Spatial–Temporal Characteristics of Human Thermal Comfort in Xinjiang: Based on the Universal Thermal Climate Index from 1981 to 2019
Abstract
:1. Introduction
2. Study Area and Research Methods
2.1. Study Area
2.2. Data
2.3. Method
2.3.1. The UTCI and Comfort Level
2.3.2. Trend Analysis
2.3.3. Correlation Analysis
2.3.4. Population Exposure
3. Results
3.1. UTCIs
3.1.1. Spatial Patterns of UTCI
3.1.2. Long Term Changes
3.2. Comfortable Days
3.2.1. Number of Comfortable Days
3.2.2. Long Term Changes
3.3. Contributions of Meteorological Elements to UTCI Changes
3.4. Population Exposure
4. Discussion
4.1. Comparison of the Results of Related Studies
4.2. Implications for Tourism Development
4.3. Limitations of the Study
5. Conclusions
- (1)
- From 1981 to 2019, the mean annual UTCI over Xinjiang was 3 °C and has significantly increased at a rate of 0.37 °C decade−1. This indicates that the thermal stress over Xinjiang is “slight cold stress” and is changing in a good direction under the background of global warming. On the annual and seasonal scales, 7 of the 10 UTCI thermal stress categories were experienced, ranging from very strong cold stress to strong heat stress. The ranking of climate comfort level by season is summer > spring > autumn > winter. The growth rate by season is spring > summer > autumn > winter, suggesting the climate conditions in summer are the best while winter’s is the worst. Spatially, the distribution of UTCI is influenced by topography and exhibits characteristics where the basin is higher than the mountainous areas.
- (2)
- The mean annual number of CDs is 114 days, with the range of 0 to 189 days. The highest number of CDs were observed in the Ili River Valley, both sides of the Tianshan Mountains, and the peripheral areas of the Tarim Basin, which exceeded 180 days. The lowest CD number was recorded in the Kunlun Mountains, with CDs of fewer than 20 days. Seasonal analysis shows that in spring and autumn, relatively large CD values occur in the western part of the Tarim Basin with 70 days. During summer, high CD values have a circular distribution around the basin (>75 days). During winter, regions are extremely cold and lack CDs. The change of CDs shows an increasing trend of 0–8 d/decade−1 in the Altai Mountains region, Tianshan Mountain region, Ili River Valley, and western Tarim Basin. Other region shows a decreasing trend of 0–6 day.
- (3)
- For the related climate variables, air temperature and climate comfort are positively correlated in Xinjiang, and relative humidity and wind speed were negatively correlated. Compared to other variables, air temperature is the most crucial factor affecting climate comfort in Xinjiang.
- (4)
- In the last 30 years, the range and intensity of population exposure to uncomfortable climate in Xinjiang have increased. The high population exposure was mainly concentrated around urban agglomeration in the North Slope of the Tianshan Mountains, the Ili River Valley, and the South-Western margin of Tarim Basin, with significant exposure area and population expansion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; Volume 2. [Google Scholar]
- Pörtner, H.-O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Parsons, K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort and Performance; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Wu, J.; Liu, C.; Wang, H. Analysis of Spatio-temporal patterns and related factors of thermal comfort in subtropical coastal cities based on local climate zones. Build. Environ. 2022, 207, 108568. [Google Scholar] [CrossRef]
- Rupp, R.F.; Vásquez, N.G.; Lamberts, R. A review of human thermal comfort in the built environment. Energy Build. 2015, 105, 178–205. [Google Scholar] [CrossRef]
- Chen, L.; Wen, Y.; Zhang, L.; Xiang, W.-N. Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Build. Environ. 2015, 94, 644–653. [Google Scholar] [CrossRef]
- Pantavou, K.; Theoharatos, G.; Mavrakis, A.; Santamouris, M. Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Build. Environ. 2011, 46, 339–344. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.H.; Han, J.T.; Zhao, Y.; Han, Q.; Wu, L.Y.; Wang, X.; Qiu, Z.Y.; Zou, T.Q.; Fan, C. A study of the temporal and spatial variations in the suitability of the environment in Chinese cities for tourism and in strategies for optimizing the environment. Int. J. Digit. Earth 2022, 15, 527–552. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef]
- Hill, L.; Griffith, O.W.; Flack, M. The Measurement of the Rate of Heat-Loss at Body Temperature by Convection, Radiation, and Evaporation. Philos. Trans. R. Soc. Lond. Ser. B Contain. Pap. A Biol. Character 1916, 207, 183–220. [Google Scholar]
- HOUGHTEN, F.C. Determining lines of equal comfort. ASHVE Trans. 1923, 29, 163–176. [Google Scholar]
- Siple, P.A.; Passel, C.F. Measurements of dry atmospheric cooling in subfreezing temperatures. Proc. Am. Philos. Soc. 1945, 89, 177–199. [Google Scholar] [CrossRef]
- Yaglou, C.; Minaed, D. Control of heat casualties at military training centers. Arch. Indust. Health 1957, 16, 302–316. [Google Scholar]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Gagge, A.P.; Fobelets, A.; Berglund, L. A standard predictive index of human response to the thermal environment. ASHRAE Trans. 1986, 92, 709–731. [Google Scholar]
- Staiger, H.; Laschewski, G.; Grätz, A. The perceived temperature–a versatile index for the assessment of the human thermal environment. Part A: Scientific basics. Int. J. Biometeorol. 2012, 56, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.; Nishi, Y.; Gagge, A. Experimental evaluation of standard effective temperature a new biometeorological index of man’s thermal discomfort. Int. J. Biometeorol. 1974, 18, 1–15. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Błażejczyk, K. UTCI—10 years of applications. Int. J. Biometeorol. 2021, 65, 1461–1462. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef]
- Błażejczyk, K. New climatological and physiological model of the Human Heat Balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zesz. Inst. Geogr. Przestrz. Zagospod. PAN 1994, 28, 27–58. [Google Scholar]
- Zare, S.; Hasheminejad, N.; Shirvan, H.E.; Hemmatjo, R.; Sarebanzadeh, K.; Ahmadi, S. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather. Clim. Extrem. 2018, 19, 49–57. [Google Scholar] [CrossRef]
- Krüger, E.L. Literature review on UTCI applications. In Applications of the Universal Thermal Climate Index UTCI in Biometeorology: Latest Developments and Case Studies; Springer: Cham, Switzerland, 2021; pp. 23–65. [Google Scholar]
- Doshi, S.C.; Lohmann, G.; Rimbu, N.; Ionita, M. Spatiotemporal trend analysis of climate indices for the European continent. J. Water Clim. Chang. 2023, 14, 3112–3130. [Google Scholar] [CrossRef]
- Antonescu, B.; Mărmureanu, L.; Vasilescu, J.; Marin, C.; Andrei, S.; Boldeanu, M.; Ene, D.; Ţilea, A. A 41-year bioclimatology of thermal stress in Europe. Int. J. Climatol. 2021, 41, 3934–3952. [Google Scholar] [CrossRef]
- Roffe, S.J.; van der Walt, A.J.; Fitchett, J.M. Spatiotemporal characteristics of human thermal comfort across southern Africa: An analysis of the Universal Thermal Climate Index (UTCI) for 1971–2021. Int. J. Climatol. 2023, 43, 2930–2952. [Google Scholar] [CrossRef]
- Hamed, M.M.; Kyaw, A.K.; Nashwan, M.S.; Shahid, S. Spatiotemporal changes in Universal Thermal Climate Index in the Middle East and North Africa. Atmos. Res. 2023, 295, 107008. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Zhang, D.; Zhang, L.; Zhang, W.; Ren, C.; Pan, T.; Chu, Z.; Chen, Y. Spatial-temporal characteristics of Arctic summer climate comfort level in the context of regional tourism resources from 1979 to 2019. Sustainability 2021, 13, 13056. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Wang, G.; Ullah, W.; Sachindra, D.A.; Yan, Y.; Bhatti, A.S.; Abbas, A.; Jan, M.A. Characteristics of human thermal stress in South Asia during 1981–2019. Environ. Res. Lett. 2022, 17, 104018. [Google Scholar] [CrossRef]
- Kyaw, A.K.; Hamed, M.M.; Shahid, S. Spatiotemporal changes in Universal Thermal Climate Index over South Asia. Atmos. Res. 2023, 292, 106838. [Google Scholar] [CrossRef]
- Kong, Q.; Zheng, J.; Wang, X. Spatial pattern and temporal variation in thermal comfort in China from 1979 to 2014. Resour. Sci. 2016, 38, 1129–1139. [Google Scholar]
- Hua, L.; Zhang, H.; Liu, X.; Yang, X.; Duan, H.; Wu, T.; Nastos, P. Climate comfort evaluation of national 5a touristattractions in the mainland of China based on universal thermal climate index. Adv. Meteorol. 2020, 2020, 4256164. [Google Scholar] [CrossRef]
- Wu, F.; Yang, X.; Shen, Z. Regional and seasonal variations of outdoor thermal comfort in China from 1966 to 2016. Sci. Total Environ. 2019, 665, 1003–1016. [Google Scholar] [CrossRef]
- Hui-Jiao, L.; Hong-Yun, M.; Mi, Z. Analysis of the variation characteristics of human thermal comfort in summer of China from 1980 to 2019 based on UTCI. Adv. Clim. Change Res. 2022, 18, 58. [Google Scholar]
- Huang, J.; Shen, S.; Zhao, M.; Cheng, C. Assessment of summer regional outdoor heat stress and regional comfort in the Beijing-Tianjin-Hebei agglomeration over the last 40 years. GeoHealth 2023, 7, e2022GH000725. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-Y.; Schmude, J.; Zhai, P.-M.; Wang, Q. Changes in thermal comfortable condition in the Qinghai-Tibet Plateau from 1979 to 2020. Adv. Clim. Chang. Res. 2022, 13, 666–675. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, D.; Cao, Y.; Wang, Y.; Zhang, G. Spatio–temporal evolution and factors of climate comfort for urban human settlements in the Guangdong–Hong Kong–Macau Greater Bay Area. Front. Environ. Sci. 2022, 10, 1001064. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, J.; Chen, Y. NDVI-based vegetation responses to climate change in an arid area of China. Theor. Appl. Climatol. 2016, 126, 213–222. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Yafeng, S.; Yongping, S.; Dongliang, L.; Guowei, Z.; Yongjian, D.; Ruji, H.; Ersi, K. Discussion on the present climate change from warm-dry to warm-wet in northwest china. Quat. Sci. 2003, 23, 152–164. [Google Scholar]
- Li, B.; Chen, Y.; Shi, X. Why does the temperature rise faster in the arid region of northwest China? J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Fang, S.; Yan, J.; Che, M.; Zhu, Y.; Liu, Z.; Pei, H.; Zhang, H.; Xu, G.; Lin, X. Climate change and the ecological responses in Xinjiang, China: Model simulations and data analyses. Quat. Int. 2013, 311, 108–116. [Google Scholar] [CrossRef]
- Hu, R.; Fan, Z.; Wang, Y.; Yang, Q.; Huang, Y. Assessment about the impact of climate change on environment in Xinjiang since recent 50 years. Arid. Land Geogr. 2001, 24, 97–103. [Google Scholar]
- Li, N.; Lin, H.; Wang, T.; Li, Y.; Liu, Y.; Chen, X.; Hu, X. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crop. Res. 2020, 247, 107590. [Google Scholar] [CrossRef]
- Shijin, W.; Xinggang, M.; Jia, X. A Review of the Impacts of Climate Change on Tourism in the Arid Areas: A Case Study of Xinjiang Uygur Autonomous Region in China. Adv. Meteorol. 2022, 2022, 8768542. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, Y.; Yue, S. A high-spatial-resolution dataset of human thermal stress indices over South and East Asia. Sci. Data 2021, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Di Napoli, C.; Barnard, C.; Prudhomme, C.; Cloke, H.L.; Pappenberger, F. ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geosci. Data J. 2021, 8, 2–10. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, M.; Zhao, Y.; Lin, L.; Ge, E.; Yang, Y.; Ning, G.; Cong, J.; Zeng, Z.; Gui, K. HiTIC-Monthly: A monthly high spatial resolution (1 km) human thermal index collection over China during 2003–2020. Earth Syst. Sci. Data 2023, 15, 359–381. [Google Scholar] [CrossRef]
- Wang Can, W.J. Kilometer Grid Dataset of China’s Historical Population Spatial Distribution (1990–2015); National Tibetan Plateau Data Center: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Fiala, D.; Havenith, G.; Brode, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; O’Brien, N.; Patakamuri, M.S.K. Package ‘modifiedmk’. 2020. Available online: https://cran.pau.edu.tr/web/packages/modifiedmk/modifiedmk.pdf (accessed on 1 June 2023).
- Li, M.; Zhou, B.-B.; Gao, M.; Chen, Y.; Hao, M.; Hu, G.; Li, X. Spatiotemporal dynamics of global population and heat exposure (2020–2100): Based on improved SSP-consistent population projections. Environ. Res. Lett. 2022, 17, 094007. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Shen, Y.; Li, X.; Xu, J. Spatial and temporal trends of climate change in Xinjiang, China. J. Geogr. Sci. 2011, 21, 1007–1018. [Google Scholar] [CrossRef]
- RUZI, T.; KASIMU, A.; Pengwen, G.; Mengchen, Z. Study on the spatiotemporal changes of Xinjiang urban expansion based on DMSP/OLS and NPP/VIIRS data. J. China Agric. Univ. 2020, 25, 156–165. [Google Scholar] [CrossRef]
- Guan, J.; Li, D.; Xu, X.; Wang, Y.; Wang, X. Spatialtemporal pattern and evolution of tourism comfort period in Xinjiang in recent 40 years. J. Southwest Univ. 2022, 44, 185–197. [Google Scholar] [CrossRef]
- Wu, J.K.; Jin, T.; Wu, Y.C.; Ding, Y.J.; Mu, Y.Q.; Zeng, D. The Variation of UTCI with the Background of Climate Change and Its Implications for Tourism in a Complicated Climate Region in Western China. Sustainability 2022, 14, 15047. [Google Scholar] [CrossRef]
- Zeng, D.; Wu, J.; Mu, Y.; Deng, M.; Wei, Y.; Sun, W. Spatial-temporal pattern changes of UTCI in the China-Pakistan economic corridor in recent 40 years. Atmosphere 2020, 11, 858. [Google Scholar] [CrossRef]
- Zeng, D.; Wu, J.; Mu, Y.; Li, H.; Deng, M.; Wei, Y.; Sun, W. An assessment of tourism climate comfort in the China–Pakistan economic corridor. Sustainability 2020, 12, 6981. [Google Scholar] [CrossRef]
- Ge, Q.S.; Kong, Q.Q.; Xi, J.C.; Zheng, J.Y. Application of UTCI in China from tourism perspective. Theor. Appl. Climatol. 2017, 128, 551–561. [Google Scholar] [CrossRef]
- Kong, Q.; Zheng, J.; Fowler, H.J.; Ge, Q.; Xi, J. Climate change and summer thermal comfort in China. Theor. Appl. Climatol. 2019, 137, 1077–1088. [Google Scholar] [CrossRef]
UTCI Range (°C) | Stress Category |
---|---|
UTCI ≥ 46 | Extreme heat stress |
38 ≤ UTCI < 46 | Very strong heat stress |
32 ≤ UTCI < 38 | Strong heat stress |
26 ≤ UTCI < 32 | Moderate heat stress |
9 ≤ UTCI < 26 | No thermal stress |
0 ≤ UTCI < 9 | Slight cold stress |
−13 ≤ UTCI < 0 | Moderate cold stress |
−27 ≤ UTCI < −13 | Strong cold stress |
−40 ≤ UTCI ≤ −27 | Very strong cold stress |
UTCI < −40 | Extreme cold stress |
Percentage (%) | Very Strong Cold Stress | Strong Cold Stress | Moderate Cold Stress | Slight Cold Stress | No Thermal Stress | Moderate Heat Stress | Strong Heat Stress |
---|---|---|---|---|---|---|---|
Annual | 0 | 4.35 | 25.51 | 42.53 | 27.61 | 0 | 0 |
Spring | 0 | 4.69 | 17.46 | 36.77 | 41.08 | 0 | 0 |
Summer | 0 | 0 | 2.72 | 12.95 | 56.68 | 27.57 | 0.08 |
Autumn | 0 | 4.67 | 29.01 | 52.52 | 13.8 | 0 | 0 |
winter | 4.17 | 41.99 | 53.84 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Yang, Z.; Han, F.; He, B.; Ma, X. Spatial–Temporal Characteristics of Human Thermal Comfort in Xinjiang: Based on the Universal Thermal Climate Index from 1981 to 2019. Land 2023, 12, 1864. https://doi.org/10.3390/land12101864
Qi J, Yang Z, Han F, He B, Ma X. Spatial–Temporal Characteristics of Human Thermal Comfort in Xinjiang: Based on the Universal Thermal Climate Index from 1981 to 2019. Land. 2023; 12(10):1864. https://doi.org/10.3390/land12101864
Chicago/Turabian StyleQi, Jianwei, Zhaoping Yang, Fang Han, Baoshi He, and Xuankai Ma. 2023. "Spatial–Temporal Characteristics of Human Thermal Comfort in Xinjiang: Based on the Universal Thermal Climate Index from 1981 to 2019" Land 12, no. 10: 1864. https://doi.org/10.3390/land12101864
APA StyleQi, J., Yang, Z., Han, F., He, B., & Ma, X. (2023). Spatial–Temporal Characteristics of Human Thermal Comfort in Xinjiang: Based on the Universal Thermal Climate Index from 1981 to 2019. Land, 12(10), 1864. https://doi.org/10.3390/land12101864