Green Infrastructure and Urban Vacancies: Land Cover and Natural Environment as Predictors of Vacant Land in Austin, Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Samples
2.2. Measures
2.2.1. Urban Vacancies (Dependent Variables)
2.2.2. Green Infrastructure as Land Cover and Natural Environments (Independent Variables)
2.2.3. Socioeconomic Characteristics (Confounding Variables)
2.3. Statistical Analyses
3. Results
3.1. Bivariate Tests
3.1.1. Socioeconomic Status and Vacancy Characteristics
3.1.2. Land Cover and Natural Environment
3.2. Multivariate Analyses
3.2.1. Base Models (Control Variables)
3.2.2. One-by-One Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coleman, A. The death of the inner city: Cause and cure. Lond. J. 1980, 6, 3–22. [Google Scholar] [CrossRef]
- Newman, G.D.; Bowman, A.O.M.; Jung Lee, R.; Kim, B. A current inventory of vacant urban land in America. J. Urban Des. 2016, 21, 302–319. [Google Scholar] [CrossRef]
- Ryan, B.D. Toward Social Urbanism for Shrinking Cities. In Design after Decline: How America Rebuilds Shrinking Cities; University of Pennsylvania Press: Philadelphia, PA, USA, 2012. [Google Scholar]
- Németh, J.; Langhorst, J. Rethinking urban transformation: Temporary uses for vacant land. Cities 2014, 40, 143–150. [Google Scholar] [CrossRef]
- Garvin, E.; Branas, C.; Keddem, S.; Sellman, J.; Cannuscio, C. More than just an eyesore: Local insights and solutions on vacant land and urban health. J. Urban Health 2013, 90, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Perkins, D.D.; Meeks, J.W.; Taylor, R.B. The physical environment of street blocks and resident perceptions of crime and disorder: Implications for theory and measurement. J. Environ. Psychol. 1992, 12, 21–34. [Google Scholar] [CrossRef]
- Immergluck, D.; Smith, G. The impact of single-family mortgage foreclosures on neighborhood crime. Hous. Stud. 2006, 21, 851–866. [Google Scholar] [CrossRef]
- Ellen, I.G.; Lacoe, J.; Sharygin, C.A. Do foreclosures cause crime? J. Urban Econ. 2013, 74, 59–70. [Google Scholar] [CrossRef]
- Kelling, G.L.; Wilson, J.Q. Broken windows. Atl. Mon. 1982, 249, 29–38. [Google Scholar]
- Kondo, M.; Hohl, B.; Han, S.; Branas, C. Effects of greening and community reuse of vacant lots on crime. Urban Stud. 2016, 53, 3279–3295. [Google Scholar] [CrossRef]
- Popper Deborah, E.; Popper Frank, J. Small Can Be Beautiful: Coming to Terms with Decline. Planning 2002, 68, 20–23. [Google Scholar]
- Schilling, J.; Logan, J. Greening the rust belt: A green infrastructure model for right sizing America’s shrinking cities. J. Am. Plan. Assoc. 2008, 74, 451–466. [Google Scholar] [CrossRef]
- Deng, C.; Ma, J. Viewing urban decay from the sky: A multi-scale analysis of residential vacancy in a shrinking US city. Landsc. Urban Plan. 2015, 141, 88–99. [Google Scholar] [CrossRef]
- Song, X.; Wen, M.; Shen, Y.; Feng, Q.; Xiang, J.; Zhang, W.; Zhao, G.; Wu, Z. Urban vacant land in growing urbanization: An international review. J. Geogr. Sci. 2020, 30, 669–687. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T. Green infrastructure: Smart conservation for the 21st century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar]
- Coombes, E.; Jones, A.P.; Hillsdon, M. The relationship of physical activity and overweight to objectively measured green space accessibility and use. Soc. Sci. Med. 2010, 70, 816–822. [Google Scholar] [CrossRef]
- Maas, J.; Verheij, R.A.; de Vries, S.; Spreeuwenberg, P.; Schellevis, F.G.; Groenewegen, P.P. Morbidity is related to a green living environment. J. Epidemiol. Community Health 2009, 63, 967–973. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Green infrastructure and health. Annu. Rev. Public Health 2021, 42, 317–328. [Google Scholar] [CrossRef]
- Wang, J.; Banzhaf, E. Towards a better understanding of Green Infrastructure: A critical review. Ecol. Indic. 2018, 85, 758–772. [Google Scholar] [CrossRef]
- Hong, A.; Martinez, L.; Patino, J.E.; Duque, J.C.; Rahimi, K. Neighbourhood green space and health disparities in the global South: Evidence from Cali, Colombia. Health Place 2021, 72, 102690. [Google Scholar] [CrossRef]
- Lee, S.; Lee, R.J.; Scherr, S. How tree canopy cover can reduce urban suicide attempts: A geospatial analysis of the moderating role of area deprivation. Landsc. Urban Plan. 2023, 230, 104606. [Google Scholar] [CrossRef]
- Lee, R.J.; Newman, G. The relationship between vacant properties and neighborhood gentrification. Land Use Policy 2021, 101, 105185. [Google Scholar] [CrossRef]
- Lee, R.J.; Newman, G.; Van Zandt, S. Using neighborhood characteristics to predict vacancy types: Comparing multi-scale conditions surrounding existing vacant lots. Environ. Plan. B Urban Anal. City Sci. 2023, 23998083231160542. [Google Scholar] [CrossRef]
- Project, A.G. 2022′s Fastest-Growing Cities in the U.S., Ranked; Kenan Institute of Private Enterprise: Chapel Hill, NC, USA, 2022. [Google Scholar]
- City of Austin Open Data Portal Topics. Available online: https://data.austintexas.gov/ (accessed on 28 April 2023).
- HUD. HUD Aggregated USPS Administrative Data on Address Vacancies. Available online: https://www.huduser.gov/portal/datasets/usps.html (accessed on 3 March 2023).
- MRLC. NLCD Land Cover. Available online: https://www.mrlc.gov/data (accessed on 10 March 2023).
- Kumar, B.P.; Babu, K.R.; Anusha, B.; Rajasekhar, M. Geo-environmental monitoring and assessment of land degradation and desertification in the semi-arid regions using Landsat 8 OLI/TIRS, LST, and NDVI approach. Environ. Chall. 2022, 8, 100578. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H.; Dey, A.; Gill, N. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur. J. Remote Sens. 2018, 51, 667–678. [Google Scholar] [CrossRef]
- Foo, K.; Martin, D.; Wool, C.; Polsky, C. Reprint of “The production of urban vacant land: Relational placemaking in Boston, MA neighborhoods”. Cities 2014, 40, 175–182. [Google Scholar] [CrossRef]
- Shlay, A.B.; Whitman, G. Research for democracy: Linking community organizing and research to leverage blight policy. City Community 2006, 5, 153–171. [Google Scholar] [CrossRef]
- Bureau, C. American Community Survey 5-Year Data. Available online: https://www.census.gov/data/developers/data-sets/acs-5year.html (accessed on 10 May 2023).
- STATA. Available online: https://www.stata.com/ (accessed on 10 May 2023).
- Kim, Y.-J.; Lee, C.; Kim, J.-H. Sidewalk landscape structure and thermal conditions for child and adult pedestrians. Int. J. Environ. Res. Public Health 2018, 15, 148. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int. J. Climatol. 2011, 31, 1498–1506. [Google Scholar] [CrossRef]
- Liu, B.; Lian, Z.; Brown, R.D. Effect of landscape microclimates on thermal comfort and physiological wellbeing. Sustainability 2019, 11, 5387. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, P.; Weng, Q. Assessing the impacts of urbanization-associated land use/cover change on land surface temperature and surface moisture: A case study in the midwestern United States. Remote Sens. 2015, 7, 4880–4898. [Google Scholar] [CrossRef]
- Dutta, D.; Rahman, A.; Paul, S.; Kundu, A. Impervious surface growth and its inter-relationship with vegetation cover and land surface temperature in peri-urban areas of Delhi. Urban Clim. 2021, 37, 100799. [Google Scholar] [CrossRef]
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A review of the health benefits of greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef] [PubMed]
- De Vries, S.; Van Dillen, S.M.; Groenewegen, P.P.; Spreeuwenberg, P. Streetscape greenery and health: Stress, social cohesion and physical activity as mediators. Soc. Sci. Med. 2013, 94, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Nutsford, D.; Pearson, A.L.; Kingham, S. An ecological study investigating the association between access to urban green space and mental health. Public Health 2013, 127, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; De Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Aram, F.; Solgi, E.; Holden, G. The role of green spaces in increasing social interactions in neighborhoods with periodic markets. Habitat Int. 2019, 84, 24–32. [Google Scholar] [CrossRef]
- Jennings, V.; Bamkole, O. The relationship between social cohesion and urban green space: An avenue for health promotion. Int. J. Environ. Res. Public Health 2019, 16, 452. [Google Scholar] [CrossRef]
- Hou, D. Urban Waterfront Landscape Planning. 2009. Available online: https://www.diva-portal.org/smash/get/diva2:828355/FULLTEXT01.pdf (accessed on 26 May 2023).
- Kim, G.; Miller, P.; Nowak, D. The value of green infrastructure on vacant and residential land in Roanoke, Virginia. Sustainability 2016, 8, 296. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Abdulateef, M.F.; Al-Alwan, H.A. The effectiveness of urban green infrastructure in reducing surface urban heat island. Ain Shams Eng. J. 2022, 13, 101526. [Google Scholar] [CrossRef]
- Newman, G.; Dongying, L.; Rui, Z.; Dingding, R. Resilience through regeneration: The economics of repurposing vacant land with green infrastructure. Landsc. Archit. Front. 2019, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Woo, A. Estimating natural environmental characteristics of subsidized households: A case study of austin, texas. Sustainability 2015, 7, 13433–13453. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, E.J. Neighborhood greenery as a predictor of outdoor crimes between low and high income neighborhoods. Int. J. Environ. Res. Public Health 2020, 17, 1470. [Google Scholar] [CrossRef]
Variables | All (N = 210) | Low Income (N = 103) | High Income (N = 107) | Difference in Mean |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||
Socioeconomic Characteristics | ||||
Household income (USD) | 83,034.12 (37,801.41) | 55,586.84 (12,465.22) | 109,455.30 (35,088.96) | −53,868.49 *** |
Property value (USD) | 365,301.40 (196,836.00) | 269,079.60 (109,497.30) | 457,926.20 (217,251.40) | −188,846.60 *** |
Minority (%) | 48.35 (21.72) | 60.55 (19.63) | 36.62 (16.61) | 23.93 *** |
Population density (no. per sq.mi.) | 4415.46 (3601.28) | 5461.75 (4394.25) | 3408.28 (2214.24) | 2053.47 *** |
Poverty (%) | 12.03 (10.75) | 18.05 (12.18) | 6.25 (3.99) | 11.80 *** |
Distance to downtown (m) | 9060.78 (6177.01) | 7696.13 (5509.50) | 10,374.42 (6516.94) | −2678.29 *** |
USPS Vacant Addresses | ||||
Residential vacant address (%) | 1.32 (1.30) | 1.60 (1.40) | 1.06 (1.14) | 0.54 *** |
Business vacant address (%) | 5.49 (5.64) | 6.51 (5.83) | 4.50 (5.29) | 2.01 *** |
All vacant address (%) | 1.61 (1.39) | 1.95 (1.42) | 1.28 (1.27) | 0.67 *** |
Vacant Parcel | ||||
Vacant-parcel land area (%) | 4.86 (8.81) | 4.58 (6.31) | 5.13 (10.72) | −0.55 |
Variables | All (N = 210) | Low Income (N = 103) | High Income (N = 107) | Difference in Mean |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||
Land covers | ||||
Developed areas (%) | 78.59 (27.53) | 85.55 (22.42) | 71.90 (30.29) | 13.65 *** |
Barren (%) | 0.22 (1.03) | 0.14 (0.33) | 0.29 (1.40) | −0.15 |
Forest (%) | 13.13 (16.96) | 7.99 (9.98) | 18.09 (20.52) | −10.10 *** |
Shrubland (%) | 3.05 (7.25) | 2.28 (6.06) | 3.80 (8.19) | −1.52 |
Herbaceous (%) | 3.41 (9.14) | 2.99 (9.75) | 3.81 (8.54) | −0.82 |
Planted (%) | 1.43 (4.88) | 1.67 (5.65) | 1.21 (4.01) | 0.46 |
Wetlands (%) | 1.74 (3.65) | 2.19 (4.44) | 1.30 (2.61) | 0.89 |
Natural environment | ||||
Impervious surface (%) | 39.68 (18.04) | 45.74 (16.78) | 33.84 (17.34) | 11.90 *** |
Tree canopy (%) | 27.86 (15.68) | 21.01 (10.76) | 34.46 (16.84) | −13.45 *** |
NDVI (−1 to 1) | 0.22 (0.04) | 0.21 (0.03) | 0.23 (0.04) | −0.02 *** |
Park (%) | 6.25 (9.40) | 6.77 (10.17) | 5.75 (8.61) | 1.02 |
Water features (%) | 1.64 (6.25) | 0.45 (1.82) | 2.79 (8.43) | −2.34 *** |
Land surface temperature (°C) | 33.22 (1.41) | 33.70 (1.10) | 32.75 (1.53) | 0.95 *** |
Slope > 5% (%) | 29.82 (21.29) | 26.32 (16.95) | 33.19 (24.35) | −6.88 ** |
Slope > 8.33% (%) | 16.17 (17.93) | 12.01 (11.83) | 20.18 (21.59) | −8.17 *** |
Control Variables | Residential Vacancy | Business Vacancy | All Vacancy | Vacant-Parcel Land Area | ||||
---|---|---|---|---|---|---|---|---|
Coef. | p > |t| | Coef. | p > |t| | Coef. | p > |t| | Coef. | p > |t| | |
Socioeconomic Status | ||||||||
Median income (USD 1000) | −0.008 ** | 0.038 | −0.055 ** | 0.004 | −0.013 ** | 0.002 | 0.006 | 0.854 |
Property value (USD 1000) | 0.001 | 0.186 | 0.002 | 0.692 | 0.001 | 0.257 | −0.002 | 0.705 |
Minority (%) | 0.000 | 0.981 | −0.071 ** | 0.010 | −0.010 † | 0.095 | 0.057 | 0.187 |
Population density (per sq. miles) | 0.066 ** | 0.020 | 0.116 | 0.413 | 0.043 | 0.149 | −0.336 | 0.137 |
Poverty (%) | −0.008 | 0.474 | 0.002 | 0.978 | 0.006 | 0.623 | 0.013 | 0.886 |
Distance to downtown (1000 m) | −0.094 *** | 0.000 | −0.137 † | 0.087 | −0.098 *** | 0.000 | 0.344 *** | 0.007 |
No. of observations | 210 | 210 | 210 | 210 | ||||
LR Chi | 19.75 | 6.26 | 20.51 | 4.99 | ||||
Pro > Chi-Sq | <0.0000 | <0.0000 | <0.0000 | 0.0001 | ||||
Pseudo R2 | 0.3686 | 0.1562 | 0.3774 | 0.1284 |
Green Infrastructure | Residential Vacancy | Business Vacancy | All Vacancy | Vacant-Parcel Land Area | ||||
---|---|---|---|---|---|---|---|---|
Coef. | p > |t| | Coef. | p > |t| | Coef. | p > |t| | Coef. | p > |t| | |
Land Covers | ||||||||
Developed areas (%) | 0.012 *** | 0.001 | 0.024 | 0.190 | 0.015 *** | 0.000 | −0.123 *** | 0.000 |
Barren (%) | 0.038 | 0.600 | 0.412 | 0.258 | 0.048 | 0.533 | 2.287 *** | 0.000 |
Forest (%) | −0.013 ** | 0.018 | 0.030 | 0.277 | −0.013 ** | 0.031 | 0.093 ** | 0.034 |
Shrubland (%) | −0.035 *** | 0.003 | −0.177 *** | 0.002 | −0.046 *** | 0.000 | −0.160 † | 0.088 |
Herbaceous (%) | −0.002 | 0.855 | −0.049 | 0.277 | −0.006 | 0.506 | 0.490 *** | 0.000 |
Planted (%) | −0.040 ** | 0.018 | −0.170 ** | 0.045 | −0.049 *** | 0.006 | 0.058 | 0.668 |
Wetlands (%) | −0.016 | 0.469 | 0.160 | 0.149 | 0.005 | 0.842 | 0.449 ** | 0.010 |
Natural Environment | ||||||||
Impervious surface (%) | 0.007 | 0.186 | 0.019 | 0.475 | 0.014 ** | 0.008 | −0.122 *** | 0.003 |
Tree canopy (%) | −0.006 | 0.338 | 0.075 ** | 0.013 | −0.003 | 0.601 | 0.014 | 0.779 |
NDVI (−1 to 1) | −0.090 | 0.967 | 17.101 | 0.118 | −1.117 | 0.630 | 12.617 | 0.470 |
Park (%) | −0.004 | 0.648 | 0.019 | 0.639 | 0.002 | 0.791 | 0.019 | 0.778 |
Water features (%) | −0.012 | 0.304 | −0.111 † | 0.065 | −0.021 † | 0.093 | −0.008 | 0.937 |
Surface temperature (°C) | 0.150 ** | 0.025 | 0.262 | 0.436 | 0.219 *** | 0.002 | −0.447 | 0.402 |
Slope > 5% (%) | −0.009 ** | 0.021 | 0.003 | 0.885 | −0.010 ** | 0.019 | −0.011 | 0.730 |
Slope > 8.33% (%) | −0.008 | 0.103 | 0.044 † | 0.090 | −0.005 | 0.326 | −0.011 | 0.783 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Lee, R.J.; Lee, T.; Shin, Y. Green Infrastructure and Urban Vacancies: Land Cover and Natural Environment as Predictors of Vacant Land in Austin, Texas. Land 2023, 12, 2031. https://doi.org/10.3390/land12112031
Kim Y-J, Lee RJ, Lee T, Shin Y. Green Infrastructure and Urban Vacancies: Land Cover and Natural Environment as Predictors of Vacant Land in Austin, Texas. Land. 2023; 12(11):2031. https://doi.org/10.3390/land12112031
Chicago/Turabian StyleKim, Young-Jae, Ryun Jung Lee, Taehwa Lee, and Yongchul Shin. 2023. "Green Infrastructure and Urban Vacancies: Land Cover and Natural Environment as Predictors of Vacant Land in Austin, Texas" Land 12, no. 11: 2031. https://doi.org/10.3390/land12112031
APA StyleKim, Y. -J., Lee, R. J., Lee, T., & Shin, Y. (2023). Green Infrastructure and Urban Vacancies: Land Cover and Natural Environment as Predictors of Vacant Land in Austin, Texas. Land, 12(11), 2031. https://doi.org/10.3390/land12112031