Application of Unconventional Tillage Systems to Maize Cultivation and Measures for Rational Use of Agricultural Lands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Collection and Recording of Weather and Rainfall Data
2.3. Biological Materials
2.4. Experimental Design
- Experimental year: a1, 2016; a2, 2017; a3, 2018; a4, 2019; a5, 2020; a6, 2021; and a7, 2022.
- Soil tillage system: b1, a conventional tillage system (CT) with plowing (30 cm depth); b2, minimum soil tillage with a chisel (MTC, 30 cm depth); b3, minimum soil tillage with a disk (MTD, 15 cm depth); and b4, no-tillage (NT, direct sowing).
- Level of fertilization: c1, 350 kg ha−1 NPK 16:16:16 at sowing and c2, 350 kg ha−1 NPK 16:16:16 at sowing + 150 kg ha−1 calcium ammonium nitrate (CAN) that contains roughly 8% calcium and 27% nitrogen.
2.5. Technology Used at the Experimental Site
2.6. Methods for Analysis and Processing of Experimental Data
3. Results and Discussion
3.1. Climate Conditions during the Experimental Period
3.2. Maize Emergence in Relation to the Experimental Factors
3.3. Maize Yields Obtained in Relation to the Experimental Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramadhan, M.N. Yield and Yield Components of Maize and Soil Physical Properties as Affected by Tillage Practices and Organic Mulching. Saudi J. Biol. Sci. 2021, 28, 7152–7159. [Google Scholar] [CrossRef] [PubMed]
- Călugăr, R.E.; Muntean, E.; Varga, A.; Vana, C.D.; Haș, V.; Tritean, N.; Ceclan, L.A. Improving the Carotenoid Content in Maize by Using Isonuclear Lines. Plants 2022, 11, 1632. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yang, Y.; Guo, X.; Liu, W.; Xie, R.; Ming, B.; Hue, J.; Wang, K.; Li, S.; Hou, P. A Global Analysis of Dry Matter Accumulation and Allocation for Maize Yield Breakthrough from 1.0 to 25.0 Mg ha−1. Resour. Conserv. Recycl. 2023, 188, 106656. [Google Scholar] [CrossRef]
- Barșon, G.; Șopterean, L.; Suciu, L.A.; Crișan, I.; Duda, M.M. Evaluation of Agronomic Performance of Maize (Zea mays L.) under a Fertilization Gradient in Transylvanian Plain. Agriculture 2021, 11, 896. [Google Scholar] [CrossRef]
- Scott, M.P.; Edwards, J.W.; Bell, C.P.; Schussler, J.R.; Smith, J.S. Grain Composition and Amino Acid Content in Maize Hybrids Representing 80 Years of Commercial Maize Varieties. Maydica 2006, 51, 417–423. Available online: https://hygeia-analytics.com/wp-content/uploads/2018/02/Scott-et-al.-2006-corn-protein-amino-acids-historical-comparisons.pdf (accessed on 10 October 2023).
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Petcu, G.; Petcu, E. Technology Guide for Wheat, Maize and Sunflower; Dominor: Bucharest, Romania, 2008; pp. 54–96. Available online: https://www.researchgate.net/profile/Elena-Petcu/publication/308793571_Ghid_tehnologic_pentru_grau_porumb_si_floarea-soarelui/links/57f2507808ae8da3ce5170cb/Ghid-tehnologic-pentru-grau-porumb-si-floarea-soarelui.pdf (accessed on 10 October 2023)ISBN 978-973-1838-48-9.
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that Feed the World 6. Past Successes and Future Challenges to the Role Played by Maize in Global Food Security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef]
- Amegbor, I.; van Biljon, A.; Shargie, N.; Tarekegne, A.; Labuschagne, M. Identifying Quality Protein Maize Inbred Lines for Improved Nutritional Value of Maize in Southern Africa. Foods 2022, 11, 898. [Google Scholar] [CrossRef]
- Dragomir, V.; Brumă, I.S.; Butu, A.; Petcu, V.; Tanasă, L.; Horhocea, D. An Overview of Global Maize Market Compared to Romanian Production. Rom. Agric. Res. 2022, 39, 535–544. [Google Scholar] [CrossRef]
- Eurostat Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 10 October 2023).
- Popescu, M.; Mureşan, C.; Horhocea, D.; Cindea, M.; Cristea, S. The Genetic Potential for the Grain Yield of Some Maize Hybrids, Studied in Different Conditions of Environment, in Romania. Rom. Agric. Res. 2021, 38, 21–29. [Google Scholar] [CrossRef]
- Haş, V.; Haș, I.; Copândean, A.; Nagy, E. Turda 248-Maize Hybrid of Perspective for Transylvanian Area. An. Inst. Naț. Cercet.-Dezvoltare Agric. Fundulea 2012, 80, 59–68. Available online: https://www.incda-fundulea.ro/anale/80/80.6.pdf (accessed on 10 October 2023).
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Tripodi, P.; Massa, D.; Venezia, A.; Cardi, T. Sensing Technologies for Precision Phenotyping in Vegetable Crops: Current Status and Future Challenges. Agronomy 2018, 8, 57. [Google Scholar] [CrossRef]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Martínez, J. Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context. Sensors 2018, 18, 1731. [Google Scholar] [CrossRef] [PubMed]
- Feleke, H.G.; Savage, M.J.; Fantaye, K.T.; Rettie, F.M. The Role of Crop Management Practices and Adaptation Options to Minimize the Impact of Climate Change on Maize (Zea mays L.) Production for Ethiopia. Atmosphere 2023, 14, 497. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat Tolerance in Plants: An Overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the Plow over 10,000 Years and the Rationale for No-till Farming. Soil. Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Videnović, Ž.; Simić, M.; Srdić, J.; Dumanović, Z. Long Term Effects of Different Soil Tillage Systems on Maize (Zea mays L.) Yields. Plant Soil. Environ. 2011, 57, 186–192. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.Y.; Yang, J.Y.; Drury, C.F. Effect of Conservation Tillage on Soil Physical Properties, Water Storage and Water Use Efficiency in Northeast China. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 383–394. [Google Scholar] [CrossRef]
- Shao, Y.; Xie, Y.; Wang, C.; Yue, J.; Yao, Y.; Li, X.; Liu, W.; Zhu, Y.; Guo, T. Effects of Different Soil Conservation Tillage Approaches on Soil Nutrients, Water Use and Wheat-Maize Yield in Rainfed Dry-Land Regions of North China. Eur. J. Agron. 2016, 81, 37–45. [Google Scholar] [CrossRef]
- Kiboi, M.; Ngetich, K.; Diels, J.; Mucheru-Muna, M.; Mugwe, J.; Mugendi, D.N. Minimum Tillage, Tied Ridging and Mulching for Better Maize Yield and Yield Stability in the Central Highlands of Kenya. Soil Tillage Res. 2017, 170, 157–166. [Google Scholar] [CrossRef]
- Atreya, K.; Sharma, S.; Bajracharya, R.M.; Rajbhandari, N.P. Applications of Reduced Tillage in Hills of Central Nepal. Soil Tillage Res. 2006, 88, 16–29. [Google Scholar] [CrossRef]
- Simić, M.; Dragičević, V.; Drinić, S.M.; Vukadinović, J.; Kresović, B.; Tabaković, M.; Brankov, M. The Contribution of Soil Tillage and Nitrogen Rate to the Quality of Maize Grain. Agronomy 2020, 10, 976. [Google Scholar] [CrossRef]
- Drury, C.F.; Reynolds, W.D.; Yang, X.M.; McLaughlin, N.B.; Welacky, T.W.; Weaver, C.W.; Grant, C.A. Nitrogen Source, Application Time, and Tillage Effects on Soil Nitrous Oxide Emission and Corn Grain Yields. Soil Sci. Soc. Am. J. 2011, 76, 1268–1279. [Google Scholar] [CrossRef]
- Gruber, S.; Pekrun, C.; Mohring, J.; Claupein, W. Long-Term Yield and Weed Response to Conservation and Stubble Tillage in SW Germany. Soil Tillage Res. 2012, 121, 49–56. [Google Scholar] [CrossRef]
- Drury, C.F.; Tan, C.S.; Welacky, T.W.; Oloya, T.O.; Hamill, A.S.; Weaver, S.E. Red Clover and Tillage Influence on Soil Temperature, Water Content, and Corn Emergence. Agron. J. 1999, 91, 101–108. [Google Scholar] [CrossRef]
- Sharma, P.; Abrol, V.; Sharma, R.K. Impact of Tillage and Mulch Management on Economics, Energy Requirement and Crop Performance in Maize-Wheat Rotation in Rainfed Subhumid Inceptisols, India. Eur. J. Agron. 2011, 34, 46–51. [Google Scholar] [CrossRef]
- Drury, C.F.; Reynolds, W.D.; Welacky, T.W.; Weaver, S.E.; Hamill, A.S.; Vyn, T.J. Impacts of Zone Tillage and Red Clover on Corn Performance and Soil Physical Quality. Soil Sci. Soc. Am. J. 2003, 67, 867–877. [Google Scholar] [CrossRef]
- Simić, M.; Dragičević, V.; Kresović, B.; Kovačević, D.; Dolijanović, Ž.; Brankov, M. The Effectiveness of Soil Tillage Systems in Maize Cultivation under Variable Meteorological Conditions of Central Serbia. In Proceedings of the 10th International Scientific Agriculture Symposium “Agrosym 2019”, Jahorina, Bosnia and Herzegovina, 3–6 October 2019; Kovačević, D., Ed.; University of East Sarajevo, Faculty of Agriculture: East Sarajevo, Republic of Srpska, 2019; pp. 574–579. [Google Scholar]
- Wang, X.; Zhou, B.; Sun, X.; Yue, Y.; Ma, W.; Zhao, M. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status. PLoS ONE 2015, 10, e0129231. [Google Scholar] [CrossRef]
- Wasaya, A.; Tahir, M.; Ali, H.; Hussaina, M.; Yasir, T.A.; Sher, A.; Ijaz, M.; Sattar, A. Influence of Varying Tillage Systems and Nitrogen Application on Crop Allometry, Chlorophyll Contents, Biomass Production and Net Returns of Maize (Zea mays L.). Soil. Tillage Res. 2017, 170, 18–26. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural Sustainability and Intensive Production Practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.R. Agricultural Sustainability and Technology Adoption: Issues and Policies for Developing Countries. Am. J. Agric. Econ. 2005, 5, 1325–1334. [Google Scholar] [CrossRef]
- Kassie, M.; Pender, J.; Yesuf, M.; Kohlin, G.; Bluffstone, R.; Elias, M. Estimating Returns to Soil Conservation Adoption in the Northern Ethiopian Highlands. Agric. Econ. 2008, 38, 213–232. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef] [PubMed]
- Yosefi, K.; Galavi, M.; Ramrodi, M.; Mousavi, S.R. Effect of Bio-phosphate and Chemical Phosphorus Fertilizer Accompanied with Micronutrient Foliar Application on Growth, Yield and Yield Components of Maize (Single cross 704). Aust. J. Crop Sci. 2011, 5, 175–180. [Google Scholar] [CrossRef]
- Zhang, S.X.; Chen, X.; Jia, S.; Liang, A.; Zhang, X.; Yang, X.; Wei, S.; Sun, B.; Huang, D.; Zhou, G. The Potential Mechanism of Long-term Conservation Tillage Effects on Maize Yield in the Black Soil of Northeast China. Soil Tillage Res. 2015, 154, 84–90. [Google Scholar] [CrossRef]
- Bian, D.H.; Jia, G.; Cai, L.; Ma, Z.; Eneji, A.E.; Cui, Y. Effects of Tillage Practices on Root Characteristics and Root Lodging Resistance of Maize. Field Crop. Res. 2016, 185, 89–96. [Google Scholar] [CrossRef]
- Ragheb, E.E. Sweet Corn as Affected by Foliar Application with Amin—And Humic Acids under Different Fertilizer Sources. Egypt J. Hortic. 2016, 43, 441–456. [Google Scholar] [CrossRef]
- Cheţan, F.; Cheţan, C.; Russu, F.; Mureşanu, F. The Influence of Tillage System on the Weed and the Maize Yields, Specific to Different Pedoclimatic Conditions in Transylvanian Plain, 2007–2018. Rom. Agric. Res. 2020, 37, 131–193. [Google Scholar]
- Cheţan, F.; Rusu, T.; Călugăr, R.E.; Chețan, C.; Şimon, A.; Ceclan, A.; Bărdaș, M.; Mintaș, O.S. Research on the Interdependence Linkages between Soil Tillage Systems and Climate Factors on Maize Crop. Land 2022, 11, 1731. [Google Scholar] [CrossRef]
- Dick, W.A.; Edwards, W.M.; McCoy, E.L. Continuous Application of No-tillage to Ohio Soils: Changes in Crop Yields and Organic Matter—Related Soil Properties. In Soil Organic Matter in Temperate Agroecosystems. Long-Term Experiments in North America; Paul, E.A., Paustian, K., Elliot, E.T., Cole, C.V., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 171–182. [Google Scholar]
- Hill, P. Crop Response to Tillage System. In Conservation Tillage Systems and Management; Reeder, R., Ed.; MidWest Plan Service: Ames, IA, USA, 2000; pp. 47–60. [Google Scholar]
- Duiker, S.W.; Haldeman, J.F.; Johnson, D.H. Tillage × Maize Hybrid Interactions. Agron. J. 2006, 98, 436–442. [Google Scholar] [CrossRef]
- Pederson, P.; Lauer, J.G. Corn and Soybean Response to Rotation Sequence, Row Spacing, and Tillage System. Agron. J. 2003, 95, 965–971. [Google Scholar] [CrossRef]
- Boomsma, C.R.; Santini, J.B.; West, T.D.; Brewer, J.C.; McIntyre, L.M.; Vyn, T.J. Maize Grain Yield Responses to Plant Height Variability Resulting from Crop Rotation and Tillage System in Long-term Experiment. Soil Tillage Res. 2010, 106, 227–240. [Google Scholar] [CrossRef]
- Malschi, D. Environment–Agriculture–Sustainable Development and the Integrated Management of Pests of Cereal AgroecoSystems; Ed. Argonaut: Cluj-Napoca, Romania, 2007; p. 186. ISBN 978-973-109-086-3. [Google Scholar]
- Kadar, R.; Mureșanu, F.; Tritean, N. The natural framework in which the research was carried out, the structure of the cultures of the Transylvanian Plain. In Encouraging Innovation, Cooperation and the Creation of a Knowledge Base in the Rural Areas of Cluj County; 2019; pp. 6–9. ISBN 978-973-0-28287-0. [Google Scholar]
- Official Catalog of Varieties. Available online: https://istis.ro/image/data/download/catalog-oficial/catalog_2015.pdf (accessed on 10 October 2023).
- Haș, V.; Haș, I.; Copândean, A.; Mureșanu, F.; Varga, A.; Șut, R.; Rotar, C.; Șopterean, L.; Grigore, G. Behavior of Some New Maize Hybrids Released at ARDS Turda. Analele Inst. Naț. Cercet.-Dezvoltare Agric. Fundulea 2014, 82, 99–110. [Google Scholar]
- Malschi, D.; Mureșanu, F.; Tărău, A.D.; Vălean, A.M. Contributions of Scientific Research to the Development of Agriculture, ARDS Turda 60-Year Tribute Volume, 2017. Six Decades of Research Aimed at Preventing and Combating Pests in Field Crops at ARDS Turda; Tip Interarte: Turda, Romania, 2017; Volume VII, pp. 285–307. ISBN 978-973-0-24362-8. [Google Scholar]
- SRTS. Romanian System of Soil Taxonomy; Estfalia: Bucharest, Romania, 2012. [Google Scholar]
- Chețan, F.; Chețan, C.; Bogdan, I.; Moraru, P.I.; Pop, A.I.; Rusu, T. Use of Vegetable Residues and Cover Crops in the Cultivation of Maize Grown in Different Tillage Systems. Sustainability 2022, 14, 3609. [Google Scholar] [CrossRef]
- Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_ro (accessed on 10 October 2023).
- PoliFact. ANOVA and Duncan’s Test PC Program for Variant Analyses Made for Completely Randomized Polyfactorial Experiences; USAMV: Cluj-Napoca, Romania, 2020. [Google Scholar]
- Bărdaş, M.; Rusu, T.; Russu, F.; Șimon, A.; Chețan, F.; Ceclan, O.A.; Rezi, R.; Popa, A.; Cărbunar, M.M. The Impact of Foliar Fertilization on the Physiological Parameters, Yield, and Quality Indices of the Soybean Crop. Agronomy 2023, 13, 1287. [Google Scholar] [CrossRef]
- Șimon, A.; Moraru, P.I.; Ceclan, A.; Russu, F.; Chețan, F.; Bărdaș, M.; Popa, A.; Rusu, T.; Pop, A.I.; Bogdan, I. The Impact of Climatic Factors on the Development Stages of Maize Crop in the Transylvanian Plain. Agronomy 2023, 13, 1612. [Google Scholar] [CrossRef]
- Șimon, A.; Ceclan, A.; Haș, V.; Varga, A.; Russu, F.; Chețan, F.; Bărdaș, M. Evaluation of the Impact of Sowing Season and Weather Conditions on Maize Yield. AgroLife Sci. J. 2023, 12, 1. [Google Scholar]
- Jama, A.O.; Ottman, M.J. Timing of the First Irrigation in Corn and Water Stress Conditioning. Agron. J. 1993, 85, 1159–1164. [Google Scholar] [CrossRef]
- Ali, S.; Ghosh, B.C.; Osmani, A.G.; Hossain, E.; Fogarassy, C. Farmers’ Climate Change Adaptation Strategies for Reducing the Risk of Rice Production: Evidence from Rajshahi District in Bangladesh. Agronomy 2021, 11, 600. [Google Scholar] [CrossRef]
- Robins, J.S.; Domingo, C.E. Some Effects of Severe Soil Moisture Deficits at Specific Growth Stages in Corn. Agron. J. 1953, 45, 618–621. [Google Scholar] [CrossRef]
- Setter, T.L.; Flannigan, B.; Melkonian, J. Loss of Kernel Set Due to Water Deficit and Shade in Maize. Crop Sci. 2001, 41, 1530–1540. [Google Scholar] [CrossRef]
- Popa, A.; Rusu, T.; Șimon, A.; Russu, F.; Bărdaș, M.; Oltean, V.; Suciu, L.; Tărău, A.; Merca, N.C. Influence of Biotic and Abiotic Factors on Maize Crop Yield in Transylvanian Plain Conditions. Sci. Papers Ser. A Agron. 2021, 64, 103–113. [Google Scholar]
- Bakucs, Z.; Fertő, I.; Vígh, E. Crop Productivity and Climatic Conditions: Evidence from Hungary. Agriculture 2020, 10, 421. [Google Scholar] [CrossRef]
- Cairns, J.E.; Crossa, J.; Zaidi, P.H.; Grudloyma, P.; Sanchez, C.; Araus, J.L.; Thaitad, S.; Makumbi, D.; Magorokosho, C.; Bänziger, M.; et al. Identification of Drought, Heat, and Combined Drought and Heat Tolerant Donors in Maize. Crop Sci. 2013, 53, 1335–1346. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.Q.; Groenigen, K.J.; Lee, J.; Gestel, N.; Six, J.; Venterea, C.K. When Does No-till Yield More? A Global Meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Yu, Q.; Zhang, Y.J.; Wang, R.; Li, J.; Wang, X.L. Ploughing/Zero-tillage Rotation Regulates Soil Physicochemical Properties and Improves Productivity of Erodible Soil in a Residue Return Farming System. Land Degrad. Dev. 2021, 32, 1833–1843. [Google Scholar] [CrossRef]
- Liu, S.; Gao, Y.; Lang, H.; Liu, Y.; Zhang, H. Effects of Conventional Tillage and No-Tillage Systems on Maize (Zea mays L.) Growth and Yield, Soil Structure, and Water in Loess Plateau of China: Field Experiment and Modeling Studies. Land 2022, 11, 1881. [Google Scholar] [CrossRef]
- Rusu, M.; Mihai, M.; Mihai, V.C.; Moldovan, L.; Ceclan, O.A.; Toader, C. Areas of Agrochemical Deepening Resulting from Long-Term Experiments with Fertilizers—Synthesis Following 20 Years of Annual and Stationary Fertilization. Agriculture 2023, 13, 1503. [Google Scholar] [CrossRef]
- Masood, S.; Suleman, M.; Hussain, S.; Jamil, M.; Ashraf, M.; Siddiqui, M.H.; Nazar, R.; Khan, N.; Jehan, S.; Khan, K.S.; et al. Fertilizers Containing Balanced Proportions of NH4+-N and NO3−-N Enhance Maize (Zea mays L.) Yield Due to Improved Nitrogen Recovery Efficiency. Sustainability 2023, 15, 12547. [Google Scholar] [CrossRef]
- Li, X.; Takahash, T.; Suzuki, N.; Kaiser, H.M. The Impact of Climate Change on Maize Yields in the United States and China. Agric. Syst. 2011, 104, 348–353. [Google Scholar] [CrossRef]
- Pede, T.; Mountrakis, G.; Shaw, S.B. Improving Corn Yield Prediction Across the US Corn Belt by Replacing Air Temperature with Daily MODIS Land Surface Temperature. Agric. For. Meteorol. 2019, 276–277, 107615. [Google Scholar] [CrossRef]
- Wang, T.; Ren, W.; Yang, F.; Niu, L.; Li, Z.; Zhang, M. Effects of Different Tillage and Residue Retention Measures on Silage Maize Yield and Quality and Soil Phosphorus in Karst Areas. Agronomy 2023, 13, 2306. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Fuentes, M.; Govaerts, B.; De Leon, F.; Hidalgo, C.; Dendooven, L.; Sayre, K.D.; Etchevers, J. Fourteen Years of Applying Zero and Conventional Tillage, Crop Rotation and Residue Management Systems and its Effect on Physical and Chemical Soil Quality. Eur. J. Agron. 2009, 30, 228–237. [Google Scholar] [CrossRef]
- So, H.B.; Grabski, A.; Desborough, P. The Impact of 14 Years of Conventional and No-till Cultivation on the Physical Properties and Crop Yields of a Loam Soil at Grafton NSW, Australia. Soil. Tillage Res. 2009, 104, 180–184. [Google Scholar] [CrossRef]
- Gaevaya, E.; Ilyinskaya, I.; Bezuglova, O.; Klimenko, A.; Taradin, S.; Nezhinskaya, E.; Mishchenko, A.; Gorovtsov, A. Influence of Heat Stress and Water Availability on Productivity of Silage Maize (Zea mays L.) under Different Tillage and Fertilizer Management Practices in Rostov Region of Russia. Agronomy 2023, 13, 320. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crop Adaptation and Strategies to Tackle its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef]
- Paudel, S.; Shaw, R. The Relationships between Climate Variability and Crop Yield in a Mountainous Environment: A Case Study in Lamjung District, Nepal. Climate 2016, 4, 13. [Google Scholar] [CrossRef]
- Václav, N.; Šařec, P.; Křížová, K.; Novák, P.; Látal, O. Soil Physical Properties and Crop Status under Cattle Manure and Z’Fix in Haplic Chernozem. Plant Soil Environ. 2021, 67, 390–398. [Google Scholar] [CrossRef]
- Petrović, G.; Ivanović, T.; Knežević, D.; Radosavac, A.; Obhođaš, I.; Brzaković, T.; Golić, Z.; Dragičević Radičević, T. Assess-ment of Climate Change Impact on Maize Production in Serbia. Atmosphere 2023, 14, 110. [Google Scholar] [CrossRef]
No. | Work Period | Soil Tillage | Agrotechnical Work | Aggregate Used |
---|---|---|---|---|
1. | The last 10 days of October | CS | Plowing (30 cm depth) | Plow Kuhn Multi-Master 125T + tractor John Deere 6620SE |
2. | The last 10 days of October | MTC | Chisel (30 cm depth) | Chisel Pinocchio Gaspardo + tractor John Deere 6620SE |
3 | The last 10 days of October | MTD | Disking (15 cm deep) | Disk GDU Gaspardo 3.4 + tractor John Deere 6620SE |
4. | The first 10 days of April | CS, MTC, MTD | Working with rotary harrow | Rotary Harrow Kuhn HRB 403 D + tractor John Deere 6620SE |
CS, MTC, MTD, NT | Sowing + fertilized I | Seeder Maschio Gaspardo MT 6R + tractor John Deere 6620 SE | ||
CS, MTC, MTD, NT | Pre-emergent weed control on the soil | Herbicide machine MET 1500 + tractor John Deere 6620 SE | ||
5. | The last 10 days of May | CS, MTC, MTD, NT | Weed control on vegetation | Herbicide machine MET 1500 + tractor John Deere 6620 SE |
6. | The first 10 days of June | CS, MTC, MTD, NT | Fertilized II | Gaspardo Zeno + tractor John Deere 6620 SE |
7. | October | CS, MTC, MTD, NT | Harvest | Experimental combine Wintersteiger (Wintersteiger AG, Austria) |
Monthly Temperature (°C) | |||||||
---|---|---|---|---|---|---|---|
Year/Month | IV | V | VI | VII | VIII | IX | Average IV–IX |
2016 | 12.4 | 14.3 | 19.8 | 20.5 | 19.6 | 17.1 | 17.3 |
2017 | 9.9 | 15.7 | 20.7 | 20.3 | 22.3 | 15.8 | 17.5 |
2018 | 15.3 | 18.7 | 19.4 | 20.4 | 22.3 | 16.7 | 18.8 |
2019 | 11.3 | 13.6 | 21.8 | 20.4 | 22.1 | 17.1 | 17.7 |
2020 | 10.3 | 13.7 | 19.1 | 20.2 | 21.5 | 17.8 | 17.1 |
2021 | 7.8 | 14.1 | 19.8 | 22.7 | 19.7 | 15.0 | 16.5 |
2022 | 8.8 | 16.3 | 21.1 | 23.1 | 22.3 | 14.3 | 17.7 |
65-year average | 10.0 | 15.0 | 18.1 | 19.9 | 19.5 | 15.2 | 16.3 |
Monthly Rainfall (mm) | |||||||
Year/Month | IV | V | VI | VII | VIII | IX | Sum IV–IX |
2016 | 62.2 | 90.4 | 123.2 | 124.9 | 91.0 | 24.6 | 516.3 |
2017 | 65.2 | 65.4 | 30.6 | 110.2 | 36.1 | 56.2 | 363.7 |
2018 | 26.2 | 56.8 | 98.3 | 85.7 | 38.2 | 29.8 | 335.0 |
2019 | 62.6 | 152.4 | 68.8 | 35 | 63.8 | 19.4 | 402.0 |
2020 | 17.8 | 44.4 | 166.6 | 86.8 | 58 | 57.4 | 431.0 |
2021 | 38.4 | 80.8 | 45.0 | 123.1 | 52.9 | 39.1 | 379.3 |
2022 | 42.5 | 82.9 | 41.8 | 25.2 | 94.6 | 119.9 | 406.9 |
65-year average | 45.6 | 69.4 | 84.6 | 78.0 | 56.1 | 42.4 | 376.1 |
Year | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tillage System | S | E | S | E | S | E | S | E | S | E | S | E | S | E |
CT | 19.04 | 03.05 | 21.04 | 05.05 | 04.05 | 15.05 | 16.04 | 27.04 | 15.04 | 04.05 | 23.04 | 07.05 | 03.04 | 25.04 |
MTC | 19.04 | 03.05 | 21.04 | 05.05 | 04.05 | 15.05 | 16.04 | 28.04 | 15.04 | 04.05 | 23.04 | 07.05 | 03.04 | 20.04 |
MTD | 19.04 | 02.05 | 21.04 | 07.05 | 04.05 | 16.05 | 16.04 | 26.04 | 15.04 | 06.05 | 23.04 | 08.05 | 03.04 | 21.04 |
NT | 19.04 | 02.05 | 21.04 | 06.05 | 04.05 | 16.05 | 16.04 | 29.04 | 15.04 | 07.05 | 23.04 | 11.05 | 03.04 | 26.04 |
No. days | 13–14 | 15–17 | 12–13 | 12–14 | 21–23 | 15–19 | 18–24 |
Experimental Factor | Yield (kg ha−1) | % | Difference, ± Control (kg ha−1) | |
---|---|---|---|---|
A-Experimental year | a0 year average | 6429 | 100 | control |
a1 2016 | 6186 | 96 | −243 00 | |
a2 2017 | 6648 | 103 | 218 * | |
a3 2018 | 6996 | 109 | 566 *** | |
a4 2019 | 6202 | 97 | −228 0 | |
a5 2020 | 7354 | 114 | 925 *** | |
a6 2021 | 6809 | 106 | 379 ** | |
a7 2022 | 4811 | 75 | −1618 000 | |
LSD (p 5%) = 158 kg ha−1; LSD (p 1%) = 240 kg ha−1; LSD (p 0.1%)= 389 kg ha−1 |
Experimental Factor | Yield (kg ha−1) | % | Difference, ± Control (kg ha−1) | |
---|---|---|---|---|
B- Soil tillage system | b1 CT | 7306 | 100 | control |
b2 MTC | 7231 | 99 | −75 ns | |
b3 MTD | 6154 | 84 | −1153 000 | |
b4 NT | 5026 | 67 | −2280 000 | |
LSD (p 5%) = 91 kg ha−1; LSD (p 1%) = 124 kg ha−1; LSD (p 0.1%) = 168 kg ha−1 |
Experimental Factor | Yield (kg ha−1) | % | Difference, ± Control (kg ha−1) | |
---|---|---|---|---|
C-Level of fertilization | c1 N56P56K56 | 6242 | 100 | control |
c2 N56P56K56 + N40,5 CaO12 | 6616 | 106 | 374 *** | |
LSD (p 5%) = 55 kg ha−1; LSD (p 1%) = 74 kg ha−1; LSD (p 0.1%) = 99 kg ha−1 |
Experimental Factor | Yield (kg ha−1) | % | Difference, ± Control (kg ha−1) | |
---|---|---|---|---|
2016 | CT | 7063 | 100 | control |
MTC | 6914 | 98 | −149 ns | |
MTD | 5970 | 85 | −1093 000 | |
NT | 4798 | 68 | −2264 000 | |
2017 | CT | 7922 | 100 | control |
MTC | 7668 | 97 | −255 0 | |
MTD | 6102 | 77 | −1820 000 | |
NT | 4899 | 62 | −3023 000 | |
2018 | CT | 8127 | 100 | control |
MTC | 8190 | 101 | 63 ns | |
MTD | 6515 | 80 | −1612 000 | |
NT | 5150 | 63 | −2977 000 | |
2019 | CT | 6637 | 100 | control |
MTC | 6632 | 100 | −5 ns | |
MTD | 6229 | 94 | −408 00 | |
NT | 5309 | 80 | −1328 000 | |
2020 | CT | 8481 | 100 | control |
MTC | 8384 | 99 | −97 ns | |
MTD | 6796 | 80 | −1686 000 | |
NT | 5756 | 68 | −2725 000 | |
2021 | CT | 7599 | 100 | control |
MTC | 7619 | 100 | 20 ns | |
MTD | 6888 | 91 | −711 000 | |
NT | 5128 | 68 | −2471 000 | |
2022 | CT | 5315 | 100 | control |
MTC | 5212 | 98 | −103 ns | |
MTD | 4575 | 86 | −741 000 | |
NT | 4142 | 78 | −1173 000 | |
LSD (p 5%) = 242 kg ha−1; LSD (p 1%) = 329 kg ha−1; LSD (p 0.1%) = 444 kg ha−1 |
Experimental Factor | Yield (kg ha−1) | % | Difference, ± Control (kg ha−1) | Duncan Test | ||
---|---|---|---|---|---|---|
B1 | A1 | C1 | 6779 | 100 | control | NML |
B2 | 6633 | 98 | −146 ns | ONM | ||
B3 | 5831 | 86 | −948 000 | S | ||
B4 | 4640 | 67 | −2139 000 | X | ||
B1 | A1 | C2 | 7347 | 100 | control | JI |
B2 | 7195 | 98 | −152 ns | KJI | ||
B3 | 6109 | 83 | −1238 000 | SRQ | ||
B4 | 4958 | 68 | −2389 000 | XWU | ||
B1 | A2 | C1 | 7708 | 100 | control | HG |
B2 | 7367 | 96 | −341 0 | JI | ||
B3 | 5957 | 77 | −1751 000 | SR | ||
B4 | 4641 | 60 | −3067 000 | X | ||
B1 | A2 | C2 | 8137 | 100 | control | FEDC |
B2 | 7969 | 98 | −169 ns | GFED | ||
B3 | 6248 | 77 | −1890 000 | RQP | ||
B4 | 5157 | 63 | −2981 000 | WVUT | ||
B1 | A3 | C1 | 7884 | 100 | control | GFE |
B2 | 7994 | 101 | 110 ns | GFED | ||
B3 | 6404 | 81 | −1481 000 | QPO | ||
B4 | 4939 | 63 | −2946 000 | XWU | ||
B1 | A3 | C2 | 8370 | 100 | control | CB |
B2 | 8387 | 100 | 17 ns | CBA | ||
B3 | 6627 | 79 | −1743 000 | ONM | ||
B4 | 5362 | 64 | −3008 000 | UT | ||
B1 | A4 | C1 | 6497 | 100 | control | PONM |
B2 | 6451 | 99 | −46 ns | PON | ||
B3 | 6113 | 94 | −384 0 | SRQ | ||
B4 | 5160 | 79 | −1337 000 | WVUT | ||
B1 | A4 | C2 | 6777 | 100 | control | NML |
B2 | 6813 | 101 | 36 ns | ML | ||
B3 | 6346 | 94 | −432 00 | QPO | ||
B4 | 5458 | 81 | −1320 000 | T | ||
B1 | A5 | C1 | 8275 | 100 | control | DCB |
B2 | 8192 | 99 | −83 ns | EDC | ||
B3 | 6615 | 80 | −1660 000 | ONM | ||
B4 | 5494 | 66 | −2781 000 | T | ||
B1 | A5 | C2 | 8688 | 100 | control | A |
B2 | 8577 | 98 | −112 ns | BA | ||
B3 | 6976 | 80 | −1712 000 | LK | ||
B4 | 6018 | 69 | −2670 000 | SR | ||
B1 | A6 | C1 | 7375 | 100 | control | JI |
B2 | 7499 | 102 | 124 ns | IH | ||
B3 | 6608 | 90 | −767 000 | ONM | ||
B4 | 5062 | 67 | −2313 000 | WUT | ||
B1 | A6 | C2 | 7824 | 100 | control | GF |
B2 | 7740 | 99 | −84 ns | HG | ||
B3 | 7169 | 92 | −655 000 | KJI | ||
B4 | 5194 | 66 | −2630 000 | WVUT | ||
B1 | A7 | C1 | 5226 | 100 | control | VUT |
B2 | 5216 | 100 | −10 ns | WVUT | ||
B3 | 4269 | 82 | −957 000 | Y | ||
B4 | 3959 | 76 | −1267 000 | Z | ||
B1 | A7 | C2 | 5405 | 100 | control | T |
B2 | 5209 | 96 | −197 ns | WVUT | ||
B3 | 4881 | 90 | −524 00 | XW | ||
B4 | 4325 | 80 | −1080 000 | Y | ||
LSD (p 5%) = 317.90 kg ha−1; LSD (p 1%) = 430.61 kg ha−1; LSD (p 0.1%) = 577.58 kg ha−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chețan, F.; Rusu, T.; Chețan, C.; Șimon, A.; Vălean, A.-M.; Ceclan, A.O.; Bărdaș, M.; Tărău, A. Application of Unconventional Tillage Systems to Maize Cultivation and Measures for Rational Use of Agricultural Lands. Land 2023, 12, 2046. https://doi.org/10.3390/land12112046
Chețan F, Rusu T, Chețan C, Șimon A, Vălean A-M, Ceclan AO, Bărdaș M, Tărău A. Application of Unconventional Tillage Systems to Maize Cultivation and Measures for Rational Use of Agricultural Lands. Land. 2023; 12(11):2046. https://doi.org/10.3390/land12112046
Chicago/Turabian StyleChețan, Felicia, Teodor Rusu, Cornel Chețan, Alina Șimon, Ana-Maria Vălean, Adrian Ovidiu Ceclan, Marius Bărdaș, and Adina Tărău. 2023. "Application of Unconventional Tillage Systems to Maize Cultivation and Measures for Rational Use of Agricultural Lands" Land 12, no. 11: 2046. https://doi.org/10.3390/land12112046
APA StyleChețan, F., Rusu, T., Chețan, C., Șimon, A., Vălean, A. -M., Ceclan, A. O., Bărdaș, M., & Tărău, A. (2023). Application of Unconventional Tillage Systems to Maize Cultivation and Measures for Rational Use of Agricultural Lands. Land, 12(11), 2046. https://doi.org/10.3390/land12112046