A New Approach to Monitor Soil Microbial Driven C/N Ratio in Temperate Evergreen Coniferous Forests Managed via Sentinel-2 Spectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Forest Sites
2.2. Soil C and N Contents
2.3. Sentinel-2 Imagery and Vegetation Indices
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petersson, H.; Ellison, D.; Mensah, A.A.; Berndes, G.; Egnell, G.; Lundblad, M.; Lundmark, T.; Lundström, A.; Stendahl, J.; Wikberg, P.-E. On the role of forests and the forest sector for climate change mitigation in sweden. Glob. Chang. Biol. Bioenergy 2022, 14, 793–813. [Google Scholar] [CrossRef]
- Hüblová, L.; Frouz, J. Contrasting effect of coniferous and broadleaf trees on soil carbon storage during reforestation of forest soils and afforestation of agricultural and post-mining soils. J. Environ. Manag. 2021, 290, 112567. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, T.; Wang, S.; Wang, Z. Soil ph and C/N ratio determines spatial variations in soil microbial communities and enzymatic activities of the agricultural ecosystems in northeast china: Jilin province case. Appl. Soil Ecol. 2020, 155, 103629. [Google Scholar] [CrossRef]
- Sun, L.; Ataka, M.; Kominami, Y.; Yoshimura, K.; Kitayama, K. A constant microbial C/N ratio mediates the microbial nitrogen mineralization induced by root exudation among four co-existing canopy species. Rhizosphere 2021, 17, 100317. [Google Scholar] [CrossRef]
- Karhu, K.; Alaei, S.; Li, J.; Merilä, P.; Ostonen, I.; Bengtson, P. Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios. Soil Biol. Biochem. 2022, 167, 108615. [Google Scholar] [CrossRef]
- Deng, F.; Liang, C. Revisiting the quantitative contribution of microbial necromass to soil carbon pool: Stoichiometric control by microbes and soil. Soil Biol. Biochem. 2022, 165, 108486. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, R.; Wang, X.; Xu, X.; Ai, C.; He, P.; Liang, G.; Zhou, W.; Zhu, P. Effect of high soil C/N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition. J. Environ. Manag. 2022, 303, 114155. [Google Scholar] [CrossRef]
- Chalk, P.M.; Lam, S.K.; Chen, D. The significance of endophytic and phyllospheric N2 fixation in forest trees: Evidence from stable (15n) and radioactive (13n) tracer studies. Trees (Berl. West) 2022, 36, 1179–1184. [Google Scholar] [CrossRef]
- Gao, W.; Chen, M.; Xu, X. Tracing controls of autotrophic and heterotrophic nitrification in terrestrial soils. Eur. J. Soil Biol. 2022, 110, 103409. [Google Scholar] [CrossRef]
- Baldrian, P.; Kolařík, M.; Štursová, M.; Kopecký, J.; Valášková, V.; Větrovský, T.; Žifčáková, L.; Šnajdr, J.; Rídl, J.; Vlček, Č.; et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2011, 6, 248–258. [Google Scholar] [CrossRef]
- Uroz, S.; Ioannidis, P.; Lengelle, J.; Cxexbron, A.; Morin, E.; Buxexe, M.; Martin, F. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a norway spruce plantation. PLoS ONE 2013, 8, e55929. [Google Scholar] [CrossRef]
- Zielonka, A.; Drewnik, M.; Musielok, Ł.; Dyderski, M.K.; Struzik, D.; Smułek, G.; Ostapowicz, K. Biotic and abiotic determinants of soil organic matter stock and fine root biomass in mountain area temperate forests—examples from cambisols under european beech, norway spruce, and silver fir (carpathians, central europe). Forests 2021, 12, 823. [Google Scholar] [CrossRef]
- Peplau, T.; Schroeder, J.; Gregorich, E.; Poeplau, C. Long-term geothermal warming reduced stocks of carbon but not nitrogen in a subarctic forest soil. Glob. Chang. Biol. 2021, 27, 5341–5355. [Google Scholar] [CrossRef]
- Kaarakka, L.; Cornett, M.; Domke, G.; Ontl, T.; Dee, L.E. Improved forest management as a natural climate solution: A review. Ecol. Solut. Evid. 2021, 2, e12090. [Google Scholar] [CrossRef]
- Larsen, J.B.; Angelstam, P.; Bauhus, J.; Fidalgo Carvalho, J.A.; Diaci, J.; Dobrowolska, D.; Gazda, A.; Gustafsson, L.; Krumm, F.; Knoke, T.; et al. Closer-to-Nature Forest Management. Technical Report. 2022. Available online: https://efi.int/sites/default/files/files/publication-bank/2022/EFI_fstp_12_2022.pdf (accessed on 21 August 2022).
- Erasmi, S.; Klinge, M.; Dulamsuren, C.; Schneider, F.; Hauck, M. Modelling the productivity of siberian larch forests from landsat NDVI time series in fragmented forest stands of the mongolian forest-steppe. Environ. Monit. Assess. 2021, 193. [Google Scholar] [CrossRef]
- Prăvxaxlie, R.; Sîrodoev, I.; Nita, I.; Patriche, C.; Dumitraşcu, M.; Roxsxca, B.; Tixsxcovschi, A.; Bandoc, G.; Sxaxvulescu, I.; Mxaxnoiu, V.; et al. NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in romania during 1987–2018. Ecol. Indic. 2022, 136, 108629. [Google Scholar] [CrossRef]
- Wani, A.A.; Bhat, A.F.; Gatoo, A.A.; Zahoor, S.; Mehraj, B.; Najam, N.; Wani, Q.S.; Islam, M.A.; Murtaza, S.; Dervash, M.A.; et al. Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate himalayas. Mitig. Adapt. Strateg. Glob. Chang. 2021, 26, 1–22. [Google Scholar] [CrossRef]
- Reddy, N.M.; Peerzada, I.A.; Moonis, M.; Singh, O. Application of biophysical, soil, and vegetation indices to better understand forest dynamics and develop strategies for forest conservation. In Forest Dynamics and Conservation; Springer: Singapore, 2022; pp. 399–415. [Google Scholar]
- Mariotte, P.; Mehrabi, Z.; Bezemer, T.M.; De Deyn, G.B.; Kulmatiski, A.; Drigo, B.; Ciska Veen, G.F.; van der Heijden, M.G.A.; Kardol, P. Plant-soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 2018, 33, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Puletti, N.; Mattioli, W.; Bussotti, F.; Pollastrini, M. Monitoring the effects of extreme drought events on forest health by sentinel-2 imagery. J. Appl. Remote Sens. 2019, 13, 1. [Google Scholar] [CrossRef]
- Gupta, S.K.; Pandey, A.C. Spectral aspects for monitoring forest health in extreme season using multispectral imagery. Egypt. J. Remote Sens. Space Sci. 2021, 24, 579–586. [Google Scholar] [CrossRef]
- Comparetti, A.; da Silva, J.R.M. Use of Sentinel-2 satellite for spatially variable rate fertiliser management in a Sicilian vineyard. Sustainability 2022, 14, 1688. [Google Scholar] [CrossRef]
- Uribeetxebarria, A.; Castellón, A.; Aizpurua, A. A first approach to determine if it is possible to delineate in-season n fertilization maps for wheat using NDVI derived from sentinel-2. Remote Sens. 2022, 14, 2872. [Google Scholar] [CrossRef]
- Boczoń, A.; Kowalska, A.; Dudzińska, M.; Wróbel, M. Drought in polish forests in 2015. Pol. J. Environ. Stud. 2016, 25, 1857–1862. [Google Scholar] [CrossRef] [PubMed]
- Çömez, A.; Güner, Ş.-T.; Tolunay, D. The effect of stand structure on litter decomposition in Pinus sylvestris L. stands in turkey. Ann. For. Sci. 2021, 78, 1–13. [Google Scholar] [CrossRef]
- Schroeter, S.A.; Eveillard, D.; Chaffron, S.; Zoppi, J.; Kampe, B.; Lohmann, P.; Jehmlich, N.; von Bergen, M.; Sanchez-Arcos, C.; Pohnert, G.; et al. Microbial community functioning during plant litter decomposition. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, X.; Xiao, S.; Liu, Z.; Zhou, X.; Du, G.; Liu, K.; Wang, Y.; Chen, S.; Nielsen, U.N. Dominant plants affect litter decomposition mainly through modifications of the soil microbial community. Soil Biol. Biochem. 2021, 161, 108399. [Google Scholar] [CrossRef]
- NYa’acob, O.; Azize, A.B.M.; Mahmon, N.A.; Yusof, A.L.; Azmi, N.F.; Mustafa, N. Temporal forest change detection and forest health assessment using remote sensing. IOP Conf. Ser. Earth Environ. Sci. 2014, 19, 012017. [Google Scholar]
- Nath, B.; Acharjee, S. Forest cover change detection using normalized difference vegetation index (NDVI): A study of reingkhyongkine lake’s adjoining areas, rangamati, bangladesh. Indian Cartogr. 2013, 33, 348–403. [Google Scholar]
- Guan, H.L.; Fan, J.W.; Lu, X. Soil specific enzyme stoichiometry reflects nitrogen limitation of microorganisms under different types of vegetation restoration in the karst areas. Appl. Soil Ecol. 2022, 169, 104253. [Google Scholar] [CrossRef]
- Panico, S.C.; Memoli, V.; Santorufo, L.; Aiello, S.; Barile, R.; Marco, A.D.; Maisto, G. Soil biological responses under different vegetation types in mediterranean area. Int. J. Environ. Res. Public Health 2022, 19, 903. [Google Scholar] [CrossRef]
- Silva, I.C.; Robles, E.O.L. Reservorio de nitrógeno y relación c:n de un umbrisol bajo manejo forestal en durango, méxico. Rev. Mex. Cienc. For. 2022, 13, 82–111. [Google Scholar] [CrossRef]
- Allison, S.D.; Vitousek, P.M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Lasota, J.; Babiak, T.; Błońska, E. C:N:P stoichiometry associated with biochar in forest soils at historical charcoal production sites in poland. Geoderma Reg. 2022, 28, e00482. [Google Scholar] [CrossRef]
- Cools, N.; Vesterdal, L.; Vos, B.D.; Vanguelova, E.; Hansen, K. Tree species is the major factor explaining C:N ratios in european forest soils. For. Ecol. Manag. 2014, 311, 3–16. [Google Scholar] [CrossRef]
- Borowik, T.; Pettorelli, N.; Sönnichsen, L.; Jędrzejewska, B. Normalized difference vegetation index (NDVI) as a predictor of forage availability for ungulates in forest and field habitats. Eur. J. Wildl. Res. 2013, 59, 675–682. [Google Scholar] [CrossRef]
- ELevine, R.; Knox, R.G.; Lawrence, W.T. Relationships between soil properties and vegetation at the northern experimental forest, howland, maine. Remote Sens. Environ. 1994, 47, 231–241. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Zhang, H.; Wang, S. Prediction of soil organic carbon based on landsat 8 monthly NDVI data for the jianghan plain in hubei province, china. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yu, M.; Ma, J.; Luo, Z.; Chen, F.; Yang, Y. Identifying the relationship between soil properties and rice growth for improving consolidated land in the yangtze river delta, china. Sustainability 2018, 10, 3072. [Google Scholar] [CrossRef] [Green Version]
- Du, E.; Fenn, M.E.; Vries, W.D.; Ok, Y.S. Atmospheric nitrogen deposition to global forests: Status, impacts and management options. Environ. Pollut. 2019, 250, 1044–1048. [Google Scholar] [CrossRef]
- Abalos, D.; Recous, S.; Butterbach-Bahl, K.; Notaris, C.D.; Rittl, T.F.; Topp, C.F.E.; Petersen, S.O.; Hansen, S.; Bleken, M.A.; Rees, R.M.; et al. A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Sci. Total Environ. 2022, 828, 154388. [Google Scholar] [CrossRef]
Band | Spectral Range (nm) | Pixel Size (m) | Name |
---|---|---|---|
B01 | 432–453 | 60 | Atmospheric correction |
B02 | 458–523 | 10 | VIS-BLUE |
B03 | 543–578 | 10 | VIS-GREEN |
B04 | 650–680 | 10 | VIS-RED |
B05 | 698–713 | 20 | RED EDGE |
B06 | 733–748 | 20 | RED EDGE |
B07 | 773–793 | 20 | RED EDGE |
B08 | 785–900 | 10 | NIR |
B8A | 855–875 | 20 | NIR narrow |
B09 | 935–955 | 60 | Water vapour absorption |
B11 | 1565–1655 | 20 | SWIR |
B12 | 2100–2280 | 20 | SWIR |
Forest Districts | ||
---|---|---|
Soil C/N Ratio | Kup | Koniecpol |
Mean ± STd | 21.62 ± 5.78 | 23.45 ± 6.49 |
Minimum | 10.14 | 11.25 |
Maximun | 32.36 | 39.17 |
Q1 | 17.66 | 18.00 |
Q3 | 26.22 | 28.07 |
NDVI Mean ± STd | 0.76 ± 0.07 | 0.86 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyna, L.; Lasota, J.; Reyna-Bowen, L.; Vera-Montenegro, L.; Vega-Ponce, E.C.; Izaguirre-Mayoral, M.L.; Błońska, E. A New Approach to Monitor Soil Microbial Driven C/N Ratio in Temperate Evergreen Coniferous Forests Managed via Sentinel-2 Spectral Imagery. Land 2023, 12, 284. https://doi.org/10.3390/land12020284
Reyna L, Lasota J, Reyna-Bowen L, Vera-Montenegro L, Vega-Ponce EC, Izaguirre-Mayoral ML, Błońska E. A New Approach to Monitor Soil Microbial Driven C/N Ratio in Temperate Evergreen Coniferous Forests Managed via Sentinel-2 Spectral Imagery. Land. 2023; 12(2):284. https://doi.org/10.3390/land12020284
Chicago/Turabian StyleReyna, Lizardo, Jarosław Lasota, Lizardo Reyna-Bowen, Lenin Vera-Montenegro, Emil Cristhian Vega-Ponce, Maria Luisa Izaguirre-Mayoral, and Ewa Błońska. 2023. "A New Approach to Monitor Soil Microbial Driven C/N Ratio in Temperate Evergreen Coniferous Forests Managed via Sentinel-2 Spectral Imagery" Land 12, no. 2: 284. https://doi.org/10.3390/land12020284
APA StyleReyna, L., Lasota, J., Reyna-Bowen, L., Vera-Montenegro, L., Vega-Ponce, E. C., Izaguirre-Mayoral, M. L., & Błońska, E. (2023). A New Approach to Monitor Soil Microbial Driven C/N Ratio in Temperate Evergreen Coniferous Forests Managed via Sentinel-2 Spectral Imagery. Land, 12(2), 284. https://doi.org/10.3390/land12020284