Spatiotemporal Changes in Water Storage and Its Driving Factors in the Three-River Headwaters Region, Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. The SWY and Its Revision
2.3.2. Analysis Method
- (1)
- A reference scenario (S0) was established, considering changes in all influencing factors, including Pre, ET0, LULC, FG, and SC changes. Subsequently, five sensitivity scenarios (sensitivity scenarios A) were created, which are scenarios that consider only changes in Pre (S1), changes in ET0 (S2), changes in FG (S3), changes in SC (S4), and changes in LULC (S5). By analyzing the trends in WS simulated in S0 and the five sensitivity scenarios, it was possible to understand the effect of each factor on WS. A positive trend signifies a rise in WS, whereas a negative trend indicates a decline in WS. This analysis helps to evaluate the impact of each factor on WS (whether it promotes or inhibits WS).
- (2)
- Five more sensitivity scenarios (sensitivity scenarios B) were established, where a single influencing factor remains unchanged. These scenarios include only Pre is unchanged (S1′), only ET0 is unchanged (S2′), only FG is unchanged (S3′), only SC is unchanged (S4′), and only LULC is unchanged (S5′). Table 2 shows the model inputs for each scenario.
- (3)
- To obtain the contribution of each factor to WSC, the absolute value of the difference between the WS modelled by S0 and the five scenarios of sensitivity scenario B was calculated. The largest one of absolute values of the contribution was taken as the dominant factor influencing the WSC at that pixel.
2.3.3. Trend Analysis Method
2.3.4. Method for Spatial Division of WS Importance
3. Results
3.1. Spatiotemporal Variation in Water Storage
3.1.1. Spatial Distribution of Annual Water Storage
3.1.2. Change in Annual Average Water Storage
3.2. Main Driving Factors of Water Storage
3.3. Spatial Division of Water Storage Importance
4. Discussion
4.1. Main Driving Factors of Water Storage
4.2. Implications for Water Management
4.3. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vörösmarty, C.J.; Hoekstra, A.Y.; Bunn, S.E.; Conway, D.; Gupta, J. Fresh water goes global. Science 2015, 349, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.; Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef] [PubMed]
- Benra, F.; Frutos, A.; Gaglio, M.; Alvarez-Garreton, C.; Feilipe-Lucia, M. Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environ. Model. Softw. 2021, 138, 104982. [Google Scholar] [CrossRef]
- Abdelhaleem, F.S.; Basiouny, M.; Ashour, E.; Mahmoud, A. Application of remote sensing and geographic information systems in irrigation water management under water scarcity conditions in Fayoum, Egypt. J. Environ. Manag. 2021, 299, 113683. [Google Scholar] [CrossRef]
- Lv, Y.; Hu, J.; Sun, F.; Zhang, L. Water retention and hydrological regulation: Harmony but not the same in terrestrial hydrological ecosystem services. Acta Ecol. Sin. 2015, 35, 5191–5196. (In Chinese) [Google Scholar]
- Wang, Y.; Ye, A.; Qiao, F.; Li, Z.; Miao, C.; Di, Z.; Gong, W. Review on connotation and estimation method of water conservation. South-North Water Transf. Water Sci. Technol. 2021, 19, 10451–11071. (In Chinese) [Google Scholar]
- Wang, S.; Zhang, B.; Wang, S. Dynamic changes in water conservation in the Beijing–Tianjin sandstorm source control project area: A case study of Xilin Gol League in China. J. Clean. Prod. 2021, 293, 126054. [Google Scholar] [CrossRef]
- Chen, J.; Wang, D.; Li, G.; Sun, Z.; Wang, X.; Zhang, X.; Zhang, W. Spatial and temporal heterogeneity analysis of water conservation in Beijing-Tianjin-Hebei urban agglomeration based on the geodetector and spatial elastic coefficient trajectory models. GeoHealth 2020, 4, e2020GH000248. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, C.; Wang, X.; Chen, S.; Shan, S.; Chen, T.; Qi, X. Spatial differentiation of determinants for water conservation dynamics in a dryland mountain. J. Clean. Prod. 2022, 362, 132574. [Google Scholar] [CrossRef]
- Kittredge, J. Forest Influences: The Effects of Woody Vegetation on Climate, Water, and Soil, with Applications to the Conservation of Water and the Control of Floods and Erosion; Mc Graw-Hill Book Co., Inc.: New York, NY, USA, 1948. [Google Scholar]
- Deng, M.; Shi, P.; Xie, G. Water Conservation of Forest Ecosystem in the Upper Reaches of the Yangtze River and Its Benefits. Resour. Sci. 2002, 24, 68–73. (In Chinese) [Google Scholar]
- Zhang, B.; Li, W.; Xie, G.; Xiao, Y. Water conservation function and measurement methods of forest ecosystems. Chin. J. Ecol. 2009, 28, 529–534. (In Chinese) [Google Scholar]
- Gong, S.; Xiao, Y.; Zheng, H.; Xiao, Y.; Ouyang, Z. Spatial patterns of ecosystem water conservation in China and its impact factors analysis. Acta Ecol. Sin. 2017, 37, 2455–2462. (In Chinese) [Google Scholar]
- Cao, W.; Wu, D.; Huang, L.; Liu, L. Spatial and temporal variations and significance identification of ecosystem services in the Sanjiangyuan National Park, China. Sci. Rep. 2020, 10, 6151. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.9.0. User’s Guide—The Natural Capital Project; Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Hu, W.; Li, G.; Li, Z. Spatial and temporal evolution characteristics of the water conservation function and its driving factors in regional lake wetlands—Two types of homogeneous lakes as examples. Ecol. Indic. 2021, 130, 108069. [Google Scholar] [CrossRef]
- Jia, G.; Hu, W.; Zhang, B.; Li, G.; Shen, S.; Gao, Z.; Li, Y. Assessing impacts of the Ecological Retreat project on water conservation in the Yellow River Basin. Sci. Total Environ. 2022, 828, 154483. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Li, Q. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Peng, S.; Huang, B. The impact of multi-scenario land use change on the water conservation in central Yunnan urban agglomeration, China. Ecol. Indic. 2023, 147, 109922. [Google Scholar] [CrossRef]
- Qin, H.; Chen, Y. Spatial non-stationarity of water conservation services and landscape patterns in Erhai Lake Basin, China. Ecol. Indic. 2023, 146, 109894. [Google Scholar] [CrossRef]
- Vigerstol, K.; Aukema, J. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2010, 92, 2403–2409. [Google Scholar] [CrossRef]
- Zuo, D.; Chen, G.; Wang, G.; Xu, Z.; Han, Y.; Peng, D.; Pang, B.; Abbaspour, A.; Yang, H. Assessment of changes in water conservation capacity under land degradation neutrality effects in a typical watershed of Yellow River Basin, China. Ecol. Indic. 2023, 148, 110145. [Google Scholar] [CrossRef]
- Wu, Q.; Song, J.; Sun, H.; Huang, P.; Jing, K.; Xu, W.; Wang, H.; Liang, D. Spatiotemporal variations of water conservation function based on EOF analysis at multi time scales under different ecosystems of Heihe River Basin. J. Environ. Manag. 2023, 325, 116532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, Y.; Li, H.; Zhao, W.; Wang, F.; Chen, J.; Sivakumar, B.; Liu, S.; Qiu, L.; Wang, W. Assessment of water retention variation and risk warning under climate change in an inner headwater basin in the 21st century. J. Hydrol. 2022, 615, 128717. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, C.; Degen, A.A.; Ahmad, A.A.; Wang, W.; Zhang, T.; Shang, Z. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 2020, 742, 140574. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, W.; Guan, Y. Optimization of management by analyzing ecosystem service value variations in different watersheds in the Three-River Headwaters Basin. J. Environ. Manag. 2022, 321, 115956. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, D.; Qin, Y.; Wang, Y.; Chen, Y.; Gao, B.; Yang, H. Historical and future changes of frozen ground in the upper Yellow River Basin. Glob. Planet. Chang. 2018, 162, 199–211. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Gao, B.; Wang, T.; Qin, Y.; Yang, D. Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau. J. Hydrol. 2018, 564, S0022169418305924. [Google Scholar] [CrossRef]
- Pan, T.; Wu, S.; Dai, E.; Liu, S. Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model. J Appl Ecol. 2013, 24, 183–189. (In Chinese) [Google Scholar]
- Xue, J.; Li, Z.; Feng, Q.; Gui, J.; Zhang, B. Spatiotemporal variations of water conservation and its influencing factors in ecological barrier region, Qinghai-Tibet Plateau. J. Hydrol.-Reg. Stud. 2022, 42, 101164. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, A.; Peng, D.; Miao, C.; Di, Z.; Gong, W. Spatiotemporal variations in water conservation function of the Tibetan Plateau under climate change based on InVEST model. J. Hydrol.-Reg. Stud. 2022, 41, 101064. [Google Scholar] [CrossRef]
- Qiao, F.; Fu, G.; Xu, X.; An, L.; Lei, K.; Zhao, J.; Hao, C. Assessment of water conservation Function in the Three-River Headwaters Region. Res. Environ. Sci. 2018, 31, 1010–1018. (In Chinese) [Google Scholar]
- Zhang, J.; Zhang, Y.; Sun, G.; Song, C.; Li, J.; Hao, L.; Liu, N. Climate variability masked greening effects on water yield in the Yangtze River Basin during 2001–2018. Water Resour. Res. 2022, 58, e2021WR030382. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, R.; Yang, Y.; Liu, G.; Wang, X. A New Tool for Mapping Water Yield in Cold Alpine Regions. Water 2023, 15, 2920. [Google Scholar] [CrossRef]
- Zhao, X.; Miao, C. Spatial-Temporal Changes and Simulation of Land Use in Metropolitan Areas: A Case of the Zhengzhou Metropolitan Area, China. Int. J. Environ. Res. Public Health 2022, 19, 14089. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhou, P.; Cheng, L.; Liu, Z. Dynamic drought recovery patterns over the Yangtze River Basin. Catena 2021, 201, 105194. [Google Scholar] [CrossRef]
- Yang, J.; Yang, P.; Zhang, S.; Wang, W.; Cai, W.; Hu, S. Evaluation of water resource carrying capacity in the middle reaches of the Yangtze River Basin using the variable fuzzy-based method. Environ. Sci. Pollut. Res. 2023, 30, 30572–30587. [Google Scholar] [CrossRef]
- Lu, C.; Ji, W.; Hou, M.; Ma, T.; Mao, J. Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China. Agric. Water Manag. 2022, 266, 107605. [Google Scholar] [CrossRef]
- Shi, M.; Yuan, Z.; Shi, X.; Li, M.; Chen, F.; Li, Y. Drought assessment of terrestrial ecosystems in the Yangtze River Basin, China. J. Clean Prod. 2022, 362, 132234. [Google Scholar] [CrossRef]
- Duan, X.; Chen, Y.; Wang, L.; Zheng, G.; Liang, T. The impact of land use and land cover changes on the landscape pattern and ecosystem service value in Sanjiangyuan region of the Qinghai-Tibet Plateau. J. Environ. Manag. 2023, 325, 116539. [Google Scholar] [CrossRef]
- Yao, L.; Li, Y.; Chen, X. A robust water-food-land nexus optimization model for sustainable agricultural development in the Yangtze River Basin. Agric. Water Manag. 2021, 256, 107103. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H. China Meteorological Assimilation Datasets for the SWAT Model-Soil Temperature Version 1.0 (2009–2013); National Tibetan Plateau Data Center: Beijing, China, 2018. [Google Scholar]
- NRCS-USDA. Chapter 9: Hydrologic Soil-Cover Complexes. In National Engineering Handbook; USDA: Washington, DC, USA, 2009. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Wei, Y. The Boundaries of the Source Regions in Sanjiangyuan Region; National Tibetan Plateau Data Center: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Chen, R.; Ding, Y.; Kang, E. Some knowledge on and parameters of China’s alpine hydrology. Adv. Water Sci. 2014, 25, 307–317. (In Chinese) [Google Scholar]
- Liu, S.; Zhang, Y.; Zhang, Y.; Ding, Y. Estimation of glacier runoff and future trends in the Yangtze River source region, China. J. Glaciol. 2009, 55, 353–362. [Google Scholar] [CrossRef]
- Chen, R.; Liu, J.; Song, Y. Precipitation type estimation and validation in China. J. Mt. Sci. 2014, 11, 917–925. [Google Scholar] [CrossRef]
- Guo, S.; Chen, R.; Li, H. Surface Sublimation/Evaporation and Condensation/Deposition and Their Links to Westerlies During 2020 on the August-One Glacier, the Semi-Arid Qilian Mountains of Northeast Tibetan Plateau. J. Geophys. Res. Atmos. 2022, 127, e2022JD036494. [Google Scholar] [CrossRef]
- Lin, S.; Wang, G.; Hu, Z.; Huang, K.; Sun, J.; Sun, X. Spatiotemporal variability and driving factors of Tibetan Plateau water use efficiency. J. Geophys. Res. Atmos. 2020, 125, e2020JD032642. [Google Scholar] [CrossRef]
- Xi, Y.; Miao, C.; Wu, J.; Duan, Q.; Lei, X.; Li, H. Spatiotemporal Changes in Extreme Temperature and Precipitation Events in the Three-Rivers Headwater Region, China. J. Geophys. Res. Atmos. 2018, 123, 5827–5844. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H.; Bense, V.F.; Jin, X.; Li, X. Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the Headwater Area of the Yellow River, Tibetan Plateau. Geoderma 2020, 376, 114531. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Lv, L.; Ren, T.; Sun, C.; Zheng, D.; Wang, H. Spatial and temporal changes of water supply and water conservation function in Sanjiangyuan National Park from 1980 to 2016. Acta Ecol. Sin. 2020, 40, 993–1003. (In Chinese) [Google Scholar]
- Bai, P.; Liu, X.; Zhang, Y.; Liu, C. Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China. Water. Resour. Res. 2020, 56, e2019WR027019. [Google Scholar] [CrossRef]
- Wang, Z.; Song, W.; Yin, L. Responses in ecosystem services to projected land cover changes on the Tibetan Plateau. Ecol. Indic. 2022, 142, 109228. [Google Scholar]
- Liu, C.; Li, Y.; Liu, X.; Bai, P.; Liang, K. Impact of Vegetation Change on Water Transformation in the Middle Yellow River. Yellow River 2016, 38, 7–12. (In Chinese) [Google Scholar]
- Moore, R.; Owens, I. Controls on Advective Snowmelt in a Maritime Alpine Basin. J. Appl. Meteorol. 1984, 23, 135–142. [Google Scholar] [CrossRef]
- Liston, E.; Sturm, M. The role of winter sublimation in the Arctic moisture budget. Hydrol. Res. 2004, 35, 325–334. [Google Scholar] [CrossRef]
- Sade, R.; Rimmer, A.; Litaor, M. Snow surface energy and mass balance in a warm temperate climate mountain. J. Hydrol. 2014, 519, 848–862. [Google Scholar] [CrossRef]
- Guo, S.; Chen, R.; Han, C.; Liu, G.; Song, Y.; Yang, Y.; Liu, Z.; Liu, J. Advances in the measurement and calculation results and influencing factors of the sublimation of ice and snow. Adv. Earth Sci. 2017, 32, 1204–1217. (In Chinese) [Google Scholar]
- Buttle, J.; Metcalfe, R. Boreal forest disturbance and streamflow response, northeastern Ontario. Can. J. Fish. Aquat. Sci. 2000, 57, 5–18. [Google Scholar] [CrossRef]
- Peel, M.C.; McMahon, T.A.; Finlayson, B.L. Vegetation impact on mean annual evapotranspiration at a global catchment scale. Water. Resour. Res. 2010, 46, W09508. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Luo, Y.; Zhang, M.; Li, Y.; Qiao, Y.; Liu, H.; Wang, C. Forest recovery and river discharge at the regional scale of Guangdong Province, China. Water. Resour. Res. 2010, 46, W09503. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; He, C.; Sun, G.; Gao, G. A comparative analysis of forest cover and catchment water yield relationships in northern China. For. Ecol. Manag. 2011, 262, 1189–1198. [Google Scholar] [CrossRef]
- Dong, S.; Shang, Z.; Gao, J.; Boone, R.B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 287, 106684. [Google Scholar] [CrossRef]
- Qian, D.; Du, Y.; Li, Q.; Guo, X.; Cao, G. Alpine grassland management based on ecosystem service relationships on the southern slopes of the Qilian Mountains, China. J. Environ. Manag. 2021, 288, 112447. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, L.; Yang, Y.; He, X. Revegetation does not decrease water yield in the Loess Plateau of China. Geophys. Res. Lett. 2022, 49, e2022GL098025. [Google Scholar] [CrossRef]
- Cai, Z.; Song, P.; Wang, J.; Jiang, F.; Liang, C.; Zhang, J.; Zhang, T. Grazing pressure index considering both wildlife and livestock in Three-River Headwaters, Qinghai-Tibetan Plateau. Ecol. Indic. 2022, 143, 109338. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, X.; Zhou, S.; Zhang, D. A dataset of glacier outline in the Three-River Headwaters region in 2000–2019, V1. Sci. Data Bank 2021. [Google Scholar] [CrossRef]
- Niu, F.; Gao, Z.; Lin, Z.; Luo, J.; Fan, X. Vegetation influence on the soil hydrological regime in permafrost regions of the Qinghai-Tibet Plateau, China. Geoderma 2019, 354, 113892. [Google Scholar] [CrossRef]
- Mohammed, A.; Pavlovskii, I.; Cey, E.E.; Hayashi, M. Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils. Hydrol. Earth Syst. Sc. 2019, 23, 5017–5031. [Google Scholar] [CrossRef]
Data Inputs | Format | Source (before Processing into Model Inputs) |
---|---|---|
Monthly Pre | Raster (1 km) | China Meteorological Data Service Center (http://data.cma.cn) (accessed on 1 January 2021). |
Monthly ET0 | Raster (1 km) | China Meteorological Data Service Center (http://data.cma.cn) (accessed on 1 January 2021). |
Annual LULC | Raster (1 km) | Chinese Academy of Environmental Science Data Center (https://www.resdc.cn/) (accessed on 5 June 2021). |
Annual Soil Group | Raster (1 km) | The soil Tem data was downloaded from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/) (accessed on 5 November 2020) [42]. Hydrologic Soil Group raster (used as the soil group before revision) and Saturate Hydraulic Conductivity rasters (used to revise the soil group) from FutureWater (https://www.futurewater.eu/2015/07/soil-hydraulic-properties/) (accessed on 4 May 2021). |
Biophysical Table) | CSV | CN was downloaded from the United States Department of Agriculture [43]. Kc values were from FAO [44]. |
Rain Events | CSV | China Meteorological Data Service Center (http://data.cma.cn) (accessed on 1 January 2021). |
DEM | Raster (1 km) | Geospatial Data Cloud http://www.gscloud.cn/. (accessed on 5 November 2020) |
AOI | Vector | National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/) (accessed on 5 November 2020) [45]. |
Tf 1 | - | −8 °C [46]. |
T1 1 | 5 °C [47]. | |
T2 1 | 2 °C [48]. | |
TFA (Threshold Flow Accumulation) 1 | - | 3000 |
α; β; γ 1 | - | 1/12; 0.4; 1 |
Scenarios | Constant Inputs | Inputs for Change from 1981 to 2020 | Change Trend of WS (mm/year) |
---|---|---|---|
S0 | - | Pre, ET0, FG, SC, LULC | 0.45 |
S1 | ET0, FG, SC, LULC | Pre | 0.75 |
S2 | Pre, ET0, FG, SC, LULC | ET0 | −0.44 |
S3 | Pre, ET0, FG, SC, LULC | FG | 0.02 |
S4 | Pre, ET0, FG, SC, LULC | SC | −0.03 |
S5 | Pre, ET0, FG, SC, LULC | LULC | −0.02 |
S1′ | Pre | ET0, FG, SC, LULC | - |
S2′ | ET0 | Pre, FG, SC, LULC | - |
S3′ | FG | Pre, ET0, SC, LULC | - |
S4′ | SC | Pre, ET0, FG, LULC | - |
S5′ | LULC | Pre, ET0, FG, SC | - |
1980–1990 | 1990–1995 | 1995–2000 | 2015–2020 | |||||
---|---|---|---|---|---|---|---|---|
LULC Change (%) | Unit WSC (mm) | LULC Change (%) | Unit WSC (mm) | LULC Change (%) | Unit WSC (mm) | LULC Change (%) | Unit WSC (mm) | |
grass to unused land | 6.47 | 162.58 | 6.28 | 161.08 | 8.86 | 154.22 | 4.93 | 144.46 |
unused land to grass | 6.47 | −160.97 | 9.50 | −156.34 | 5.52 | −160.47 | 9.16 | −161.25 |
grass to forest | 2.20 | 63.64 | 1.90 | 64.51 | 2.00 | 62.05 | 2.21 | 64.75 |
forest to grass | 2.19 | −63.69 | 2.30 | −62.99 | 1.62 | −63.30 | 2.29 | −63.27 |
forest to unused land | 0.12 | 137.29 | 0.10 | 147.49 | 0.07 | 134.86 | 0.07 | 129.57 |
unused land to forest | 0.10 | −133.80 | 0.09 | −130.96 | 0.12 | −152.25 | 0.11 | −133.28 |
grass to plowland | 0.21 | −12.58 | 0.21 | −9.65 | 0.14 | −13.61 | 0.23 | −9.37 |
plowland to grass | 0.17 | 12.19 | 0.16 | 16.28 | 0.17 | 11.22 | 0.21 | 14.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Chen, R.; Yang, Y.; Liu, G.; Wang, X. Spatiotemporal Changes in Water Storage and Its Driving Factors in the Three-River Headwaters Region, Qinghai–Tibet Plateau. Land 2023, 12, 1887. https://doi.org/10.3390/land12101887
Zhao L, Chen R, Yang Y, Liu G, Wang X. Spatiotemporal Changes in Water Storage and Its Driving Factors in the Three-River Headwaters Region, Qinghai–Tibet Plateau. Land. 2023; 12(10):1887. https://doi.org/10.3390/land12101887
Chicago/Turabian StyleZhao, Linlin, Rensheng Chen, Yong Yang, Guohua Liu, and Xiqiang Wang. 2023. "Spatiotemporal Changes in Water Storage and Its Driving Factors in the Three-River Headwaters Region, Qinghai–Tibet Plateau" Land 12, no. 10: 1887. https://doi.org/10.3390/land12101887
APA StyleZhao, L., Chen, R., Yang, Y., Liu, G., & Wang, X. (2023). Spatiotemporal Changes in Water Storage and Its Driving Factors in the Three-River Headwaters Region, Qinghai–Tibet Plateau. Land, 12(10), 1887. https://doi.org/10.3390/land12101887