Functional Agro-Biodiversity: An Evaluation of Current Approaches and Outcomes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Conservation Tillage and No-Tillage
3.2. Mixed Crops and Crop Rotations including Sward Diversity
3.3. Cover and Catch Crops, including Legumes
3.4. Modified Manure Management Quality and Diversity
3.5. Organic Inputs: Biochar and Organic Matter Inputs, including Biosolids
3.6. Agroforestry
3.7. Hedgerow Management
3.8. Field Margin Management
3.9. Reduction in Use of Plant Protection Products
3.10. Semi-Natural Landscape Elements and Landscape Context
4. Discussion
4.1. Impact of FAB on Nature, Resource Use and Yield
4.2. Knowledge Gaps, Future Possibilities and Limitations of FAB
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
FAB Measure | Description |
Conservation tillage and no-tillage | Conventional tillage uses multiple trips across a field to invert the soil to quite a deep depth. Reduced tillage (RT), a key component of conservation tillage, replaces heavy and deep ploughing with a lighter tillage implement that disturbs less of the surface crop residue, often in a single pass. There are different reduced tillage options, e.g., reduction of tillage in rotation, reduction in tillage depth whilst maintaining inversion tillage and non-inversion tillage at shallow soil [35]. In no-till (NT), a self-contained planting unit is used to plant the crop in a single pass with no seedbed preparation [174] and may be referred to as direct drilling or seeding [175]. Conservation tillage and no-tillage are targeted at improvements in soil quality. |
Mixed crops or crop rotations, including sward diversity | Rather than agricultural monoculture systems, crop rotation includes the use of multiple crop species and varieties in a rotation, including the integration of short-term grass or other non-woody perennial leys into previously arable-only rotations, and alternating spring and winter crop use to manage weeds. For crop rotation, the variation in crops happens in time. For mixed crops, the variation in crops happens spatially. Diverse species are in the field at the same time. This can be as a very close clustering of the species (like in herbal leys, but also in the mixture of crops such as maize and legumes) or by the creation of crop mosaics. Improving sward diversity can be conducted through the addition of grass, forb and legume species, normally carried out through reseeding, over-sowing or slot seeding, but may also include the introduction of plug plants or feeding animals with high-quality hay containing seeds (from nearby sites). |
Cover or catch-crops | Cover crops are fast-maturing crops grown within a system to maintain soil cover during fallow periods, and are typically ploughed under as green manure, or killed with herbicides under no-till systems. Cover crops sequester C below ground through increased primary productivity and maintenance of organic input throughout the rotation. This option also includes the use of legumes (i.e., peas, beans or clover) in arable rotations. The legumes could be introduced to break a long arable run, or grown with the arable crop (intercropped or inter-sown). |
Modified manure management, quality and diversity | Organic fertiliser (manure) is mainly derived from cattle, pig and poultry farming, with liquid manure (slurry) having a lower dry matter content than solid manure. In general, slurry has lower concentrations (g kg−1 fresh weight) of C and N than solid manure, but pH stays largely unaffected. Poultry manure (solid or liquid) generally has higher C and N concentrations than cattle and pig manure. By combining a diversity of manure types, manure can be better adjusted to the needs of the crop. This measure is targeted at improvements in soil quality, SOC. |
Organic matter input | Organic inputs, including compost, woodchips, farmyard manure, biosolids (recycled from sewage) and incorporation of crop residues. Biochar is another form of organic material that can be added to soil. Biochars are obtained through the thermal treatment of organic material in low oxygen conditions [79] and can be a side-product of liquid biofuel production. This measure is targeted at improvements in soil quality, SOC. |
Agroforestry | Agroforestry is the practice of deliberately integrating woody vegetation (trees or shrubs) into crop and/or animal production systems to benefit from the resulting ecological and economic interactions. The diversity of practices behind the term agroforestry is vast, ranging from the installation of shelter belts [86] to alley cropping forest farming and many variations in between. |
Hedgerow management | Hedgerows are a component of agroforestry. They are linear features over 20 m long and <5 m wide within farmed landscapes that incorporate a shrub component, hedgerow trees (where present) and associated ground flora. A hedgerow may also encompass not just the lines of trees or shrubs, but the base of the hedge, which may be an earth bank, an associated ditch and permanent herbaceous margins where the management is influenced by the presence of shrubs or trees [108]. Hedgerows need to be kept in a management cycle to maintain condition and provide ecosystem services. Management options could include “gapping up”, rejuvenation through hedge laying or coppicing and improvement of the ground flora. |
Field margin management | Field margins can be managed to help protect hedgerow flora and fauna and to benefit biodiversity, pollination and pest control, by taking the often less-productive field edges out of arable crop production [119]. There are different types of field margin management that could be practiced, including conservation headlands, beetle banks, uncultivated margins, perennial grass strips or floral strips [125,126,128]. |
Reduction in the use of plant protection products (PPPs) | Plant protection products (PPPs) are products that protect plants or plant products from harmful organisms. They include herbicides, fungicides and insecticides. Organic agriculture is the ultimate end point of reduced PPPs, being defined as farming systems where the use of pesticides, herbicides and chemical fertilisers is prohibited [137], but reduction should be considered along a gradient. |
Semi-natural landscape elements | Many of the above sections include the use of selected semi-natural habitats in an agricultural landscape (e.g., agroforestry, hedgerows and field margins). However, there are other semi-natural features that have not been considered, such as ponds, ditches or fallow land, and semi-natural habitats should also be considered in their entirety as contributors to habitat heterogeneity and landscape complexity (potentially increasing species richness) [1,158], connectivity (the characteristics of the landscape that affect the movement of organisms), ecosystem functioning and resilience and species pools to enable the successful implementation of options. |
1 | https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 1 September 2020). |
2 | https://www.eca.europa.eu/Lists/ECADocuments/SR14_04/SR14_04_EN.pdf (accessed on 1 September 2020). |
References
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Firbank, L.B.; McCracken, D.; Stoate, C.; Goulding, K.; Harmer, R.; Hess, T.; Jenkins, A.; Pilgrim, E.; Potts, S.; Smoith, P.; et al. (Eds.) Chapter 7: Enclosed Farmland; UNEP-WCMC: Cambridge, UK, 2011. [Google Scholar]
- Strohbach, M.W.; Kohler, M.L.; Dauber, J.; Klimek, S. High Nature Value farming: From indication to conservation. Ecol. Indic. 2015, 57, 557–563. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Ten Key Messages. 2022. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2022_wpp_key-messages.pdf (accessed on 1 September 2020).
- MEA. Millenium Ecosystem Assessment Ecosystems and Human Well-Being World Resources Institute, Washington, DC. 2005. Available online: https://www.millenniumassessment.org/en/index.html (accessed on 1 September 2020).
- ELN-FAB 2012; Functional Agrobiodiversity: Nature Serving Europe’s Farmers. ECNC-European Centre for Nature Conservation: Tilburg, The Netherlands, 2012.
- Bianchi, F.; Mikos, V.; Brussaard, L.; Delbaere, B.; Pulleman, M. Opportunities and limitations for functional agrobiodiversity in the European context. Environ. Sci. Policy 2013, 27, 223–231. [Google Scholar] [CrossRef]
- Berkes, F. Rethinking Community-Based Conservation. Conserv. Biol. 2004, 18, 621–630. [Google Scholar] [CrossRef]
- Kleijn, D.; Rundlöf, M.; Scheper, J.; Smith, H.G.; Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 2011, 26, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Burgess, P.; Palma, J.; Herzog, F.; Moreno, G.; Bertomeu, M.; Dupraz, C.; Liagre, F.; Keesman, K.; van der Werf, W.; et al. Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries. Ecol. Eng. 2007, 29, 434–449. [Google Scholar] [CrossRef]
- Swift, M.; Izac, A.-M.; van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—Are we asking the right questions? Agric. Ecosyst. Environ. 2004, 104, 113–134. [Google Scholar] [CrossRef]
- INTERREG. FABulous Farmers. 2020. Available online: https://www.nweurope.eu/projects/project-search/fabulous-farmers/ (accessed on 17 September 2020).
- Maskell, L.; Norton, L.; Alison, J.; Reinsch, S.; Robinson, D. Review of Current Methods and Approaches for Simple on Farm Environmental Monitoring of FAB Solutions Report for EU INTERREG FABulous Farmers NEC06872. 2020. Available online: https://www.nweurope.eu/media/12309/wpt1-2-fabfarmers-intervention-review.pdf (accessed on 1 January 2020).
- Batáry, P.; Báldi, A.; Kleijn, D.; Tscharntke, T. Landscape-moderated biodiversity effects of agri-environmental management: A meta-analysis. Proc. Biol. Sci. 2011, 278, 1894–1902. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef]
- ERAMMP Evidence Pack. Available online: https://erammp.wales/en/r-sfs-evidence-pack (accessed on 1 September 2019).
- AGFORWARD Project. Available online: https://www.agforward.eu/ (accessed on 1 October 2022).
- Reicosky, D.C. Conservation tillage is not conservation agriculture. J. Soil Water Conserv. 2015, 70, 103A–108A. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Castellanos-Navarrete, A.; Sayre, K.D.; Dixon, J.; Dendooven, L. Conservation Agriculture and Soil Carbon Sequestration: Between Myth and Farmer Reality. Crit. Rev. Plant Sci. 2009, 28, 97–122. [Google Scholar] [CrossRef]
- Buckingham, S.; Rees, R.M.; Watson, C.A. Issues and pressures facing the future of soil carbon stocks with particular emphasis on Scottish soils. J. Agric. Sci. 2014, 152, 699–715. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.E.; Murrell, E.G.; Harper, J.; Finney, D.M.; Kaye, J.P.; Mortensen, D.A.; Smith, R.G. Balancing multiple objectives in organic feed and forage cropping systems. Agric. Ecosyst. Environ. 2017, 239, 219–227. [Google Scholar] [CrossRef]
- Roos, D.; Saldaña, C.C.; Arroyo, B.; Mougeot, F.; Luque-Larena, J.J.; Lambin, X. Unintentional effects of environmentally-friendly farming practices: Arising conflicts between zero-tillage and a crop pest, the common vole (Microtus arvalis). Agric. Ecosyst. Environ. 2019, 272, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Keenleyside, C.B.; Beaufoy, G.; Alison, J.; Gunn, I.D.M.; Healey, J.; Jenkins, T.; Pagella, T.; Siriwardena, G.M. Technical Annex 4: Building Ecosystem Resilience. In Environment and Rural Affairs Monitoring & Modelling Programme (ERAMMP): Sustainable Farming Scheme Evidence Review; Report to Welsh Government (Contract C210/2016/2017): UK Centre for Ecology & Hydrology Project NEC06297; UK Centre for Ecology & Hydrology: Bailrigg, UK, 2019; Available online: https://erammp.wales/sites/default/files/2023-09/04-ERAMMP-SFS-Evidence-Review-4-Ecosystem-resilience-v1.1.pdf (accessed on 1 January 2020).
- Manley, J.; van Kooten, G.C.; Moeltner, K.; Johnson, D.W. Creating Carbon Offsets in Agriculture through No-Till Cultivation: A Meta-Analysis of Costs and Carbon Benefits. Clim. Chang. 2005, 68, 41–65. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.-A.; Tao, B.; Hui, D.; Yang, J.; Matocha, C. Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Glob. Chang. Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef]
- Angers, D.A.; Eriksen-Hamel, N.S. Full-Inversion Tillage and Organic Carbon Distribution in Soil Profiles: A Meta-Analysis. Soil Sci. Soc. Am. J. 2008, 72, 1370–1374. [Google Scholar] [CrossRef]
- Dimassi, B.; Mary, B.; Wylleman, R.; Labreuche, J.; Couture, D.; Piraux, F.; Cohan, J.-P. Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric. Ecosyst. Environ. 2014, 188, 134–146. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Zikeli, S.; Gruber, S.; Teufel, C.-F.; Hartung, K.; Claupein, W. Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management. Sustainability 2013, 5, 3876–3894. [Google Scholar] [CrossRef]
- Carmona, I.; Griffith, D.M.; Soriano, M.-A.; Murillo, J.M.; Madejón, E.; Gómez-Macpherson, H. What do farmers mean when they say they practice conservation agriculture? A comprehensive case study from southern Spain. Agric. Ecosyst. Environ. 2015, 213, 164–177. [Google Scholar] [CrossRef]
- Armengot, L.; Blanco-Moreno, J.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; et al. Tillage as a driver of change in weed communities: A functional perspective. Agric. Ecosyst. Environ. 2016, 222, 276–285. [Google Scholar] [CrossRef]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Rochette, P. No-till only increases N2O emissions in poorly-aerated soils. Soil Tillage Res. 2008, 101, 97–100. [Google Scholar] [CrossRef]
- Weigelt, A.; Weisser, W.W.; Buchmann, N.; Scherer-Lorenzen, M. Biodiversity for multifunctional grasslands: Equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences 2009, 6, 1695–1706. [Google Scholar] [CrossRef]
- Venter, Z.S.; Jacobs, K.; Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 2016, 59, 215–223. [Google Scholar] [CrossRef]
- Scherber, C.; Eisenhauer, N.; Weisser, W.W.; Schmid, B.; Voigt, W.; Fischer, M.; Schulze, E.-D.; Roscher, C.; Weigelt, A.; Allan, E.; et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 2010, 468, 553–556. [Google Scholar] [CrossRef]
- Newell Price, J.P.; Siriwardena, G.M.; Williams, A.P.; Alison, J.; Williams, J.R. Technical Annex 2: Sward Management. Environment and Rural Affairs Monitoring & Modelling Programme (ERAMMP): Sustainable Farming Scheme Evidence Review; Report to Welsh Government (Contract C210/2016/2017). UK Centre for Ecology & Hydrology Project NEC06297; UK Centre for Ecology & Hydrology: Bailrigg, UK, 2019; Available online: https://erammp.wales/sites/default/files/2023-08/02-ERAMMP-SFS-Evidence-Review-2-Sward-v1.1.pdf (accessed on 1 January 2020).
- Roca-Fernández, A.I.; Peyraud, J.L.; Delaby, L.; Delagarde, R. Pasture intake and milk production of dairy cows rotationally grazing on multi-species swards. Animal 2016, 10, 1448–1456. [Google Scholar] [CrossRef] [PubMed]
- Weisser, W.W.; Roscher, C.; Meyer, S.T.; Ebeling, A.; Luo, G.; Allan, E.; Beßler, H.; Barnard, R.L.; Buchmann, N.; Buscot, F.; et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic Appl. Ecol. 2017, 23, 1–73. [Google Scholar] [CrossRef]
- Alison, J.; Duffield, S.J.; Morecroft, M.D.; Marrs, R.H.; Hodgson, J.A. Successful restoration of moth abundance and species-richness in grassland created under agri-environment schemes. Biol. Conserv. 2017, 213, 51–58. [Google Scholar] [CrossRef]
- Carvell, C.; Meek, W.R.; Pywell, R.F.; Goulson, D.; Nowakowski, M. Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. J. Appl. Ecol. 2006, 44, 29–40. [Google Scholar] [CrossRef]
- DEFRA. Reviewing the Opportunities, Barriers and Constraints for Organic Management Techniques to Improve Sustainability of Conventional Farming—Final Project Report. Prepared as Part of Defra Project OF03111. 2018. Available online: https://agricology.co.uk/research-projects/organic-management-techniques-project/ (accessed on 1 January 2020).
- Fornara, D.A.; Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 2008, 96, 314–322. [Google Scholar] [CrossRef]
- Hungate, B.A.; Barbier, E.B.; Ando, A.W.; Marks, S.P.; Reich, P.B.; van Gestel, N.; Tilman, D.; Knops, J.M.H.; Hooper, D.U.; Butterfield, B.J.; et al. The economic value of grassland species for carbon storage. Sci. Adv. 2017, 3, e1601880. [Google Scholar] [CrossRef]
- Henderson, B.B.; Gerber, P.J.; Hilinski, T.E.; Falcucci, A.; Ojima, D.S.; Salvatore, M.; Conant, R.T. Greenhouse gas mitigation potential of the world’s grazing lands: Modeling soil carbon and nitrogen fluxes of mitigation practices. Agric. Ecosyst. Environ. 2015, 207, 91–100. [Google Scholar] [CrossRef]
- Garnett, T.; Godde, C.; Muller, A.; Röös, E.; Smith, P.; de Boer, I.J.M.; zu Ermgassen, E.; Herrero, M.; van Middelaar, C.; Schader, C.; et al. Grazed and Confused? Ruminating on Cattle, Grazing Systems, Methane, Nitrous Oxide, the Soil Carbon Sequestration Question—And What It All Means for Greenhouse Gas Emissions. FCRN, University of Oxford. 2017. Available online: https://edepot.wur.nl/427016 (accessed on 1 January 2020).
- Desjardins, R.L.; Smith, W.; Grant, B.; Campbell, C.; Riznek, R. Management Strategies to Sequester Carbon in Agricultural Soils and to Mitigate Greenhouse Gas Emissions. Clim. Chang. 2005, 70, 283–297. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Sun, Y.; Zeng, Y.; Shi, Q.; Pan, X.; Huang, S. No-tillage controls on runoff: A meta-analysis. Soil Tillage Res. 2015, 153, 1–6. [Google Scholar] [CrossRef]
- Scopel, E.; Triomphe, B.; Affholder, F.; Da Silva, F.A.M.; Corbeels, M.; Xavier, J.H.V.; Lahmar, R.; Recous, S.; Bernoux, M.; Blanchart, E.; et al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron. Sustain. Dev. 2013, 33, 113–130. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Hallama, M.; Pekrun, C.; Lambers, H.; Kandeler, E. Hidden miners—The roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant Soil 2019, 434, 7–45. [Google Scholar] [CrossRef]
- Eory, V.; MacLeod, M.; Topp, C.F.E.; Rees, R.M.; Webb, J.; McVittie, A.; Wall, E.; Borthwick, F.; Watson, C.; Waterhouse, A.; et al. Review and Update the UK Agriculture Marginal Abatement Cost Curve to Assess the Greenhouse Gas Abatement Potential for the 5th Carbon Budget Period and to 2050. Report for the Committee on Climate Change. 2015. Available online: https://www.theccc.org.uk/wp-content/uploads/2015/11/Scotland%E2%80%99s-Rural-Collage-SRUC-Ricardo-Energy-and-Environment-2015-Review-and-update-of-the-UK-agriculture-MACC-to-assess-abatement-potential-for-the-fifth-carbon-budget-period-and-to-2050.pdf (accessed on 1 January 2020).
- Dorn, B.; Jossi, W.; van der Heijden, M.G.A. Weed suppression by cover crops: Comparative on-farm experiments under integrated and organic conservation tillage. Weed Res. 2015, 55, 586–597. [Google Scholar] [CrossRef]
- Carr, P.M. Guest Editorial: Conservation Tillage for Organic Farming. Agriculture 2017, 7, 19. [Google Scholar] [CrossRef]
- Holland, J.; Luff, M. The Effects of Agricultural Practices on Carabidae in Temperate Agroecosystems. Integr. Pest Manag. Rev. 2000, 5, 109–129. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Fergen, J.K. The Effects of a Winter Cover Crop on Diabrotica virgifera (Coleoptera: Chrysome-lidae) Populations and Beneficial Arthropod Communities in No-Till Maize. Environ. Entomol. 2010, 39, 1816–1828. [Google Scholar] [CrossRef] [PubMed]
- Mallinger, R.E.; Franco, J.G.; Prischmann-Voldseth, D.A.; Prasifka, J.R. Annual cover crops for managed and wild bees: Optimal plant mixtures depend on pollinator enhancement goals. Agric. Ecosyst. Environ. 2018, 273, 107–116. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Lugato, E.; Leip, A.; Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Chang. 2018, 8, 219–223. [Google Scholar] [CrossRef]
- Basche, A.D.; Miguez, F.E.; Kaspar, T.C.; Castellano, M.J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 2014, 69, 471–482. [Google Scholar] [CrossRef]
- Kallenbach, C.; Grandy, A.S. Controls over soil microbial biomass responses to carbon amendments in agri-cultural systems: A meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 241–252. [Google Scholar] [CrossRef]
- Jones, S.K.; Rees, R.M.; Kosmas, D.; Ball, B.C.; Skiba, U.M. Carbon sequestration in a temperate grassland; management and climatic controls. Soil Use Manag. 2006, 22, 132–142. [Google Scholar] [CrossRef]
- Smith, L.P.S.; Pearce, B. Soil Carbon Sequestration and Organic Farming: An Overview of Current Evidence; Organic Centre Wales: Aberystwyth, UK, 2011. [Google Scholar]
- Misselbrook, T.H.; Smith, K.A.; Johnson, R.A.; Pain, B.F. SE—Structures and Environment: Slurry Application Techniques to reduce Ammonia Emissions: Results of some UK Field-scale Experiments. Biosyst. Eng. 2002, 81, 313–321. [Google Scholar] [CrossRef]
- Moxley, J.; Anthony, S.; Begum, K.; Bhogal, A.; Buckingham, S.; Christie, P.; Datta, A.; Dragosits, U.; Fitton, N.; Higgins, A.; et al. Capturing Cropland and Grassland Management Impacts on Soil Carbon in the UK LULUCF Inventory; CEH Project no. C04909, Defra Project no. SP1113; Defra: London, UK, 2014; 90p.
- Nicholson, F.; Taylor, M.; Bhogal, A.; Rollett, A.; Williams, J.R.; Newell Price, P.; Chambers, B.; Becvar, A.; Wood, M.; Litterick, A.; et al. Field Experiments for Quality Digestate and Compost in Agriculture: Work Package 2 Report—Digestate Nitrogen Supply and Environmental Emissions; Report number: OMK001-001/WR1212; ADAS: Surrey, UK, 2016. [Google Scholar]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Powlson, D.; Bhogal, A.; Chambers, B.; Coleman, K.; Macdonald, A.; Goulding, K.; Whitmore, A. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study. Agric. Ecosyst. Environ. 2012, 146, 23–33. [Google Scholar] [CrossRef]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Al-Wabel, M.; Hussain, Q.; Usman, A.; Ahmad, M.; Abduljabbar, A.; Sallam, A.; Abdulazeem, S.; Ok, Y.S. 2017. Impact of Biochar Characteristics on Soil Conditions and Agricultural Sustainability: A Review. Land Degrad. Dev. 2017, 29, 2124–2161. [Google Scholar]
- Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Virto, I.; Barré, P.; Burlot, A.; Chenu, C. Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 2011, 108, 17–26. [Google Scholar] [CrossRef]
- Pascault, N.; Ranjard, L.; Kaisermann, A.; Bachar, D.; Christen, R.; Terrat, S.; Mathieu, O.; Lévêque, J.; Mougel, C.; Henault, C.; et al. Stimulation of Different Functional Groups of Bacteria by Various Plant Residues as a Driver of Soil Priming Effect. Ecosystems 2013, 16, 810–822. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, B.; Zhu, L.; Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017, 227, 98–115. [Google Scholar] [CrossRef]
- Anderson, C.R.; Condron, L.M.; Clough, T.J.; Fiers, M.; Stewart, A.; Hill, R.A.; Sherlock, R.R. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 2011, 54, 309–320. [Google Scholar] [CrossRef]
- Burgess, P.J.; Crous-Duran, J.; Den Herder, M.; Dupraz, C.; Fagerholm, N.; Freese, D.; Garnett, K.; Graves, A.R.; Hermansen, J.E.; Liagre, F.; et al. AGFORWARD Project Periodic Report: January to December 2014; AGFORWARD, Ed.; Cranfield University: Silsoe, UK, 2015. [Google Scholar]
- Nair, P.R. The coming of age of agroforestry. J. Sci. Food Agric. 2007, 87, 1613–1619. [Google Scholar] [CrossRef]
- Söderström, B.; Svensson, B.; Vessby, K.; Glimskär, A. Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers. Conserv. 2001, 10, 1839–1863. [Google Scholar] [CrossRef]
- Hermansen, J.E.; Novak, S.; Smith, J.; Bondesan, V.; Bestman, M.; Kongsted, A.G.; Mosquera Losada, M.R.; Ferreiro-Domingues, N. Agroforestry for Livestock Farmers: Dissemination of Results and Recommendations; Milestone 25 for EU FP7 Research Project. 2018. Available online: https://www.agforward.eu/documents/MS25%20Dissemination%20for%20livestock%20farmers.pdf (accessed on 1 January 2020).
- Pumariño, L.; Sileshi, G.W.; Gripenberg, S.; Kaartinen, R.; Barrios, E.; Muchane, M.N.; Midega, C.; Jonsson, M. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 2015, 16, 573–582. [Google Scholar] [CrossRef]
- Jäger, M. Lessons Learnt: Agroforestry-Systems with Fruit Trees in Switzerland. 2017. 10p. Available online: http://www.agforward.eu/index.php/en/integrating-trees-with-arable-crops-switzerland.html (accessed on 28 September 2020).
- Wharton, G.; Gilvear, D.J. River restoration in the UK: Meeting the dual needs of the European union water framework directive and flood defence? Int. J. River Basin Manag. 2007, 5, 143–154. [Google Scholar] [CrossRef]
- Stratford, C.; Miller, J.; House, A.; Old, G.; Acreman, M.; Duenas-Lopez, M.A.; Nisbet, T.; Burgess-Gamble, L.; Chappell, N.; Clarke, S.; et al. Do Trees in UK-Relevant River Catchments Influence Fluvial Flood Peaks?: A Systematic Review; CEH: Wallingford, UK, 2017; Available online: https://nora.nerc.ac.uk/id/eprint/517804/7/N517804CR.pdf (accessed on 1 January 2020).
- De Stefano, A.; Jacobson, M.G. Soil carbon sequestration in agroforestry systems: A meta-analysis. Agrofor. Syst. 2018, 92, 285–299. [Google Scholar] [CrossRef]
- Hübner, R.; Kühnel, A.; Lu, J.; Dettmann, H.; Wang, W.; Wiesmeier, M. Soil carbon sequestration by agroforestry systems in China: A meta-analysis. Agric. Ecosyst. Environ. 2021, 315, 107437. [Google Scholar] [CrossRef]
- Mayer, S.; Wiesmeier, M.; Sakamoto, E.; Hübner, R.; Cardinael, R.; Kühnel, A.; Kögel-Knabner, I. Soil organic carbon sequestration in temperate agroforestry systems—A meta-analysis. Agric. Ecosyst. Environ. 2022, 323, 107689. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; VAN Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Cardinael, R.; Chevallier, T.; Barthès, B.G.; Saby, N.P.; Parent, T.; Dupraz, C.; Bernoux, M.; Chenu, C. Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon—A case study in a Mediterranean context. Geoderma 2015, 259–260, 288–299. [Google Scholar] [CrossRef]
- Cardinael, R.; Chevallier, T.; Cambou, A.; Béral, C.; Barthès, B.G.; Dupraz, C.; Durand, C.; Kouakoua, E.; Chenu, C. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agric. Ecosyst. Environ. 2017, 236, 243–255. [Google Scholar] [CrossRef]
- Baah-Acheamfour, M.; Chang, S.X.; Carlyle, C.N.; Bork, E.W. Carbon pool size and stability are affected by trees and grassland cover types within agroforestry systems of western Canada. Agric. Ecosyst. Environ. 2015, 213, 105–113. [Google Scholar] [CrossRef]
- Cardinael, R.; Umulisa, V.; Toudert, A.; Olivier, A.; Bockel, L.; Bernoux, M. Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environ. Res. Lett. 2018, 13, 124020. [Google Scholar] [CrossRef]
- Vityi, A.; Kiss Szigeti, N.; Schettrer, P.; Marosvölgyi, B. Lessons Learnt: Alley Cropping in Hungary. 2017. 24p. Available online: http://agforward.eu/index.php/en/alley-cropping-systems-in-hungary.html (accessed on 28 September 2017).
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Gosme, M.; Desclaux, D. Lessons Learnt: Screening of Durum Wheat Cultivars for Agroforestry. 2017. Available online: https://www.agforward.eu/documents/LessonsLearnt/WP4_F_Screening_durum_wheat_lessons_learnt.pdf (accessed on 12 October 2017).
- Arenas-Corraliza, M.G.; López-Díaz, M.L.; Moreno, G. Lessons Learnt: Cereal Crops within Walnut Plantations in Mediterranean Spain. 2017. 26p. Available online: http://www.agforward.eu/index.php/en/silvoarable-systems-in-spain.htm (accessed on 12 October 2017).
- Kanzler, M.; Mirck, J. Lessons Learnt—Alley Cropping in Germany; 2017; 12p. Available online: http://agforward.eu/index.php/en/alley-cropping-systems-in-germany.html (accessed on 28 July 2017).
- Wolton, R.J.; Pollard, K.A.; Goodwin, A.; Norton, L. Regulatory Services Delivered by Hedges: The Evidence Base; Report of Defra project LM0106; Defra: London, UK, 2014.
- Maudsley, M.; Seeley, B.; Lewis, O. Spatial distribution patterns of predatory arthropods within an English hedgerow in early winter in relation to habitat variables. Agric. Ecosyst. Environ. 2002, 89, 77–89. [Google Scholar] [CrossRef]
- Wickramasinghe, L.P.; Harris, S.; Jones, G.; Vaughan, N. Bat activity and species richness on organic and conventional farms: Impact of agricultural intensification. J. Appl. Ecol. 2003, 40, 984–993. [Google Scholar] [CrossRef]
- Graham, L.; Gaulton, R.; Gerard, F.; Staley, J.T. The influence of hedgerow structural condition on wildlife habitat provision in farmed landscapes. Biol. Conserv. 2018, 220, 122–131. [Google Scholar] [CrossRef]
- de Snoo, G.R.; Scheidegger, N.M.I.; de Jong, F.M.W. Vertebrate wildlife incidents with pesticides: A european survey. Pestic. Sci. 1999, 55, 47–54. [Google Scholar] [CrossRef]
- Staley, J.T.; Botham, M.S.; Amy, S.R.; Hulmes, S.; Pywell, R.F. Experimental evidence for optimal hedgerow cutting regimes for Brown hairstreak butterflies. Insect Conserv. Divers. 2017, 11, 213–218. [Google Scholar] [CrossRef]
- Merot, P. The influence of hedgerow systems on the hydrology of agricultural catchments in a temperate climate. Agronomie 1999, 19, 655–669. [Google Scholar] [CrossRef]
- Borin, M.; Passoni, M.; Thiene, M.; Tempesta, T. Multiple functions of buffer strips in farming areas. Eur. J. Agron. 2010, 32, 103–111. [Google Scholar] [CrossRef]
- Caubel-Forget, V.; Grimaldi, C.; Rouault, F. Contrasted dynamics of nitrate and chloride in groundwater submitted to the influence of a hedge. C. R. Acad. Sci. Ser. IIA Earth Planet. Sci. 2001, 332, 107–113. [Google Scholar] [CrossRef]
- Ford, H.; Healey, J.R.; Webb, B.; Pagella, T.F.; Smith, A.R. How do hedgerows influence soil organic carbon stock in livestock-grazed pasture? Soil Use Manag. 2019, 35, 576–584. [Google Scholar] [CrossRef]
- Pointereau, P.; Colon-Solagro, F. Reflecting Environmental Land Use Needs into EU Policy: Preserving and Enhancing the Environmental Benefits of Unfarmed Features on EU Farmland; Case Study report France; Institute for European Environmental Policy IEEP: Stevenage, UK, 2008. [Google Scholar]
- Dickie, I.E.A. The Economic Case for Investment in Natural Capital in England. Final Report for the Natural Capital Committee; Land Use appendix; Defra: London, UK, 2015.
- Pywell, R.F.; Heard, M.S.; Woodcock, B.A.; Hinsley, S.; Ridding, L.; Nowakowski, M.; Bullock, J.M. Wildlife-friendly farming increases crop yield: Evidence for ecological intensification. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151740. [Google Scholar] [CrossRef] [PubMed]
- Scheper, J.; Holzschuh, A.; Kuussaari, M.; Potts, S.G.; Rundlöf, M.; Smith, H.G.; Kleijn, D. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—A meta-analysis. Ecol. Lett. 2013, 16, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Josefsson, J.; Berg, Å.; Hiron, M.; Pärt, T.; Eggers, S. Grass buffer strips benefit invertebrate and breeding skylark numbers in a heterogeneous agricultural landscape. Agric. Ecosyst. Environ. 2013, 181, 101–107. [Google Scholar] [CrossRef]
- Williams, N.M.; Ward, K.L.; Pope, N.; Isaacs, R.; Wilson, J.; May, E.A.; Ellis, J.; Daniels, J.; Pence, A.; Ullmann, K.; et al. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol. Appl. 2015, 25, 2119–2131. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat Management to Conserve Natural Enemies of Arthropod Pests in Agriculture. Annu. Rev. Èntomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Jonsson, M.; Straub, C.S.; Didham, R.K.; Buckley, H.L.; Case, B.S.; Hale, R.J.; Gratton, C.; Wratten, S.D. Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. J. Appl. Ecol. 2015, 52, 1274–1282. [Google Scholar] [CrossRef]
- Vickery, J.A.; Feber, R.E.; Fuller, R.J. Arable field margins managed for biodiversity conservation: A review of food resource provision for farmland birds. Agric. Ecosyst. Environ. 2009, 133, 1–13. [Google Scholar] [CrossRef]
- Wolton, R.J.; Morris RK, A.; Pollard, K.A.; Dover, J. Understanding the Combined Biodiversity Benefits of the Component Features of Hedges; Report of Defra project BD5214; Bright Angel Coastal Consultants Ltd.: Stamford, CT, USA, 2013. [Google Scholar]
- DEFRA. Comparison of New and Existing Agri-Environment Scheme Options for Biodiversity Enhancement on Arable Land (Project Number BD1624); CEH: Wallingford, UK, 2007.
- Marshall, E.; Moonen, A. Field margins in northern Europe: Their functions and interactions with agriculture. Agric. Ecosyst. Environ. 2002, 89, 5–21. [Google Scholar] [CrossRef]
- Carvell, C.; Bourke, A.F.; Osborne, J.L.; Heard, M.S. Effects of an agri-environment scheme on bumblebee reproduction at local and landscape scales. Basic Appl. Ecol. 2015, 16, 519–530. [Google Scholar] [CrossRef]
- Heard, M.; Carvell, C.; Carreck, N.; Rothery, P.; Osborne, J.; Bourke, A. Landscape context not patch size determines bumble-bee density on flower mixtures sown for agri-environment schemes. Biol. Lett. 2007, 3, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Alison, J.; Duffield, S.J.; Noordwijk, C.G.E.; Morecroft, M.D.; Marrs, R.H.; Saccheri, I.J.; Hodgson, J.A. Spatial targeting of habitat creation has the potential to improve agri-environment scheme outcomes for macro-moths. J. Appl. Ecol. 2016, 53, 1814–1822. [Google Scholar] [CrossRef]
- Pywell, R.; Warman, E.; Carvell, C.; Sparks, T.; Dicks, L.; Bennett, D.; Wright, A.; Critchley, C.; Sherwood, A. Providing foraging resources for bumblebees in intensively farmed landscapes. Biol. Conserv. 2005, 121, 479–494. [Google Scholar] [CrossRef]
- Pringle, H.E.; Grice, P.V.; Siriwardena, G.M. Impacts of Environmental Stewardship on Bird Populations in Farmland 2002–2017; Report to Natural England; Natural England: London, UK, 2020.
- Falloon, P.; Powlson, D.; Smith, P. Managing field margins for biodiversity and carbon sequestration: A Great Britain case study. Soil Use Manag. 2004, 20, 240–247. [Google Scholar] [CrossRef]
- Keulemans, W.; Bylemans, D.; De Coninck, B. Farming without plant protection products: Can we grow without fungicides, pesticides and herbicides? In Panel for the Future of Science and Technology; STOA, Ed.; European Parliament: Brussels, Belgium, 2019. [Google Scholar]
- Bengtsson, J.; Ahnström, J.; Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fließbach, A.; Gunst, L.; Hedlund, K.; et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 2008, 40, 2297–2308. [Google Scholar] [CrossRef]
- Tosi, S.; Nieh, J.C.; Sgolastra, F.; Cabbri, R.; Medrzycki, P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. Biol. Sci. 2017, 284, 20171711. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Kreuger, J.; Peterson, M.; Lundgren, E. Agricultural inputs of pesticide residues to stream and pond sediments in a small catchment in Southern Sweden. Bull. Environ. Contam. Toxicol. 1999, 62, 55–62. [Google Scholar] [CrossRef]
- Maeder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- DEFRA. SCARAB/TALISMAN Completion Studies; Report for Defra project PS0243; DEFRA: London, UK, 2000.
- MacLaren, C.; Storkey, J.; Menegat, A.; Metcalfe, H.; Dehnen-Schmutz, K. An ecological future for weed science to sustain crop production and the environment. A review. Agron. Sustain. Dev. 2020, 40, 1–29. [Google Scholar] [CrossRef]
- Pimentel, D.; McLaughlin, L.; Zepp, A.; Lakitan, B.; Kraus, T.; Kleinman, P.; Vancini, F.; Roach, W.J.; Graap, E.; Keeton, W.S.; et al. Environmental and Economic Effects of Reducing Pesticide Use. BioScience 1991, 41, 402–409. [Google Scholar] [CrossRef]
- Lechenet, M.; Bretagnolle, V.; Bockstaller, C.; Boissinot, F.; Petit, M.-S.; Petit, S.; Munier-Jolain, N.M. Reconciling Pesticide Reduction with Economic and Environmental Sustainability in Arable Farming. PLoS ONE 2014, 9, e97922. [Google Scholar] [CrossRef]
- Lampkin, N.H.; Pearce, B.D.; Leake, A.R.; Creissen, H.; Gerrard, C.L.; Girling, R.; Lloyd, S.; Padel, S.; Smith, J.; Smith, L.G.; et al. The Role of Agroecology in Sustainable Intensification. In Organic Research Centre; Report for the Land Use Policy Group; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Kohler, F.; Verhulst, J.; Van Klink, R.; Kleijn, D. At what spatial scale do high-quality habitats enhance the diversity of forbs and pollinators in intensively farmed landscapes? J. Appl. Ecol. 2008, 45, 753. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Bugg, R.L.; Fay, J.P.; Thorp, R.W. The area requirements of an ecosystem service: Crop pollination by native bee communities in California. Ecol. Lett. 2004, 7, 1109–1119. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Regetz, J.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Bogdanski, A.; Gem-Mill-Herren, B.; Greenleaf, S.S.; Klein, A.M.; Mayfield, M.M.; et al. Landscape effects on crop pollination services: Are there general patterns? Ecol. Lett. 2008, 11, 499–515. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Kremen, C.; Morales, J.M.; Bommarco, R.; Cunningham, S.A.; Carvalheiro, L.G.; Chacoff, N.P.; Dudenhöffer, J.H.; Greenleaf, S.S.; et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 2011, 14, 1062–1072. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J.-L. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 2010, 14, 101–112. [Google Scholar] [CrossRef]
- Perović, D.; Gámez-Virués, S.; Börschig, C.; Klein, A.-M.; Krauss, J.; Steckel, J.; Rothenwöhrer, C.; Erasmi, S.; Tscharntke, T.; Westphal, C. Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J. Appl. Ecol. 2015, 52, 505–513. [Google Scholar] [CrossRef]
- Maskell, L.; Botham, M.; Henrys, P.; Jarvis, S.; Maxwell, D.; Robinson, D.; Rowland, C.; Siriwardena, G.; Smart, S.; Skates, J.; et al. Exploring relationships between land use intensity, habitat heterogeneity and biodiversity to identify and monitor areas of High Nature Value farming. Biol. Conserv. 2019, 231, 30–38. [Google Scholar] [CrossRef]
- Lawton, J.; Brotherton, P.N.M.; Brown, V.K.; Elphick, C.; Fitter, A.H.; Forshaw, J.; Haddow, R.; Hilborne, S.; Leafe, R.; Mace, G.; et al. Making Space for Nature: A Review of England’s Wildlife Sites and Ecological Network; Defra: London, UK, 2010.
- Concepción, E.D.; Díaz, M.; Kleijn, D.; Báldi, A.; Batáry, P.; Clough, Y.; Gabriel, D.; Herzog, F.; Holzschuh, A.; Knop, E.; et al. Interactive effects of landscape context constrain the effectiveness of local agri-environmental management. J. Appl. Ecol. 2012, 49, 695–705. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Fuller, R.J.; Norton, L.R.; Feber, R.E.; Johnson, P.J.; Chamberlain, D.E.; Joys, A.C.; Mathews, F.; Stuart, R.C.; Townsend, M.C.; Manley, W.J.; et al. Benefits of organic farming to biodiversity vary among taxa. Biol. Lett. 2005, 1, 431–434. [Google Scholar] [CrossRef]
- Kazemi, H.; Klug, H.; Kamkar, B. New services and roles of biodiversity in modern agroecosystems: A review. Ecol. Indic. 2018, 93, 1126–1135. [Google Scholar] [CrossRef]
- Buzhdygan, O.Y.; Petermann, J.S. Multitrophic biodiversity enhances ecosystem functions, services and ecological intensification in agriculture. J. Plant Ecol. 2023, 16, rtad019. [Google Scholar] [CrossRef]
- Heroldova, M.; Michalko, R.; Suchomel, J.; Zejda, J. Influence of no-tillage versus tillage system on common vole (Microtus arvalis) population density. Pest Manag. Sci. 2018, 74, 1346–1350. [Google Scholar] [CrossRef]
- Harper, J.K.; Roth, G.W.; Garalejić, B.; Škrbić, N. Programs to promote adoption of conservation tillage: A Serbian case study. Land Use Policy 2018, 78, 295–302. [Google Scholar] [CrossRef]
- Keenleyside, C.B.; Maskell, L.C.; Smart, S.M.; Siriwardena, G.M.; Alison, J. Environment and Rural Affairs Monitoring & Modelling Programme (ERAMMP): Report-25: SFS Evidence Review Annex-4B—Building Ecosystem Resilience in Improved Farmland; Report to Welsh Government (Contract C210/2016/2017); UKCEH: Bangor, UK, 2020. [Google Scholar]
- Alahmad, A.; Decocq, G.; Spicher, F.; Kheirbeik, L.; Kobaissi, A.; Tetu, T.; Dubois, F.; Duclercq, J. Cover crops in arable lands increase functional complementarity and redundancy of bacterial communities. J. Appl. Ecol. 2019, 56, 651–664. [Google Scholar] [CrossRef]
- Cardina, J.; Herms, C.P.; Doohan, D.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2009, 50, 448–460. [Google Scholar] [CrossRef]
- Haenke, S.; Kovács-Hostyánszki, A.; Fründ, J.; Batáry, P.; Jauker, B.; Tscharntke, T.; Holzschuh, A. Landscape configuration of crops and hedgerows drives local syrphid fly abundance. J. Appl. Ecol. 2014, 51, 505–513. [Google Scholar] [CrossRef]
- Morandin, L.A.; Kremen, C. Bee Preference for Native versus Exotic Plants in Restored Agricultural Hedgerows. Restor. Ecol. 2012, 21, 26–32. [Google Scholar] [CrossRef]
- Boatman, N.D. (Ed.) Field Margins—Integrating Agriculture and Conservation; BCPC Monograph No 58; British Crop Protection Council: Farnham, UK, 1994. [Google Scholar]
- Hinsley, S.; Bellamy, P. The influence of hedge structure, management and landscape context on the value of hedgerows to birds: A review. J. Environ. Manag. 2000, 60, 33–49. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Kovář, P.; Vaššová, D.; Hrabalíková, M. Mitigation of surface runoff and erosion impacts on catchment by stone hedgerows. Soil Water Res. 2011, 6, 153–164. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L.; Robertson, G.P. Effects of Crop Diversity on Agroecosystem Function: Crop Yield Response. Ecosystems 2008, 11, 355–366. [Google Scholar] [CrossRef]
- Vincent-Caboud, L.; Peigné, J.; Casagrande, M.; Silva, E.M. Overview of Organic Cover Crop-Based No-Tillage Technique in Europe: Farmers’ Practices and Research Challenges. Agriculture 2017, 7, 42. [Google Scholar] [CrossRef]
- Bernal, M.; Alburquerque, J.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maskell, L.C.; Radbourne, A.; Norton, L.R.; Reinsch, S.; Alison, J.; Bowles, L.; Geudens, K.; Robinson, D.A. Functional Agro-Biodiversity: An Evaluation of Current Approaches and Outcomes. Land 2023, 12, 2078. https://doi.org/10.3390/land12112078
Maskell LC, Radbourne A, Norton LR, Reinsch S, Alison J, Bowles L, Geudens K, Robinson DA. Functional Agro-Biodiversity: An Evaluation of Current Approaches and Outcomes. Land. 2023; 12(11):2078. https://doi.org/10.3390/land12112078
Chicago/Turabian StyleMaskell, Lindsay C., Alan Radbourne, Lisa R. Norton, Sabine Reinsch, Jamie Alison, Liz Bowles, Katrien Geudens, and David A. Robinson. 2023. "Functional Agro-Biodiversity: An Evaluation of Current Approaches and Outcomes" Land 12, no. 11: 2078. https://doi.org/10.3390/land12112078
APA StyleMaskell, L. C., Radbourne, A., Norton, L. R., Reinsch, S., Alison, J., Bowles, L., Geudens, K., & Robinson, D. A. (2023). Functional Agro-Biodiversity: An Evaluation of Current Approaches and Outcomes. Land, 12(11), 2078. https://doi.org/10.3390/land12112078