Geo-Hydrological Hazard Impacts, Vulnerability and Perception in Bujumbura (Burundi): A High-Resolution Field-Based Assessment in a Sprawling City
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Urban Growth Patterns
3.2. Existing Quantitative Data of Geo-Hydrological Hazard Events
3.3. Field Campaign
3.4. Population Survey
3.4.1. Quantitative Data through Inhabitant Interviews
3.4.2. Qualitative Data through Focus Group Discussion
4. Results
4.1. Bujumbura Urban Sprawl
4.2. Distribution of Geo-Hydrological Hazards
4.3. Impacts of Geo-Hydrological Disasters
4.4. Identified Factors of Vulnerability to Geo-Hydrological Hazards
4.5. Perceived Causes of Vulnerability to Geo-Hydrological Hazards
5. Discussion
5.1. An Unprecedented Geo-Hydrological Hazard Event Inventory—A Reliable Data Source?
5.2. Vulnerability Factors—Insights from People vs. Reports and Field Observations
5.3. A Vulnerable City? The Responsibility of the Urban Planning Institutions
5.4. The Added Value of an Operational Assessment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Municipality | Code in Map | Neighborhood | Municipality | Code in Map | Neighborhood |
---|---|---|---|---|---|
Buyenzi | 32 | I | Ngagara | 22 | I |
31 | II | 16 | II | ||
30 | III | 17 | III | ||
29 | IV | 24 | IV | ||
28 | V | 23 | V | ||
27 | VI | 25 | VI | ||
39 | VII | 18 | VII | ||
Bwiza | 42 | I | Kamenge | 21 | Gituro |
40 | II | 20 | Heha | ||
43 | III | 19 | Kavumu | ||
41 | IV | 15 | Gikize | ||
33 | Jabe I | 14 | Songa | ||
26 | Jabe II | 9 | Teza | ||
34 | Jabe III | 8 | Twinyoni | ||
Cibitoke | 7 | I | Nyakabiga | 36 | I |
13 | II | 37 | II | ||
6 | III | 38 | III | ||
10 | IV | 35 | Kigwati | ||
12 | V | Kinama | 1 | Muramvya | |
21 | VI | 2 | Gitega | ||
5 | VII | 3 | Ngozi | ||
4 | Muyinga |
References
- UNDESA. World Urbanization Prospects 2018: Highlights; UNDESA: New York, NY, USA, 2019. [Google Scholar]
- UNDESA. Exposure and Vulnerability to Natural Disasters for World’s Cities; Technical paper n°2019/4:43; Population Division, United Nations Department of Economic and Social Affairs: New York, NY, USA, 2019. [Google Scholar]
- Marcotullio, P.J.; Keßler, C.; Quintero Gonzalez, R.; Schmeltz, M. Urban Growth and Heat in Tropical Climates. Front. Ecol. Evol. 2021, 9, 616626. [Google Scholar] [CrossRef]
- Chaouad, R.; Verzeroli, M. Réalités et enjeux de l’urbanisation du monde. Rev. Int. Et Strat. 2018, 112, 47–65. [Google Scholar] [CrossRef]
- Douglas, I. Flooding in African cities, scales of causes, teleconnections, risks, vulnerability and impacts. Int. J. Disaster Risk Reduct. 2017, 26, 34–42. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G.; Chikodzi, D. Flooding trends and their impacts on coastal communities of Western Cape Province, South Africa. GeoJournal 2022, 87, 453–468. [Google Scholar] [CrossRef]
- Erena, S.H.; Worku, H. Urban flood vulnerability assessments: The case of Dire Dawa city, Ethiopia. Nat. Hazards 2019, 97, 495–516. [Google Scholar] [CrossRef]
- Ramiaramanana, F.N.; Teller, J. Urbanization and Floods in Sub-Saharan Africa: Spatiotemporal Study and Analysis of Vulnerability Factors—Case of Antananarivo Agglomeration (Madagascar). Water 2021, 3, 149. [Google Scholar] [CrossRef]
- Salami, R.O.; Von Meding, J.K.; Giggins, H. Urban settlements’ vulnerability to flood risks in African cities: A conceptual framework. Jàmbá 2017, 9, 9. [Google Scholar] [CrossRef]
- Taş, M.; Taş, N.; Durak, S.; Atanur, G. Flood disaster vulnerability in informal settlements in Bursa, Turkey. Environ. Urban. 2013, 25, 443–463. [Google Scholar] [CrossRef]
- Baeumler, A.; D’Aoust, O.; Das, M.B.; Gapihan, A.; Goga, S.; Lakovits, C.; Restrepo Cavadid, P.; Singh, G.; Terraza, H. Demographic Trends and Urbanization©; World Bank [Internet]; World Bank: Washington, DC, USA, 2021; Available online: http://hdl.handle.net/10986/35469 (accessed on 2 June 2023).
- Benítez, G.; Pérez-Vázquez, A.; Nava-Tablada, M.; Equihua, M.; Álvarez-Palacios, J.L. Urban expansion and the environmental effects of informal settlements on the outskirts of Xalapa city, Veracruz, Mexico. Environ. Urban. 2012, 24, 149–166. [Google Scholar] [CrossRef]
- Dille, A.; Dewitte, O.; Handwerger, A.L.; d’Oreye, N.; Derauw, D.; Bamulezi Ganza, G.; Ilombe Mawe, G.; Michellier, C.; Moeyersons, J.; Monsieurs, E.; et al. Acceleration of a large deep-seated tropical landslide due to urbanization feedbacks. Nat. Geosci. 2022, 15, 1048–1055. [Google Scholar] [CrossRef]
- Ozturk, U.; Bozzolan, E.; Holcombe, E.A.; Shukla, R.; Pianosi, F.; Wagener, T. How climate change and unplanned urban sprawl bring more landslides. Nature 2022, 608, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Raju, E.; Boyd, E.; Otto, F. Stop blaming the climate for disasters. Commun. Earth Environ. 2022, 3, 1. [Google Scholar] [CrossRef]
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef]
- Bierman, P.R.; Montgomery, D.R. Key Concepts in Geomorphology; W. H. Freeman and Company Publishers: New York, NY, USA, 2014; 494p. [Google Scholar]
- Makanzu Imwangana, F.; Dewitte, O.; Ntombi, M.; Moeyersons, J. Topographic and road control of mega-gullies in Kinshasa (DR Congo). Geomorphology 2014, 217, 131–139. [Google Scholar] [CrossRef]
- Moeyersons, J.; Makanzu Imwangana, F.; Dewitte, O. Site- and rainfall-specific runoff coefficients and critical rainfall for mega-gully development in Kinshasa (DR Congo). Nat. Hazards 2015, 79, 203–233. [Google Scholar] [CrossRef]
- Devitt, L.; Neal, J.; Coxon, G.; Savage, J.; Wagener, T. Flood hazard potential reveals global floodplain settlement patterns. Nat. Commun. 2023, 14, 2801. [Google Scholar] [CrossRef] [PubMed]
- Adeloye, A.J.; Rustum, R. Lagos (Nigeria) flooding and influence of urban planning. Proc. Inst. Civ. Eng.—Urban Des. Plan. 2011, 164, 175–187. [Google Scholar] [CrossRef]
- Isunju, J.B.; Orach, C.G.; Kemp, J. Hazards and vulnerabilities among informal wetland communities in Kampala, Uganda. Environ. Urban. 2016, 28, 275–293. [Google Scholar] [CrossRef]
- Smith, B.K.; Smith, J.; Baeck, M.L. Flash Flood–Producing Storm Properties in a Small Urban Watershed. J. Hydrometeor. 2016, 17, 2631–2647. [Google Scholar] [CrossRef]
- Mahmood, M.I.; Elagib, N.A.; Horn, F.; Saad, S.A.G. Lessons learned from Khartoum flash flood impacts: An integrated assessment. Sci. Total Environ. 2017, 601–602, 1031–1045. [Google Scholar] [CrossRef]
- Berz, G.; Kron, W.; Loster, T.; Rauch, E.; Schimetschek, J.; Schmieder, J.; Siebert, A.; Smolka, A.; Wirtz, A. World Map of Natural Hazards—A Global View of the Distribution and Intensity of Significant Exposures. Nat. Hazards 2001, 23, 443–465. [Google Scholar] [CrossRef]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2013, 12, 14–29. [Google Scholar] [CrossRef]
- De Geeter, S.; Verstraeten, G.; Poesen, J.; Campforts, B.; Vanmaercke, M. A data driven gully head susceptibility map of Africa at 30 m resolution. Environ. Res. 2023, 224, 115573. [Google Scholar] [CrossRef]
- Zhou, Q.; Leng, G.; Feng, L. Predictability of state-level flood damage in the conterminous United States: The role of hazard, exposure and vulnerability. Sci. Rep. 2017, 7, 5354. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Chang, H. Recent research approaches to urban flood vulnerability, 2006–2016. Nat. Hazards 2017, 88, 633–649. [Google Scholar] [CrossRef]
- Kermanshah, A.; Derrible, S.; Berkelhammer, M. Using Climate Models to Estimate Urban Vulnerability to Flash Floods. J. Appl. Meteor. Climatol. 2017, 56, 2637–2650. [Google Scholar] [CrossRef]
- Masozera, M.; Bailey, M.; Kerchner, C. Distribution of impacts of natural disasters across income groups: A case study of New Orleans. Ecol. Econ. 2007, 63, 299–306. [Google Scholar] [CrossRef]
- D’Ercole, R.; Metzger, P. La vulnérabilité territoriale: Une nouvelle approche des risques en milieu urbain. Cybergeo Eur. J. Geogr. 2009. [CrossRef]
- Rafiq, F.; Ahmed, S.; Ahmad, S.; Khan, A.A. Urban Floods in India. Int. J. Sci. Eng. Res. 2016, 7, 721–734. [Google Scholar]
- Nithila Devi, N.; Sridharan, B.; Kuiry, S.N. Impact of urban sprawl on future flooding in Chennai city, India. J. Hydrol. 2019, 574, 486–496. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Hydrological impacts of land use–land cover change and detention basins on urban flood hazard: A case study of Poisar River basin, Mumbai, India. Nat. Hazards 2017, 87, 1267–1283. [Google Scholar] [CrossRef]
- Du, S.; Van Rompaey, A.; Shi, P.; Wang, J. A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation. Nat. Hazards 2015, 77, 111–128. [Google Scholar] [CrossRef]
- Shehata, M.; Mizunaga, H. Flash Flood Risk Assessment for Kyushu Island, Japan. Environ. Earth Sci. 2018, 77, 76. [Google Scholar] [CrossRef]
- Koks, E.E.; Van Ginkel, K.C.H.; Van Marle, M.J.E.; Lemnitzer, A. Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event. Nat. Hazards Earth Syst. Sci. 2022, 22, 3831–3838. [Google Scholar] [CrossRef]
- Paliaga, G.; Luino, F.; Turconi, L.; Marincioni, F.; Faccini, F. Exposure to Geo-Hydrological Hazards of the Metropolitan Area of Genoa, Italy: A Multi-Temporal Analysis of the Bisagno Stream. Sustainability 2020, 12, 1114. [Google Scholar] [CrossRef]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 2010, 394, 118–133. [Google Scholar] [CrossRef]
- Akukwe, T.I. Determinants of Flooding in Port Harcourt Metropolis, Nigeria. IOSRJHSS 2014, 19, 64–72. [Google Scholar]
- Moeyersons, J.; Trefois, P.; Nahimana, L.; Ilunga, L.; Vandecasteele, I.; Byizigiro, V.; Sadiki, S. River and landslide dynamics on the western Tanganyika rift border, Uvira, D.R. Congo: Diachronic observations and a GIS inventory of traces of extreme geomorphologic activity. Nat. Hazards 2010, 53, 291–311. [Google Scholar] [CrossRef]
- Makanzu Imwangana, F.; Vandecasteele, I.; Trefois, P.; Ozer, P.; Moeyersons, J. The origin and control of mega-gullies in Kinshasa (D.R. Congo). CATENA 2015, 125, 38–49. [Google Scholar] [CrossRef]
- Zehra, D.; Mbatha, S.; Campos, L.C.; Queface, A.; Beleza, A.; Cavoli, C.; Achuthan, K.; Parikh, P. Rapid flood risk assessment of informal urban settlements in Maputo, Mozambique: The case of Maxaquene, A. Int. J. Disaster Risk Reduct. 2019, 40, 101270. [Google Scholar] [CrossRef]
- Zolezzi, G.; Bezzi, M.; Spada, D.; Bozzarelli, E. Urban gully erosion in sub-Saharan Africa: A case study from Uganda. Land Degrad. Dev. 2018, 29, 849–859. [Google Scholar] [CrossRef]
- Gill, J.C.; Taylor, F.E.; Duncan, M.J.; Mohadjer, S.; Budimir, M.; Mdala, H.; Bukachi, V. Invited perspectives: Building sustainable and resilient communities—Recommended actions for natural hazard scientists. Nat. Hazards Earth Syst. Sci. 2021, 21, 187–202. [Google Scholar] [CrossRef]
- Diakakis, M.; Priskos, G.; Skordoulis, M. Public perception of flood risk in flash flood prone areas of Eastern Mediterranean: The case of Attica Region in Greece. Int. J. Disaster Risk Reduct. 2018, 28, 404–413. [Google Scholar] [CrossRef]
- Martins, B.; Nunes, A.; Lourenço, L.; Velez-Castro, F. Flash Flood Risk Perception by the Population of Mindelo, S. Vicente (Cape Verde). Water 2019, 11, 1895. [Google Scholar] [CrossRef]
- D’Ercole, R.; Thouret, J.C.; Dollfus, O.; Asté, J.P. Les vulnérabilités des sociétés et des espaces urbanisés: Concepts, typologie, modes d’analyse. RGA 1994, 82, 87–96. [Google Scholar] [CrossRef]
- Metzger, P.; D’Ercole, R. Enjeux Territoriaux et Vulnérabilité: Une Approche Opérationnelle. In Proceedings of the Colloque Interdisciplinaire “Vulnérabilités Sociétales, Risques et Environnement: Comprendre et Évaluer”, Toulouse, France, 14–16 May 2008; Available online: https://hal.science/hal-01196979 (accessed on 21 February 2020).
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Fuchs, S.; Kuhlicke, C.; Meyer, V. Editorial for the special issue: Vulnerability to natural hazards—The challenge of integration. Nat. Hazards 2011, 58, 609–619. [Google Scholar] [CrossRef]
- Michellier, C.; Pigeon, P.; Kervyn, F.; Wolff, E. Contextualizing vulnerability assessment: A support to geo-risk management in central Africa. Nat. Hazards 2016, 82, 27–42. [Google Scholar] [CrossRef]
- Reghezza, M. La vulnérabilité: Un concept problématique. In La vulnérabilité des Sociétés et des Territoires Face aux Menaces Naturelles: Analyses Géographiques, Collection Géorisques; Université de Paul-Valéry—Montpellier III: Montpellier, France, 2005; pp. 35–40. [Google Scholar]
- Schneiderbauer, S.; Calliari, E.; Eidsvig, U.; Hagenlocher, M. The most recent view of vulnerability. In Science for Disaster Risk Management 2017: Knowing Better and Loosing Less; Publications Office of the European Union: Brussels, Belgium; Luxembourg, 2017; pp. 70–84. [Google Scholar]
- Wisner, B. Vulnerability as Concept, Model, Metric, and Tool. In Oxford Research Encyclopedia of Natural Hazard Science [Internet]; Oxford University Press: Oxford, MI, USA, 2016. [Google Scholar]
- Fatti, C.E.; Patel, Z. Perceptions and responses to urban flood risk: Implications for climate governance in the South. Appl. Geography. 2013, 36, 13–22. [Google Scholar] [CrossRef]
- Vogel, C.; Moser, S.C.; Kasperson, R.E.; Dabelko, G.D. Linking vulnerability, adaptation, and resilience science to practice: Pathways, players, and partnerships. Glob. Environ. Chang. 2007, 17, 349–364. [Google Scholar] [CrossRef]
- Mărgărint, M.C.; Niculiță, M.; Roder, G.; Tarolli, P. Risk perception of local stakeholders on natural hazards: Implications for theory and practice. Nat. Hazards Earth Syst. Sci. 2021, 21, 3251–3283. [Google Scholar] [CrossRef]
- Slovic, P. Perception of risk. Science 1987, 236, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Wachinger, G.; Renn, O.; Begg, C.; Kuhlicke, C. The Risk Perception Paradox-Implications for Governance and Communication of Natural Hazards: The Risk Perception Paradox. Risk Anal. 2013, 33, 1049–1065. [Google Scholar] [CrossRef] [PubMed]
- Rudge Ramos Ribeiro, R.; Nascimento Sulaiman, S.; Bonatti, M.; Sieber, S.; Lana, M.A. Perception of Natural Hazards in Rural Areas: A Case Study Examination of the Influence of Seasonal Weather. Sustainability 2020, 12, 2251. [Google Scholar] [CrossRef]
- Bera, M.K.; Daněk, P. Risk Perception and Action to Reduce the Impact of Floods in the Czech Republic. In Handbook of Climate Change Resilience; Leal Filho, W., Ed.; Springer: Cham, Switzerland, 2018; pp. 1–16. [Google Scholar]
- Fischhoff, B.; Slovic, P.; Lichtenstein, S.; Read, S.; Combs, B. How safe is safe enough? A psychometric study of attitudes towards technological risks and benefits. Policy Sci. 1978, 9, 127–152. [Google Scholar] [CrossRef]
- Slovic, P.; Fischhoff, B.; Lichtenstein, S. The Psychometric Study of Risk Perception. In Covello VT; Menkes, J., Mumpower, J., Eds.; Risk Evaluation and Management; Springer: Boston, MA, USA, 1986; Volume 1, pp. 3–24. [Google Scholar]
- Lechowska, E. Approaches in research on flood risk perception and their importance in flood risk management: A review. Nat. Hazards 2022, 111, 2343–2378. [Google Scholar] [CrossRef]
- Douglas, M.; Wildavsky, A. How Can We Know the Risks We Face? Why Risk Selection Is a Social Process. Risk Anal. 1982, 2, 49–58. [Google Scholar] [CrossRef]
- Lechowska, E. What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements. Nat. Hazards 2018, 94, 1341–1366. [Google Scholar] [CrossRef]
- Lutete Landu, E.; Ilombe Mawe, G.; Makanzu Imwangana, F.; Bielders, C.; Dewitte, O.; Poesen, J.; Hubert, A.; Vanmaercke, M. Effectiveness of measures aiming to stabilize urban gullies in tropical cities: Results from field surveys across D.R. Congo. Int. Soil Water Conserv. Res. 2022, 11, 14–29. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Nohrstedt, D.; Mård, J.; Burchardt, S.; Albin, C.; Bondesson, S.; Breinl, K.; Deegan, F.M.; Fuentes, D.; Lopez, M.G.; et al. An Integrative Research Framework to Unravel the Interplay of Natural Hazards and Vulnerabilities. Earth’s Future 2018, 6, 305–310. [Google Scholar] [CrossRef]
- Merz, B.; Kuhlicke, C.; Kunz, M.; Pittore, M.; Babeyko, A.; Bresch, D.N.; Domeisen, D.I.V.; Feser, F.; Koszalka, I.; Kreibich, H.; et al. Impact Forecasting to Support Emergency Management of Natural Hazards. Rev. Geophys. 2020, 58, 52. [Google Scholar] [CrossRef]
- Kubwimana, D.; Ait Brahim, L.; Mahfoud, B.; Dewitte, O.; Abdellah, A.; Tarik, B. Landslides susceptibility assessment using AHP method in Kanyosha watershed (Bujumbura −Burundi): Urbanisation and management impact. MATEC Wen Conf. 2018, 149, 02071. [Google Scholar]
- Monsieurs, E.; Jacobs, L.; Michellier, C.; Basimike Tchangaboba, J.; Bamulezi Ganza, G.; Kervyn, F.; Maki Mateso, J.-C.; Mugaruka Bibentyo, T.; Kalikone Buzera, C.; Nahimana, L.; et al. Landslide inventory for hazard assessment in a data-poor context: A regional-scale approach in a tropical African environment. Landslides 2018, 15, 2195–2209. [Google Scholar] [CrossRef]
- Nibigira, L. Etude des Risques Naturels Liés aux Interactions entre les Mouvements de Masse et le Réseau Hydrographique Dans la Région des lacs Kivu et Tanganyika. Ph.D. Thesis, Université de Liège, Liège, Belgique, 2018. [Google Scholar]
- Nkunzimana, A.; Bi, S.; Alriah, M.A.A.; Zhi, T.; Kur, N.A.D. Diagnosis of meteorological factors associated with recent extreme rainfall events over Burundi. Atmos. Res. 2020, 244, 105069. [Google Scholar] [CrossRef]
- Ndayirukiye, S. (Ed.) Bujumbura Centenaire, 1897–1997: Croissance et Défis; Collection Etudes africaines; Harmattan: Paris, France, 2002; p. 375. [Google Scholar]
- Mboga, N.; Michellier, C.; Depicker, A.; Georganos, S.; Vanhuysse, S.; Smets, B.; Kubwimana, D.; Kervyn, F.; Dewitte, O.; Wolff, E.; et al. Natural hazards and conflict dynamics as drivers of the long-term development of three cities in the East African Rift Valley. (manuscript in preparation). 2023. [Google Scholar]
- Cazenave-Piarrot, A.; Ndayirukiye, S.; Valton, C. Atlas des Pays du Nord-Tanganyika, IRD Éditions; Institut de Recherche pour le Développement: Marseille, France, 2015; p. 144. [Google Scholar]
- ISTEEBU. Projections Démographiques au Niveau Communal 2010–2050; ISTEEBU: Bujumbura, Burundi, 2020; p. 403. [Google Scholar]
- ISTEEBU. Annuaire Statistique du Burundi 2020; ISTEEBU: Bujumbura, Burundi, 2021. [Google Scholar]
- Sindayihebura, B. De L’imbo au Mirwa. Dynamique de L’occupation du Sol, Croissance Urbaine et Risques Naturels dans la Région de Bujumbura (Burundi). Ph.D. Thesis, Université de Toulouse II, Toulouse, France, 2005. [Google Scholar]
- Groupe Huit/SHER. Schéma Directeur d’Aménagement et d’Urbanisme de la Ville de Bujumbura à L’horizon 2025, Rapport Final; République du Burundi: Bujumbura, Burundi, 2014. [Google Scholar]
- Sirven, P. La Sous-Urbanisation et les Villes du Rwanda et du Burundi. Ph.D. Thesis, Université de Bordeaux III, Bordeaux, France, 1984. [Google Scholar]
- Gouvernement du Burundi; Banque Mondiale. Burundi: Analyse des Facteurs de Risques, Évaluation des Dommages et Propositions pour un Relèvement et une Reconstruction Durables—Evaluation Rapide Conjointe suite à la Catastrophe des 9-10 Février 2014 aux Alentours de Bujumbura, Rapport Provisoire; Gouvernement du Burundi: Bujumbura, Burundi, 2014. [Google Scholar]
- Mercier, F. Interannual lake level fluctuations (1993–1999) in Africa from Topex/Poseidon: Connections with ocean–atmosphere interactions over the Indian Ocean. Glob. Planet. Chang. 2002, 15, 141–163. [Google Scholar] [CrossRef]
- Ministère des Travaux Publics, de L’énergie et des Mines. Etablissement du Schéma Directeur D’aménagement et D’urbanisme: Proposition Technique et Financière; Centre Opérationnel de Liaison, Recherche et Documentation: Bujumbura, Burundi, 1981. [Google Scholar]
- Mboga, N. Long-term mapping of urban areas using remote sensing. Application of deep learning using case-studies of data from Central Africa. Ph.D. Thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 2021. [Google Scholar]
- CIRA; Ministère des Transports, des Travaux Publics et de l’Equipement. Collecte et Évacuation des Eaux Pluviales de la Ville de Bujumbura: Identification d’un Programme Prioritaire et DAO D’une Tranche D’urgence. Volume 2: État des Lieux par Commune, Occupation du Sol, Bilan du Réseau Routier, Bilan du Réseau D’eaux Pluviales; IDA: Bujumbura, Burundi, 2011. [Google Scholar]
- Yadav, S.K.; Singh, S.; Gupta, R. Sampling Methods. In Biomedical Statistics [Internet]; Springer: Singapore, 2019; pp. 71–83. [Google Scholar]
- Berndt, A.E. Sampling Methods. J. Hum. Lact. 2020, 36, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Fitton, S.L.; Moncaster, A.; Guthrie, P. Investigating the social value of the Ripon rivers flood alleviation scheme. J. Flood Risk Manag. 2016, 9, 370–378. [Google Scholar] [CrossRef]
- Henry, S.; Dujardin, S.; Henriet, E.; Baltazar, S. Qualitative data and approaches to Population–Environment Inquiry. In International Handbook of Population and Environment; Hunter, L.M., Gray, C., Véron, J., Eds.; International Handbooks of Population; Springer: Cham, Switzerland, 2022; Volume 10, pp. 139–163. [Google Scholar]
- Kitchin, R.; Tate, N.J. Conducting Research in Human Geography: Theory, Methodology and Practice; First issued in hardback; Routledge: New York, NY, USA, 2014; p. 330. [Google Scholar]
- Morange, M.; Schmoll, C.; Toureille, É. Les Outils Qualitatifs en Géographie: Méthodes et Applications [Qualitative Tools in Geography: Methods and Applications]; Armand Colin: Paris, France, 2016; p. 220. [Google Scholar]
- CIRA; Ministère des Transports, des Travaux Publics et de l’Equipement. CSollecte et Évacuation des Eaux Pluviales de la Ville de Bujumbura: Identification d’un Programme Prioritaire et DAO d’une Tranche D’urgence; IDA: Bujumbura, Burundi, 2014. [Google Scholar]
- Osuteye, E.; Johnson, C.; Brown, D. The data gap: An analysis of data availability on disaster losses in sub-Saharan African cities. Int. J. Disaster Risk Reduct. 2017, 26, 24–33. [Google Scholar] [CrossRef]
- Saharia, M.; Jain, A.; Baishya, R.R.; Haobam, S.; Sreejith, O.P.; Pai, D.S.; Rafieeinasab, A. India flood inventory: Creation of a multi-source national geospatial database to facilitate comprehensive flood research. Nat. Hazards 2021, 108, 619–633. [Google Scholar] [CrossRef]
- Adhikari, P.; Hong, Y.; Douglas, K.R.; Kirschbaum, D.B.; Gourley, J.; Adler, R.; Brakenridge, G.R. A digitized global flood inventory (1998–2008): Compilation and preliminary results. Nat. Hazards 2010, 55, 405–422. [Google Scholar] [CrossRef]
- Reynard, E.; Clivaz, M.; Corboz, P.; Decorzant, Y.; Delarzes, B.; Fellay, J.C.; Hugon-Duc, M.; Lambiel, C.; Meilland, A.; Payot, C. Croiser les sources environnementales, historiques et sociologiques pour reconstituer les catastrophes naturelles. Le cas de la débâcle du Giétro du 16 juin 1818. Physio-Geo 2019, 14, 307–326. [Google Scholar] [CrossRef]
- Depicker, A.; Jacobs, L.; Mboga, N.; Smets, B.; Van Rompaey, A.; Lennert, M.; Wolff, E.; Kervyn, F.; Michellier, C.; Dewitte, O.; et al. Historical dynamics of landslide risk from population and forest-cover changes in the Kivu Rift. Nat. Sustain. 2021, 4, 965–974. [Google Scholar] [CrossRef]
- Mustafa, A.; Bruwier, M.; Archambeau, P.; Erpicum, S.; Pirotton, M.; Dewals, B.; Teller, J. Effects of spatial planning on future flood risks in urban environments. J. Environ. Manag. 2018, 225, 193–204. [Google Scholar] [CrossRef]
- Kabanyegeye, H.; Sikuzani, Y.U.; Sambieni, K.R.; Masharabu, T.; Havyarimana, F. Trente-Trois ans de Dynamique Spatiale de L’occupation du Sol de la Ville de Bujumbura, République du Burundi. Afr. Sci. 2021, 18, 203–2015. [Google Scholar]
- Adeleye, B.; Popoola, A. Poor development control as flood vulnerability factor in Suleja, Nigeria. TRP 2019, 74, 23–35. [Google Scholar] [CrossRef]
- Pelling, M. The Vulnerability of Cities: Natural Disasters and Social Resilience; Earthscan Publications Ltd.: London, UK, 2003; Volume 2, p. 212. ISBN 1-85383-830-6. [Google Scholar]
- Andrieu, H.; Browne, O.; Laplace, D. Les crues en zone urbaine: Des crues éclairs ? [Are Urban floods flash floods? ]. La Houille Blanche 2004, 89–95. [Google Scholar] [CrossRef]
- Kubwimana, D.; Ait Brahim, L.; Nkurunziza, P.; Dille, A.; Depicker, A.; Nahimana, L.; Abdelouafi, A.; Dewitte, O. Characteristics and Distribution of Landslides in the Populated Hillslopes of Bujumbura, Burundi. Geosciences 2021, 11, 259. [Google Scholar] [CrossRef]
- Dinis, P.A.; Huvi, J.; Cabral Pinto, M.; Carvalho, J. Disastrous Flash Floods Triggered by Moderate to Minor Rainfall Events. Recent Cases in Coastal Benguela (Angola). Hydrology 2021, 8, 73. [Google Scholar] [CrossRef]
- Debortoli, N.S.; Camarinha, P.I.M.; Marengo, J.A.; Rodrigues, R.R. An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat. Hazards 2017, 86, 557–582. [Google Scholar] [CrossRef]
- Godswill, O.C.; Ijeoma, E.E.; Nnaemeka, O.A.; Ijeoma, U.J. The features of urban storm drainage in Aba, Nigeria. Asian J. Sci. Technol. 2016, 7, 3922–3931. [Google Scholar]
- Adelekan, I.O. Vulnerability of poor urban coastal communities to flooding in Lagos, Nigeria. Environ. Urban. 2010, 22, 433–450. [Google Scholar] [CrossRef]
- Douglas, I.; Alam, K.; Maghenda, M.; Mcdonnell, Y.; Mclean, L.; Campbell, J. Unjust waters: Climate change, flooding and the urban poor in Africa. Environ. Urban. 2008, 20, 187–205. [Google Scholar] [CrossRef]
- Hambati, H.; Gaston, G. Revealing the Vulnerability of Urban Communities to Flood Hazard in Tanzania: A Case of the Dar es Salaam City. Ecosystem 2015, 2, 3. [Google Scholar]
- Henstra, D. Evaluating Local Government Emergency Management Programs: What Framework Should Public Managers Adopt? Public Adm. Rev. 2010, 70, 236–246. [Google Scholar] [CrossRef]
- UNISDR. Cadre D’action de Sendai Pour la Réduction des Risques de Catastrophe 2015–2030; UNISDR: Sendai, Japan, 2015; p. 40. [Google Scholar]
- Bhattacharya, N.; Lamond, J. A Review of Urban Flood Risk Situation in African Growing. In Urban flood Risk Management Approaches to Enhance Resilience of Communities; UFRIM: Graz, Austria, 2011; pp. 21–23. [Google Scholar]
- Jha, A.; Lamond, J.; Bloch, R.; Bhattacharya, N.; Lopez, A.; Papachristodoulou, N.; Bird, A.; Proverbs, D.; Davies, J.; Barker, R. Five Feet High and Rising: Cities and Flooding in the 21st Century [Internet]; Policy Research Working Papers; The World Bank: Washington, DC, USA, 2011; p. 62. [Google Scholar]
- Rahman, M.T.; Aldosary, A.S.; Nahiduzzaman, K.M.; Reza, I. Vulnerability of flash flooding in Riyadh, Saudi Arabia. Nat. Hazards 2016, 84, 1807–1830. [Google Scholar] [CrossRef]
Year | 1907 * | 1920 * | 1941 * | 1955 * | 1983 * | 1994 ** | 2002 ** | 2014 | 2020 *** | 2021 |
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | 0.3 | 2 | 6 | 12 | 37 | 43.8 | 49.8 | 60 | 109 | 113.9 |
Population | 2500 | 3000 | 10,000 | 23,427 | 162,201 | - | 353,236 | 588,336 | 759,901 | 776,258 |
Name | Institution | Included Processes | Start (AD) | End (AD) |
---|---|---|---|---|
Civile Protection Police | PFN/PGRC: Plateforme Nationale pour la Prévention et la Gestion de Risques de Catastrophes (Burundi) | Lake, pluvial and fluvial flood, landslide, fire, road accident, heavy rainfall | 2009 | 2020 |
DTM-IOM | IOM-Burundi | People displacement, flood, landslide, heavy rainfall | 2015 | 2021 |
ReliefWeb | OCHA—Burundi | Flood, flash flood, landslide | - | 2020 |
Red-Cross | Red-Cross—Burundi | Lake, fluvial flood and flash flood, landslide, fire, epidemic | - | |
FloodList | Copernicus, the European Union (EU) | Flood-related issues: warning system, mitigation and control, flood recovery, flood damage repair and restoration, flood insurance | 1995 | |
Thesis available | University of Burundi’s library | Flood, riverbank dynamics, gully erosion, landslide | 2000 | |
Social media | Isanganiro, Mashariki-TV, Yaga-Burundi | Flood, flash flood, heavy rainfall, landslide | - |
N° FG | Date of Data Collection | Commune | Municipality | Neighborhood | Hazard | Participants | ||
---|---|---|---|---|---|---|---|---|
Male (46) | Female (33) | Average Age (37) | ||||||
1. | 23 November 2020 | Ntahangwa | Kinama | Buhinyuza | Flash flood | 0 | 3 | 40 |
2. | 23 November 2020 | Ntahangwa | Kinama | Buhinyuza (Rice field) | Flash flood | 3 | 1 | 40 |
3. | 23 November 2020 | Ntahangwa | Kinama | Bukirasazi I- cell 2 | Fluvial flooding | 1 | 3 | 42 |
4. | 23 November 2020 | Ntahangwa | Buterere | Mugaruro | Fluvial flooding | 1 | 2 | 32 |
5. | 24 November 2020 | Ntahangwa | Kinama | Bukirasazi II | Fluvial flooding | 3 | 0 | 31 |
6. | 24 November 2020 | Ntahangwa | Buterere | Buterere IIB (Kinyankonge Rice field) | Fluvial flooding | 3 | 1 | 43 |
7. | 24 November 2020 | Ntahangwa | Kinama | Bukirasazi II- cell 5 | Pluvial flooding | 2 | 4 | 47 |
8. | 25 November 2020 | Muha | Kanyosha | Gisyo | Lake and fluvial flooding | 3 | 0 | 33 |
9. | 8 December 2020 | Ntahangwa | Ngagara | Sabe | Pluvial and fluvial flooding | 4 | 0 | 42 |
10. | 9 December 2020 | Muha | Kanyosha | Kajiji | Flash flood | 4 | 0 | 38 |
11. | 9 December 2020 | Muha | Kanyosha | Gisyo IV | Gully | 0 | 4 | 27 |
12. | 19 January 2021 | Muha | Kanyosha | Nkenga Busoro (Mugoyi Canal) | Flash flood | 2 | 2 | 67 |
13. | 19 January 2021 | Muha | Kanyosha | Busoro | Gully | 0 | 3 | 36 |
14. | 19 January 2021 | Muha | Kanyosha | Nkenga-Busoro | Gully | 4 | 2 | 29 |
15. | 20 January 2021 | Muha | Kinindo | Misabiro | Lake flooding | 3 | 3 | 30 |
16. | 20 January 2021 | Muha | Kinindo | Kibenga-Rural | Lake flooding | 1 | 2 | 26 |
17. | 26 January 2021 | Mutimbuzi | Rubirizi | Gatunguru | Gully | 3 | 0 | 41 |
18. | 27 January 2021 | Mutimbuzi | Rubirizi | Gatunguru | Flash flood | 2 | 2 | 31 |
19. | 27 January 2021 | Ntahangwa | Kinama | Carama | Pluvial and fluvial flooding | 4 | 0 | 21 |
20. | 27 January 2021 | Mutimbuzi | Rubirizi | Nyakabondo 1 | Flash flood | 3 | 1 | 35 |
Hazard | Component | Cause of Vulnerability |
---|---|---|
Flood, flash flood | Planning problem | Age of drainage infrastructure, insufficient or undersized channels |
Institutional | Non-compliance with the law | |
Natural | Overflow and destruction of riverbanks | |
Anthropic | Riverbed narrowing and/or detour; dumping of garbage and filling of channels or rivers | |
Gully | Planning problem | Agricultural exploitation of marginal areas |
Anthropic | Increase in the amount of water that households send to the drainage upstream of the gully; increase in roof water | |
Natural | Very fragile sandy soils; heavy rainfall increases erosion | |
Flood, flash flood, gully | Planning problem | Lack of control in urban development and sale of plots; unfinished construction of collector |
Urbanization | Urban expansion on marginal slopes; densification of the built environment | |
Anthropic | Strong increase in the population; household poverty |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nsabimana, J.; Henry, S.; Ndayisenga, A.; Kubwimana, D.; Dewitte, O.; Kervyn, F.; Michellier, C. Geo-Hydrological Hazard Impacts, Vulnerability and Perception in Bujumbura (Burundi): A High-Resolution Field-Based Assessment in a Sprawling City. Land 2023, 12, 1876. https://doi.org/10.3390/land12101876
Nsabimana J, Henry S, Ndayisenga A, Kubwimana D, Dewitte O, Kervyn F, Michellier C. Geo-Hydrological Hazard Impacts, Vulnerability and Perception in Bujumbura (Burundi): A High-Resolution Field-Based Assessment in a Sprawling City. Land. 2023; 12(10):1876. https://doi.org/10.3390/land12101876
Chicago/Turabian StyleNsabimana, Jean, Sabine Henry, Aloys Ndayisenga, Désiré Kubwimana, Olivier Dewitte, François Kervyn, and Caroline Michellier. 2023. "Geo-Hydrological Hazard Impacts, Vulnerability and Perception in Bujumbura (Burundi): A High-Resolution Field-Based Assessment in a Sprawling City" Land 12, no. 10: 1876. https://doi.org/10.3390/land12101876
APA StyleNsabimana, J., Henry, S., Ndayisenga, A., Kubwimana, D., Dewitte, O., Kervyn, F., & Michellier, C. (2023). Geo-Hydrological Hazard Impacts, Vulnerability and Perception in Bujumbura (Burundi): A High-Resolution Field-Based Assessment in a Sprawling City. Land, 12(10), 1876. https://doi.org/10.3390/land12101876