In III Congresso de Estudos Rurais; Universidade do Algarve: Faro, Portugal, 2008. [Google Scholar]
- Nguyen, C.H. Factors Affecting the Development of Cultural Tourism in the Mekong Delta, Vietnam. J. Asian Financ. Econ. Bus. 2022, 9, 123–133. [Google Scholar] [CrossRef]
- Kocur-Bera, K. Determinants of agricultural land price in Poland–a case study covering a part of the Euroregion Baltic. Cah. Agric. 2016, 25, 25004. [Google Scholar] [CrossRef]
- Luo, D.; Ye, L.; Sun, D. Risk evaluation of agricultural drought disaster using a grey cloud clustering model in Henan province, China. Int. J. Disaster Risk Reduct. 2020, 49, 101759. [Google Scholar] [CrossRef]
- Zhao, F.; Hitzhusen, F.; Chern, W.S. Impact and implications of price policy and land degradation on agricultural growth in developing countries. Agric. Econ. 1991, 5, 311–324. [Google Scholar] [CrossRef]
- Wentland, S.A.; Ancona, Z.H.; Bagstad, K.J.; Boyd, J.; Hass, J.L.; Gindelsky, M.; Moulton, J.G. Accounting for land in the United States: Integrating physical land cover, land use, and monetary valuation. Ecosyst. Serv. 2020, 46, 101178. [Google Scholar] [CrossRef]
- Rondhi, M.; Pratiwi, P.A.; Handini, V.T.; Sunartomo, A.F.; Budiman, S.A. Agricultural land conversion, land economic value, and sustainable agriculture: A case study in East Java, Indonesia. Land 2018, 7, 148. [Google Scholar] [CrossRef]
- Santos, E.; Tavares, F. The profile of Portuguese people when choosing an apartment. Real Estate Manag. Valuat. 2021, 29, 38–51. [Google Scholar] [CrossRef]
- Zhao, Q.; Bao, H.X.; Zhang, Z. Off-farm employment and agricultural land use efficiency in China. Land Use Policy 2021, 101, 105097. [Google Scholar] [CrossRef]
- Schwarcz, P.; Bandlerová, A.; Schwarczová, L. Selected issues of the agricultural land market in Slovak Republic. J. Cent. Eur. Agric. 2013, 14, 1102–1115. [Google Scholar] [CrossRef]
- Szturc, J.; Karásek, P.; Podhrázská, J. Historical Changes in the Land Use Connected with Appropriation of Agricultural Land-Case Study of Cadastral Areas Dolní Věstonice and Modřice (Czech Republic). Eur. Countrys. 2017, 9, 658–678. [Google Scholar] [CrossRef]
- Plantinga, A.J.; Miller, D.J. Agricultural land values and the value of rights to future land development. Land Econ. 2001, 77, 56–67. [Google Scholar] [CrossRef]
- Tezcan, A.; Büyüktaş, K.; Aslan, Ş. A multi-criteria model for land valuation in the land consolidation. Land Use Policy 2020, 95, 104572. [Google Scholar] [CrossRef]
- Livanis, G.; Moss, C.B.; Breneman, V.E.; Nehring, R.F. Urban sprawl and farmland prices. Am. J. Agric. Econ. 2006, 88, 915–929. [Google Scholar] [CrossRef]
- Bahu, A.M. A Comercialização do Carvão Vegetal Versus Insustentabilidade das Florestas Naturais Baseado num Estudo de Caso nas Aldeias de Nazaré e Calombo nos Municípios de Longonjo e Caála, Província do Huambo, Angola. Doctoral Dissertation, Universidade de Lisboa, Lisbon, Portugal, 2015. [Google Scholar]
- Marôco, J. Análise Estatística com o SPSS Statistics, 7th ed.; ReportNumber: Lisboa, Portugal, 2018. [Google Scholar]
- Mendelsohn, J.; Weber, B. An Atlas and Profile of Huambo: Its Environment and People; Development Workshop: Luanda, Angola, 2013; 80p. [Google Scholar]
- Pestana, M.; Gageiro, J. Análise de Dados para Ciências Sociais: A Complementaridade do SPSS, 6th ed.; Edições Sílabo: Lisboa, Portugal, 2014. [Google Scholar]
Mean | Median | Mode | Standard Deviation | Completely Disagree | Disagree | I am Undecided | I Agree | Completely Agree | |
---|---|---|---|---|---|---|---|---|---|
The fields’ rents near urban areas have higher values. | 3.94 | 4 | 4 | 1.027 | 4.3 | 5.4 | 13.7 | 45.3 | 31.2 |
In zones where more people live, land value is higher. | 3.92 | 4 | 4 | 1.107 | 6.1 | 4.8 | 14.4 | 40.1 | 34.6 |
Fields that have national streets and other infrastructures nearby have more value. | 3.89 | 4 | 4 | 1.142 | 6.2 | 6.5 | 14.1 | 37.9 | 35.2 |
If the fields are dry and lack water they have less value. | 3.88 | 4 | 4 | 1.047 | 4.7 | 5.6 | 16.6 | 43.2 | 30.0 |
Fields with electricity have more value. | 3.87 | 4 | 4 | 1.134 | 6.1 | 6.5 | 15.5 | 38.0 | 33.9 |
The kind of soil has an importance in the land’s value. | 3.87 | 4 | 4 | 1.098 | 5.3 | 7.9 | 12.3 | 43.9 | 30.6 |
Fields that are next to urban zones have more value. | 3.86 | 4 | 4 | 1.07 | 5.1 | 7.0 | 13.2 | 45.8 | 28.9 |
Flat fields are worth more than declivous ones | 3.86 | 4 | 4 | 1.053 | 4.2 | 7.1 | 16.8 | 42.2 | 29.7 |
The soil quality and the cultivation made there affect the field’s value. | 3.85 | 4 | 4 | 1.024 | 4.7 | 5.9 | 15.2 | 48.1 | 26.1 |
Fields next to the agricultural product selling markets have more value. | 3.85 | 4 | 4 | 1.098 | 5.4 | 7.9 | 12.7 | 44.4 | 29.5 |
Climate changes have impact on property value. | 3.84 | 4 | 4 | 1.073 | 5 | 7.8 | 14.0 | 45.3 | 28.0 |
The lower the drainage of the land, the lower its value. | 3.80 | 4 | 4 | 1.061 | 5 | 7.0 | 17.2 | 44.4 | 26.4 |
A field that permits the use of agricultural equipment (tractors) has more value. | 3.80 | 4 | 4 | 1.112 | 5.4 | 8.2 | 16.6 | 40.5 | 29.2 |
The more the declivous, the minor its value. | 3.78 | 4 | 4 | 1.053 | 5 | 7.6 | 15.8 | 47.2 | 24.4 |
The smaller agricultural fields produce less. | 3.78 | 4 | 4 | 1.16 | 7.8 | 7 | 13 | 43.9 | 28.3 |
The fields’ value is determined by the rent they offer. | 3.75 | 4 | 4 | 1.142 | 7.8 | 6.2 | 15.4 | 44.4 | 26.2 |
Land value is the reflection of agricultural and forest cultures that it offers. | 3.74 | 4 | 4 | 1.019 | 5.1 | 7.0 | 16.3 | 51.7 | 19.9 |
The land in less windy areas has higher value. | 3.73 | 4 | 4 | 1.115 | 6.1 | 8.1 | 18.6 | 41.3 | 25.9 |
The bigger the property, the less its value per square meter is. | 3.63 | 4 | 4 | 1.172 | 7.3 | 10.4 | 18.8 | 38.8 | 24.7 |
The land next to one that is already owned should be purchased, even if the value is high. | 3.09 | 3 | 4 | 1.391 | 20 | 16.3 | 15.1 | 32.3 | 16.3 |
Mean | Median | Mode | Standard Deviation | Completely Disagree | Disagree | I am Undecided | I Agree | Completely Agree | |
---|---|---|---|---|---|---|---|---|---|
Lands with good water drainage are more valued. | 4.15 | 4 | 4 | 0.923 | 3.3 | 2.5 | 9.3 | 46.3 | 38.7 |
The better the quality of the soil, the higher its value. | 4.13 | 4 | 4 | 0.97 | 3.4 | 4.2 | 8.2 | 44.3 | 39.9 |
Agricultural lands in safer areas (with fewer thefts and disturbances) have a higher value. | 4.07 | 4 | 4 | 0.981 | 3.4 | 4.2 | 12.0 | 43.3 | 37.1 |
Lands with year-round water springs have a higher value. | 4.06 | 4 | 4 | 1.013 | 3.3 | 5.7 | 11.8 | 40.5 | 38.7 |
Lands located on riverbanks where water flows all year round have a higher value. | 4.04 | 4 | 4 | 1.019 | 3.9 | 4.5 | 13.4 | 40.7 | 37.6 |
Lands near tourist attractions are more sought after and have a higher value. | 3.99 | 4 | 4 | 0.99 | 3.6 | 4.2 | 15.4 | 43.3 | 33.5 |
Lands with easy access for machinery have a higher value. | 3.98 | 4 | 4 | 1.004 | 3.4 | 5.7 | 13.8 | 43.8 | 33.2 |
Flat or gently sloping lands have a higher value. | 3.95 | 4 | 4 | 0.979 | 3.0 | 5.4 | 16.1 | 44.1 | 31.4 |
Lands with ponds or water reservoirs have a higher value. | 3.95 | 4 | 4 | 1.004 | 2.8 | 7.1 | 14.4 | 43 | 32.6 |
Lands closer to transportation networks have a higher value. | 3.95 | 4 | 4 | 1.003 | 3.1 | 6.5 | 14.9 | 43.6 | 31.8 |
Farmers, in general, face financial difficulties in acquiring large plots of land. | 3.94 | 4 | 4 | 1.037 | 3.9 | 6.4 | 14.3 | 42.5 | 32.9 |
Lands near natural beauty spots have a higher value. | 3.94 | 4 | 4 | 1.022 | 3.6 | 5.6 | 17.2 | 40.7 | 32.9 |
Lands near recreational areas are more attractive and have a higher value. | 3.94 | 4 | 4 | 1.048 | 4.8 | 5.3 | 13 | 44.4 | 32.5 |
In areas with a higher population growth, lands have a higher value. | 3.94 | 4 | 4 | 1.022 | 3.6 | 6.7 | 13.8 | 44.4 | 31.5 |
Areas with greater rural development have higher land values per square meter. | 3.93 | 4 | 4 | 1.104 | 7 | 3.0 | 13.7 | 42.7 | 33.7 |
Lands with fruit tree plantations have a higher value. | 3.92 | 4 | 4 | 1.003 | 3.9 | 5.1 | 15.7 | 45.3 | 30 |
Lands where irrigation systems can be used have a higher value. | 3.91 | 4 | 4 | 1.014 | 3.7 | 6.1 | 16 | 44.4 | 29.8 |
Lands with higher population density have a higher value. | 3.90 | 4 | 4 | 0.963 | 3.1 | 5.3 | 17.2 | 47.0 | 27.3 |
Lands near locations with historical heritage have a higher value. | 3.89 | 4 | 4 | 1.026 | 3.7 | 5.6 | 19.3 | 40.4 | 31.1 |
Lands with artificial water resources (artesian wells, ponds, dams, watering holes, water tanks) have a higher value. | 3.86 | 4 | 4 | 1.063 | 4.3 | 7.1 | 16.6 | 41.6 | 30.3 |
Lands with difficult access for machinery have a lower value. | 3.83 | 4 | 4 | 1075 | 4.3 | 8.9 | 15.1 | 43 | 28.7 |
Lands in pollution-free environments have a higher value. | 3.83 | 4 | 4 | 1.061 | 5.4 | 5.6 | 16.6 | 45 | 27.3 |
Lands at risk of waterlogging have a lower value. | 3.83 | 4 | 4 | 1.075 | 5.7 | 5.6 | 16.5 | 44.4 | 27.8 |
Lands with a larger labor force available have a higher value. | 3.83 | 4 | 4 | 1.04 | 4.2 | 6.5 | 19.1 | 42.2 | 28 |
Lands with higher rainfall have a higher value. | 3.82 | 4 | 4 | 1.077 | 5.3 | 6.5 | 17.4 | 42.7 | 28.1 |
Older farmers possess more land than younger farmers. | 3.81 | 4 | 4 | 1.15 | 5.9 | 8.5 | 16.3 | 37.1 | 32.1 |
Lands in animal hunting areas have a higher value. | 3.81 | 4 | 4 | 1.067 | 4.3 | 8.4 | 16.6 | 42.9 | 27.8 |
Lands with rainfed crops have a lower value. | 3.80 | 4 | 4 | 1.015 | 3.7 | 7.5 | 19.1 | 45 | 24.7 |
Lands closer to urban areas have a higher value. | 3.80 | 4 | 4 | 1.046 | 5.3 | 5.3 | 19.4 | 44.7 | 25.3 |
Lands with surrounding walls or fences have a higher value. | 3.79 | 4 | 4 | 1.107 | 5.9 | 7.1 | 16.8 | 42.1 | 28.1 |
Lands with forest plantations have higher market values. | 3.77 | 4 | 4 | 1.085 | 5.3 | 7.9 | 17.4 | 43.2 | 26.2 |
Lands with regular shapes (square, rectangle) have a higher value. | 3.70 | 4 | 4 | 1.127 | 5.9 | 9.5 | 19.4 | 39.6 | 25.6 |
Lands near churches, chapels, and other monuments have a higher value. | 3.70 | 4 | 4 | 1.147 | 5.7 | 10.1 | 20.7 | 35.7 | 27.8 |
Smaller plots of land are more sought after than larger ones. | 3.40 | 4 | 4 | 1.268 | 9.6 | 17.7 | 17.9 | 33.1 | 21.7 |
Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | |||||||
---|---|---|---|---|---|---|---|---|---|
Total | % of | % | Total | % of | % | Total | % of | % | |
Variance | Accumulative | Variance | Accumulative | Variance | Accumulative | ||||
1 | 12.504 | 35.727 | 3.727 | 12.504 | 35.727 | 35.727 | 4.551 | 13.003 | 13.003 |
2 | 2.496 | 7.13 | 4.857 | 2.496 | 7.13 | 42.857 | 3.368 | 9.621 | 22.624 |
3 | 1.422 | 4.064 | 46.921 | 1.422 | 4.064 | 46.921 | 3.159 | 9.025 | 31.649 |
4 | 1.418 | 4.05 | 50.971 | 1.418 | 4.05 | 50.971 | 3.115 | 8.899 | 40.549 |
5 | 1.287 | 3.677 | 54.648 | 1.287 | 3.677 | 54648 | 2.916 | 8.331 | 48.879 |
6 | 1.235 | 3.529 | 58.177 | 1.235 | 3.529 | 58.177 | 2.18 | 6.228 | 55.108 |
7 | 1.105 | 3.157 | 61.334 | 1.105 | 3.157 | 61.334 | 2.179 | 6.226 | 61.334 |
Items | Component | Factors Interpretation | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
Wildlife hunting areas have higher value. | 0.693 | 0.146 | 0.008 | 0.274 | 0.122 | 0.057 | 0.101 | Characteristics intrinsic to the property’s location |
Land with more labor availability has higher value. | 0.664 | 0.129 | 0.329 | 0.001 | 0.084 | 0.120 | 0.213 | |
Land closer to urban areas has higher value. | 0.650 | 0.257 | 0.125 | 0.238 | 0.074 | 0.080 | 0.248 | |
Land closer to transportation networks has higher value. | 0.632 | 0.203 | 0.050 | 0.351 | −0.011 | 0.227 | −0.006 | |
Land with a risk of waterlogging has lower value. | 0.620 | 0.061 | 0.287 | 0.170 | 0.289 | 0.011 | −0.006 | |
Land where irrigation systems can be used has higher value. | 0.606 | 0.132 | 0.427 | 0.111 | 0.163 | 0.091 | 0.107 | |
Land with dryland crops has lower value. | 0.604 | 0.210 | 0.240 | 0.055 | 0.014 | 0.092 | 0.381 | |
Land with fruit tree plantations has higher value. | 0.604 | 0.096 | 0.402 | 0.146 | 0.124 | 0.090 | 0.108 | |
Land with higher rainfall has higher value. | 0.582 | 0.111 | 0.234 | 0.254 | 0.249 | 0.012 | 0.091 | |
Smaller agricultural land has lower productivity. | 0.184 | 0.705 | 0.014 | .043 | 0.161 | 0.055 | 0.227 | Dynamic characteristics of the agricultural land market |
Higher population areas have higher land value. | 0.087 | 0.699 | 0.255 | 0.169 | 0.156 | 0.180 | −0.003 | |
Less windy areas have higher land value. | 0.195 | 0.691 | 0.054 | 0.186 | 0.172 | 0.035 | −0.089 | |
Rents in land near urban areas are higher. | 0.080 | 0.688 | 0.236 | 0.173 | 0.106 | 0.259 | 0.122 | |
Climate changes impact property value. | 0.155 | 0.548 | 0.139 | 0.127 | 0.268 | 0.206 | 0.135 | |
Larger properties have lower value per square meter. | 0.215 | 0.547 | −0.034 | 0.080 | 0.263 | 0.042 | 0.210 | |
Land on riverbanks with year-round water flow has higher value. | 0.244 | 0.153 | 0.706 | 0.230 | 0.091 | 0.118 | 0.178 | Importance of water availability on agricultural land |
Land with ponds or pools has higher value. | 0.278 | 0.092 | 0.649 | 0.252 | 0.100 | 0.059 | 0.122 | |
Land with year-round water springs has higher value. | 0.262 | 0.068 | 0.632 | 0.240 | 0.104 | 0.182 | 0.040 | |
Land with artificial water resources has higher value. | 0.321 | 0.203 | 0.620 | 0.143 | 0.175 | 0.005 | 0.160 | |
Land near recreational areas is more attractive and has higher value. | 0.230 | 0.140 | 0.095 | 0.710 | 0.108 | 0.084 | 0.258 | Proximity to tourist destinations |
Land near historical heritage sites has higher value. | 0.251 | 0.179 | 0.161 | 0.707 | 0.191 | 0.091 | 0.103 | |
Land near natural attractions has higher value. | 0.218 | 0.163 | 0.265 | 0.682 | 0.160 | 0.112 | 0.188 | |
Land near tourist destinations is in higher demand and has higher value. | 0.243 | 0.128 | 0.325 | 0.603 | 0.121 | 0.056 | 0.144 | |
Better soil quality correlates with higher land value. | 0.194 | 0.203 | 0.362 | 0.537 | 0.106 | 0.197 | 0.142 | |
Land with steeper slopes has lower value. | 0.171 | 0.162 | 0.129 | 0.080 | 0.762 | 0.088 | 0.101 | Physical characteristics of the land |
Soil quality and suitable crops affect land value. | 0.161 | 0.133 | 0.002 | 0.111 | 0.682 | 0.292 | 0.129 | |
Flat land is more valuable than sloped land. | 0.087 | 0.246 | 0.121 | 0.238 | 0.665 | 0.075 | 0.039 | |
Poor drainage reduces land value. | 0.057 | 0.327 | 0.257 | 0.032 | 0.585 | −0.003 | 0.170 | |
Land near urban areas has higher value. | 0.154 | 0.207 | 0.056 | 0.129 | 0.575 | 0.329 | 0.044 | |
Land with national roads and other infrastructure has higher value. | 0.104 | 0.137 | 0.197 | 0.113 | 0.148 | 0.762 | 0.033 | Positive externalities created |
Land with access to electricity has higher value. | 0.140 | 0.174 | 0.230 | 0.045 | 0.180 | 0.728 | 0.007 | |
Land value is influenced by agricultural and forestry crops it can support. | 0.063 | 0.142 | −0.110 | 0.136 | 0.158 | 0.675 | 0.202 | |
Land surrounded by fences or walls has higher value. | 0.162 | 0.107 | 0.212 | 0.152 | 0.125 | 0.175 | 0.744 | Improvements made on the property |
Land with forest plantations has higher market value. | 0.150 | 0.204 | 0.232 | 0.289 | 0.095 | 0.011 | 0.670 | |
Land with regular shape has higher value. | 0.299 | 0.090 | 0.019 | 0.254 | 0.209 | 0.084 | 0.647 | |
Cronbach’s alpha | 0.897 | 0.828 | 0.821 | 0.856 | 0.807 | 0.721 | 0.865 |
Items | Levene Test for Variance Equality (Do We Accept HO?) | Test for Means Equality | |||
---|---|---|---|---|---|
t-Test | t-Test (p-Value) | Male | Female | t-Test (p-Value) | |
The land adjacent to one already owned should be purchased, even if the value is high. | −2.557 | 0.002 | 2.97 | 3.96 | 0.011 |
Land where irrigation systems can be used has greater value. | 2.202 | 0.011 | 3.97 | 3.80 | 0.028 |
Items | Levene Test for Variance Equality (Do We Accept HO?) | Test for Means Equality | |||
---|---|---|---|---|---|
t-Test | t-Test (p-Value) | Yes, Has Another Job Besides Agriculture | Does Not Have Another Job Besides Agriculture | t-Test (p-Value) | |
The value of land reflects the agricultural and forestry crops it can offer. | 2.057 | 0.005 | 3.80 | 3.63 | 0.040 |
Land close to urban areas has a higher value. | 2.294 | 0.000 | 3.93 | 3.73 | 0.022 |
Land that allows the use of agricultural equipment (tractors) has a higher value. | 2.119 | 0.033 | 3.86 | 3.67 | 0.034 |
In areas with higher population growth, land has a higher value. | 2.561 | 0.007 | 4.01 | 3.79 | 0.011 |
Land with year-round water springs has a higher value. | 2.266 | 0.002 | 4.12 | 3.93 | 0.024 |
Factors Interpretation | Authors |
---|---|
Characteristics intrinsic to the property’s location | According to what was mentioned by the authors: Refs. [2,8,16,22,42]. |
Dynamic characteristics of the agricultural land market | In line with the authors: Refs. [2,14,16,17,29]. |
Importance of water availability on agricultural land | In accordance with Refs. [12,23,25]. |
Proximity to tourist destinations | In agreement with the authors: Refs. [3,6,8,10,28]. |
Physical characteristics of the land | In harmony with the authors: Refs. [3,10,23]. |
Positive externalities created | Adhering to the authors: Refs. [8,19]. |
Improvements made on the property | Mentioned by the authors: Refs. [10,12,14]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lote, E.; Tavares, F.O. Influential Factors in the Evaluation of Agricultural Lands in the Huambo Province, Angola. Land 2023, 12, 1823. https://doi.org/10.3390/land12101823
Lote E, Tavares FO. Influential Factors in the Evaluation of Agricultural Lands in the Huambo Province, Angola. Land. 2023; 12(10):1823. https://doi.org/10.3390/land12101823
Chicago/Turabian StyleLote, Ezequiel, and Fernando Oliveira Tavares. 2023. "Influential Factors in the Evaluation of Agricultural Lands in the Huambo Province, Angola" Land 12, no. 10: 1823. https://doi.org/10.3390/land12101823