Carbon Pool Dynamic and Soil Microbial Respiration Affected by Land Use Alteration: A Case Study in Humid Subtropical Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Soil Microbiological Measurements
2.3. C Mineralization Kinetic and Biochemical Parameters
3. Results
3.1. Soil Microbial Respiration (SMR)
3.2. Cumulative CO2-C Emitted
3.3. Soil Carbon Parameters
3.4. C Mineralization Kinetic
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the Intensification of Agriculture for Global Food Security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Davey, T.M.; Selvey, L.A. Relationship between Land Use/Land-Use Change and Human Health in Australia: A Scoping Study. Int. J. Environ. Res. Public Health 2020, 17, 8992. [Google Scholar] [CrossRef] [PubMed]
- Esse, C.; Ríos, N.; Saavedra, P.; Fonseca, D.; Encina-Montoya, F.; Santander-Massa, R.; De los Ríos-Escalante, P.; Figueroa-Muñoz, G.; López-Pérez, A.; Correa-Araneda, F. Effects of Land Use Change on Water Availability and Water Efficiency in the Temperate Basins of South-Central Chile. J. King Saud Univ. Sci. 2021, 33, 101650. [Google Scholar] [CrossRef]
- Mongil-Manso, J.; Navarro-Hevia, J.; San Martín, R. Impact of Land Use Change and Afforestation on Soil Properties in a Mediterranean Mountain Area of Central Spain. Land 2022, 11, 1043. [Google Scholar] [CrossRef]
- Yee, S.H.; Paulukonis, E.; Simmons, C.; Russell, M.; Fulford, R.; Harwell, L.; Smith, L.M. Projecting Effects of Land Use Change on Human Well-Being through Changes in Ecosystem Services. Ecol. Model. 2021, 440, 109358. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhu, Y.; Yin, M.; Liu, D. The Impact of Land Use and Rainfall Patterns on the Soil Loss of the Hillslope. Sci. Rep. 2021, 11, 16341. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Salmon, J.M. Mapping the World’s Degraded Lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, W.; Ye, Y.; Zhao, J.; Wang, K. Soil Aggregate Mediates the Impacts of Land Uses on Organic Carbon, Total Nitrogen, and Microbial Activity in a Karst Ecosystem. Sci. Rep. 2017, 7, 41402. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, F.; Cheng, X. Effects of Land Use Change Type on Soil Microbial Attributes and Their Controls: Data Synthesis. Ecol. Indic. 2022, 138, 108852. [Google Scholar] [CrossRef]
- Malik, A.A.; Puissant, J.; Buckeridge, K.M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gweon, H.S.; Peyton, J.M.; Mason, K.E.; van Agtmaal, M.; et al. Land Use Driven Change in Soil PH Affects Microbial Carbon Cycling Processes. Nat. Commun. 2018, 9, 3591. [Google Scholar] [CrossRef]
- Li, H.; Zhu, H.; Liang, C.; Wei, X.; Yao, Y. Soil Erosion Significantly Decreases Aggregate-Associated OC and N in Agricultural Soils of Northeast China. Agric. Ecosyst. Environ. 2022, 323, 107677. [Google Scholar] [CrossRef]
- Alkimim, A.; Sparovek, G.; Clarke, K.C. Converting Brazil’s Pastures to Cropland: An Alternative Way to Meet Sugarcane Demand and to Spare Forestlands. Appl. Geogr. 2015, 62, 75–84. [Google Scholar] [CrossRef]
- Gao, J.; Lu, Y.; Chen, Z.; Wang, L.; Zhou, J. Land-use Change from Cropland to Orchard Leads to High Nitrate Accumulation in the Soils of a Small Catchment. Land Degrad. Dev. 2019, 30, 2150–2161. [Google Scholar] [CrossRef]
- Dang, C.; Shao, Z.; Huang, X.; Qian, J.; Cheng, G.; Ding, Q.; Fan, Y. Assessment of the Importance of Increasing Temperature and Decreasing Soil Moisture on Global Ecosystem Productivity Using Solar-induced Chlorophyll Fluorescence. Glob. Chang. Biol. 2022, 28, 2066–2080. [Google Scholar] [CrossRef]
- Bibi, S.; Irshad, M.; Mohiuddin, M.; Sher, S.; Tariq, M.A.U.R.; Ng, A.W.M. Distribution of Phosphorus Fractions in Orchard Soils in Relation to Soil Properties and Foliar P Contents. Sustainability 2022, 14, 3966. [Google Scholar] [CrossRef]
- Vargas-Terminel, M.L.; Flores-Rentería, D.; Sánchez-Mejía, Z.M.; Rojas-Robles, N.E.; Sandoval-Aguilar, M.; Chávez-Vergara, B.; Robles-Morua, A.; Garatuza-Payan, J.; Yépez, E.A. Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico. Soil Syst. 2022, 6, 75. [Google Scholar] [CrossRef]
- Hu, X.; Næss, J.S.; Iordan, C.M.; Huang, B.; Zhao, W.; Cherubini, F. Recent Global Land Cover Dynamics and Implications for Soil Erosion and Carbon Losses from Deforestation. Anthropocene 2021, 34, 100291. [Google Scholar] [CrossRef]
- Vries, F.T.; Williams, A.; Stringer, F.; Willcocks, R.; McEwing, R.; Langridge, H.; Straathof, A.L. Changes in Root-exudate-induced Respiration Reveal a Novel Mechanism through Which Drought Affects Ecosystem Carbon Cycling. New Phytol. 2019, 224, 132–145. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Li, E.; Miao, Y.; Han, S.; Liu, Y.; Liu, Y.; Zhao, C.; Zhang, Y. Changes in Carbon Inputs Affect Soil Respiration and Its Temperature Sensitivity in a Broadleaved Forest in Central China. CATENA 2022, 213, 106197. [Google Scholar] [CrossRef]
- Liptzin, D.; Norris, C.E.; Cappellazzi, S.B.; Bean, G.M.; Cope, M.; Greub, K.L.H.; Rieke, E.L.; Tracy, P.W.; Aberle, E.; Ashworth, A.; et al. An Evaluation of Carbon Indicators of Soil Health in Long-Term Agricultural Experiments. Soil Biol. Biochem. 2022, 172, 108708. [Google Scholar] [CrossRef]
- Liyanage, L.R.M.C.; Sulaiman, M.F.; Ismail, R.; Gunaratne, G.P.; Dharmakeerthi, R.S.; Rupasinghe, M.G.N.; Mayakaduwa, A.P.; Hanafi, M.M. Carbon Mineralization Dynamics of Organic Materials and Their Usage in the Restoration of Degraded Tropical Tea-Growing Soil. Agronomy 2021, 11, 1191. [Google Scholar] [CrossRef]
- Zacháry, D.; Filep, T.; Jakab, G.; Varga, G.; Ringer, M.; Szalai, Z. Kinetic Parameters of Soil Organic Matter Decomposition in Soils under Forest in Hungary. Geoderma Reg. 2018, 14, e00187. [Google Scholar] [CrossRef]
- Zhu, R.; Zheng, Z.; Li, T.; Zhang, X.; He, S.; Wang, Y.; Liu, T.; Li, W. Dynamics of Soil Organic Carbon Mineralization in Tea Plantations Converted from Farmland at Western Sichuan, China. PLoS ONE 2017, 12, e0185271. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Shao, Z.; Fang, S.; Huang, X.; Huq, M.E.; Tang, Y.; Li, Y.; Zhuang, Q. Finer-Scale Spatiotemporal Coupling Coordination Model between Socioeconomic Activity and Eco-Environment: A Case Study of Beijing, China. Ecol. Indic. 2021, 131, 108165. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z. Recalcitrant Carbon Controls the Magnitude of Soil Organic Matter Mineralization in Temperate Forests of Northern China. For. Ecosyst. 2018, 5, 17. [Google Scholar] [CrossRef]
- Fernández-Labrada, M.; López-Mosquera, M.E.; López-Fabal, A. Anaerobic Digestion and Microfiltration of the Liquid Fraction of Pig Slurry: N Mineralization, C-CO2 Emissions and Agricultural Value of the Products. Waste Biomass Valor. 2022. [Google Scholar] [CrossRef]
- Ding, F.; Sun, W.; Huang, Y.; Hu, X. Larger Q10 of Carbon Decomposition in Finer Soil Particles Does Not Bring Long-Lasting Dependence of Q10 on Soil Texture: Q10 of C Decomposition in Soil Particle-Size Fractions. Eur. J. Soil Sci. 2018, 69, 336–347. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, K.; Wang, Z.; Zhang, E.; Yang, Y.; Xing, B. Analytical Methods, Molecular Structures and Biogeochemical Behaviors of Dissolved Black Carbon. Carbon Res. 2022, 1, 23. [Google Scholar] [CrossRef]
- Ferraz de Almeida, R.; Rodrigues Mikhael, J.E.; Oliveira Franco, F.; Fonseca Santana, L.M.; Wendling, B. Measuring the Labile and Recalcitrant Pools of Carbon and Nitrogen in Forested and Agricultural Soils: A Study under Tropical Conditions. Forests 2019, 10, 544. [Google Scholar] [CrossRef]
- Sy, V.D.; Herold, M.; Achard, F.; Beuchle, R.; Clevers, J.G.P.W.; Lindquist, E.; Verchot, L. Land Use Patterns and Related Carbon Losses Following Deforestation in South America. Environ. Res. Lett. 2015, 10, 124004. [Google Scholar] [CrossRef]
- Marengo, J.A.; Souza, C.M.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.M.; Soares, W.R. Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 2018, 6, 228. [Google Scholar] [CrossRef]
- Goupil, K.; Nkongolo, K. Assessing Soil Respiration as an Indicator of Soil Microbial Activity in Reclaimed Metal Contaminated Lands. Am. J. Environ. Sci. 2014, 10, 403–411. [Google Scholar] [CrossRef]
- Liu, G.; Sonobe, R.; Wang, Q. Spatial Variations of Soil Respiration in Arid Ecosystems. OJE 2016, 06, 192–205. [Google Scholar] [CrossRef]
- Bertozzi, J.; Andrade, D.S.; Oliveira, C.C.; Bala, A.; Caviglione, J.H. Microwave Assisted Biocidal Extraction Is an Alternative Method to Measure Microbial Biomass of Carbon from Cultivated and Non-Cultivated Soils. Braz. J. Microbiol. 2020, 51, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.; Lemanski, K.; Bonkowski, M. Shifts in Soil Microbial Stoichiometry and Metabolic Quotient Provide Evidence for a Critical Tipping Point at 1% Soil Organic Carbon in an Agricultural Post-Mining Chronosequence. Biol. Fertil. Soils 2021, 57, 435–446. [Google Scholar] [CrossRef]
- Jomura, M.; Kuwayama, T.; Soma, Y.; Yamaguchi, M.; Komatsu, M.; Maruyama, Y. Mycelial Biomass Estimation and Metabolic Quotient of Lentinula Edodes Using Species-Specific QPCR. PLoS ONE 2020, 15, e0232049. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption Kinetic Modeling Using Pseudo-First Order and Pseudo-Second Order Rate Laws: A Review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Firth, A.G.; Brooks, J.P.; Locke, M.A.; Morin, D.J.; Brown, A.; Baker, B.H. Dynamics of Soil Organic Carbon and CO2 Flux under Cover Crop and No-Till Management in Soybean Cropping Systems of the Mid-South (USA). Environments 2022, 9, 109. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, Z.; Lu, X. Changes of Soil Labile Organic Carbon Fractions and Their Relation to Soil Microbial Characteristics in Four Typical Wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 2015, 82, 381–389. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Xu, Y.; Jin, M.; Ye, X.; Gao, H.; Chu, W.; Mao, J.; Thompson, M.L. Soil Labile Organic Carbon Fractions and Soil Enzyme Activities after 10 Years of Continuous Fertilization and Wheat Residue Incorporation. Sci. Rep. 2020, 10, 11318. [Google Scholar] [CrossRef]
- Peng, L.; Tang, C.; Zhang, X.; Duan, J.; Yang, L.; Liu, S. Quantifying the Effects of Root and Soil Properties on Soil Detachment Capacity in Agricultural Land Use of Southern China. Forests 2022, 13, 1788. [Google Scholar] [CrossRef]
- De Carvalheiro, K.O.; Nepstad, D.C. Deep Soil Heterogeneity and Fine Root Distribution in Forests and Pastures of Eastern Amazonia. Plant Soil 1996, 182, 279–285. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, K.; Toor, A.S.; Singh, P. Total and Labile Pools of Soil Organic Carbon in Cultivated and Undisturbed Soils in Northern India. Geoderma 2015, 237–238, 149–158. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, C.; Todd-Brown, K.E.; Liu, Y.; Bond-Lamberty, B.; Bailey, V.L. Pore-Scale Investigation on the Response of Heterotrophic Respiration to Moisture Conditions in Heterogeneous Soils. Biogeochemistry 2016, 131, 121–134. [Google Scholar] [CrossRef]
- Hoffland, E.; Kuyper, T.W.; Comans, R.N.J.; Creamer, R.E. Eco-Functionality of Organic Matter in Soils. Plant Soil 2020, 455, 1–22. [Google Scholar] [CrossRef]
- Vicena, J.; Ardestani, M.M.; Baldrian, P.; Frouz, J. The Effect of Microbial Diversity and Biomass on Microbial Respiration in Two Soils along the Soil Chronosequence. Microorganisms 2022, 10, 1920. [Google Scholar] [CrossRef] [PubMed]
- Fujisaki, K.; Perrin, A.-S.; Desjardins, T.; Bernoux, M.; Balbino, L.C.; Brossard, M. From Forest to Cropland and Pasture Systems: A Critical Review of Soil Organic Carbon Stocks Changes in Amazonia. Glob. Chang. Biol. 2015, 21, 2773–2786. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Secco, D.; Fenner, P.T.; Reichert, J.M. Soil Structure under Forest and Pasture Land-Uses Affecting Compressive Behavior and Air Permeability in a Subtropical Soil. Soil Syst. 2022, 6, 98. [Google Scholar] [CrossRef]
- Yang, C.; Liu, N.; Zhang, Y. Soil Aggregates Regulate the Impact of Soil Bacterial and Fungal Communities on Soil Respiration. Geoderma 2019, 337, 444–452. [Google Scholar] [CrossRef]
- Seó, H.L.S.; Machado Filho, L.C.P.; Brugnara, D. Rationally Managed Pastures Stock More Carbon than No-Tillage Fields. Front. Environ. Sci. 2017, 5, 87. [Google Scholar] [CrossRef]
- Frey, B.; Walthert, L.; Perez-Mon, C.; Stierli, B.; Köchli, R.; Dharmarajah, A.; Brunner, I. Deep Soil Layers of Drought-Exposed Forests Harbor Poorly Known Bacterial and Fungal Communities. Front. Microbiol. 2021, 12, 674160. [Google Scholar] [CrossRef]
- Celestina, C.; Wood, J.L.; Manson, J.B.; Wang, X.; Sale, P.W.G.; Tang, C.; Franks, A.E. Microbial Communities in Top- and Subsoil of Repacked Soil Columns Respond Differently to Amendments but Their Diversity Is Negatively Correlated with Plant Productivity. Sci. Rep. 2019, 9, 8890. [Google Scholar] [CrossRef]
- Suominen, S.; van Vliet, D.M.; Sánchez-Andrea, I.; van der Meer, M.T.J.; Sinninghe Damsté, J.S.; Villanueva, L. Organic Matter Type Defines the Composition of Active Microbial Communities Originating From Anoxic Baltic Sea Sediments. Front. Microbiol. 2021, 12, 628301. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, H. Distribution Characteristic of Soil Organic Carbon Fraction in Different Types of Wetland in Hongze Lake of China. Sci. World J. 2014, 2014, 487961. [Google Scholar] [CrossRef]
- Rui, Y.; Murphy, D.V.; Wang, X.; Hoyle, F.C. Microbial Respiration, but Not Biomass, Responded Linearly to Increasing Light Fraction Organic Matter Input: Consequences for Carbon Sequestration. Sci. Rep. 2016, 6, 35496. [Google Scholar] [CrossRef]
- Hao, J.; Chai, Y.N.; Lopes, L.D.; Ordóñez, R.A.; Wright, E.E.; Archontoulis, S.; Schachtman, D.P. The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa (United States). Appl. Environ. Microbiol. 2021, 87, e02673-20. [Google Scholar] [CrossRef] [PubMed]
- Brangarí, A.C.; Lyonnard, B.; Rousk, J. Soil Depth and Tillage Can Characterize the Soil Microbial Responses to Drying-Rewetting. Soil Biol. Biochem. 2022, 173, 108806. [Google Scholar] [CrossRef]
- Li, M.; Meador, T.; Sauheitl, L.; Guggenberger, G.; Angst, G. Substrate Quality Effects on Stabilized Soil Carbon Reverse with Depth. Geoderma 2022, 406, 115511. [Google Scholar] [CrossRef]
- Terzaghi, E.; Alberti, E.; Raspa, G.; Zanardini, E.; Morosini, C.; Anelli, S.; Armiraglio, S.; Di Guardo, A. A New Dataset of PCB Half-Lives in Soil: Effect of Plant Species and Organic Carbon Addition on Biodegradation Rates in a Weathered Contaminated Soil. Sci. Total Environ. 2021, 750, 141411. [Google Scholar] [CrossRef]
- Gougoulias, C.; Clark, J.M.; Shaw, L.J. The Role of Soil Microbes in the Global Carbon Cycle: Tracking the below-Ground Microbial Processing of Plant-Derived Carbon for Manipulating Carbon Dynamics in Agricultural Systems: Role of Soil Microbes in Global Carbon Cycle: Carbon Tracking & Agro-Cosystem Management. J. Sci. Food Agric. 2014, 94, 2362–2371. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Dijkstra, F.A.; Zhang, X.; Wang, C.; Lü, X.; Wang, P.; Han, X.; Cheng, W. Aridity Thresholds of Soil Microbial Metabolic Indices along a 3,200 Km Transect across Arid and Semi-Arid Regions in Northern China. PeerJ 2019, 7, e6712. [Google Scholar] [CrossRef] [PubMed]
- Feketeová, Z.; Hrabovský, A.; Šimkovic, I. Microbial Features Indicating the Recovery of Soil Ecosystem Strongly Affected by Mining and Ore Processing. Int. J. Environ. Res. Public Health 2021, 18, 3240. [Google Scholar] [CrossRef]
- Ding, Z.J.; Shi, Y.Z.; Li, G.X.; Harberd, N.P.; Zheng, S.J. Tease out the Future: How Tea Research Might Enable Crop Breeding for Acid Soil Tolerance. Plant Commun. 2021, 2, 100182. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; McKenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A.; Hayes, R.C. Liming Impacts on Soils, Crops and Biodiversity in the UK: A Review. Sci. Total Environ. 2018, 610–611, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, J.P.Q.; Mariano, E.; Jones, D.L.; Rosolem, C.A. Topsoil and Subsoil C and N Turnover Are Affected by Superficial Lime and Gypsum Application in the Short-Term. Soil Biol. Biochem. 2021, 163, 108456. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, L.; Zhang, Z.; Chen, Z.; He, N. Soil Microbial Metabolic Quotient in Inner Mongolian Grasslands: Patterns and Influence Factors. Chin. Geogr. Sci. 2019, 29, 1001–1010. [Google Scholar] [CrossRef]
- Wardle, D.A.; Ghani, A. A Critique of the Microbial Metabolic Quotient (QCO2) as a Bioindicator of Disturbance and Ecosystem Development. Soil Biol. Biochem. 1995, 27, 1601–1610. [Google Scholar] [CrossRef]
- Feng, J.; Zeng, X.-M.; Zhang, Q.; Zhou, X.-Q.; Liu, Y.-R.; Huang, Q. Soil Microbial Trait-Based Strategies Drive Metabolic Efficiency along an Altitude Gradient. ISME Commun. 2021, 1, 71. [Google Scholar] [CrossRef]
- Liao, C.; Li, D.; Huang, L.; Yue, P.; Liu, F.; Tian, Q. Higher Carbon Sequestration Potential and Stability for Deep Soil Compared to Surface Soil Regardless of Nitrogen Addition in a Subtropical Forest. PeerJ 2020, 8, e9128. [Google Scholar] [CrossRef]
- Tahir, S.; Marschner, P. Clay Addition to Sandy Soil—Influence of Clay Type and Size on Nutrient Availability in Sandy Soils Amended with Residues Differing in C/N Ratio. Pedosphere 2017, 27, 293–305. [Google Scholar] [CrossRef]
* Property | Depth (cm) | PL | CL | OL | TL | WL | UL |
---|---|---|---|---|---|---|---|
pH | 0–15 | 7.41 | 7.23 | 7.12 | 6.32 | 7.56 | 6.86 |
15–30 | 7.38 | 7.26 | 7.03 | 6.79 | 7.43 | 6.79 | |
EC (dS m−1) | 0–15 | 0.69 | 0.94 | 0.86 | 0.67 | 0.74 | 0.43 |
15–30 | 0.54 | 0.81 | 0.73 | 0.79 | 0.67 | 0.51 | |
OC (%) | 0–15 | 4.78 | 1.35 | 2.34 | 1.06 | 3.83 | 1.12 |
15–30 | 4.61 | 1.05 | 2.13 | 0.73 | 3.54 | 0.94 | |
OM (%) | 0–15 | 8.41 | 2.37 | 4.15 | 1.86 | 6.74 | 1.97 |
15–30 | 8.11 | 1.84 | 3.74 | 1.28 | 6.23 | 1.65 | |
CEC (cmolc kg−1) | 0–15 | 88.9 | 38.1 | 31.6 | 18.6 | 67.1 | 15.3 |
15–30 | 75.9 | 25.4 | 26.8 | 17.8 | 58.2 | 13.7 | |
BD (cm−3 g−1) | 0–15 | 1.09 | 1.68 | 1.55 | 1.43 | 1.24 | 1.47 |
15–30 | 1.15 | 1.71 | 1.63 | 1.58 | 1.32 | 1.69 | |
Porosity (%) | 0–15 | 58.8 | 36.6 | 41.5 | 46.3 | 53.2 | 44.5 |
15–30 | 56.6 | 35.4 | 38.5 | 40.4 | 50.1 | 36.2 | |
MWD (mm) | 0–15 | 2.23 | 0.42 | 0.77 | 0.69 | 1.92 | 0.55 |
15–30 | 1.96 | 0.38 | 0.65 | 0.56 | 1.64 | 0.43 | |
Sand:Silt:Clay (%) | 0–15 | 61.4:10.3:28.3 | 35.1:36.3:28.6 | 61.4:10.3:28.3 | 78.3:14.2:7.5 | 44.6:24.2:31.2 | 55.7:10.1:34.2 |
15–30 | 60.1:15.7:24.2 | 37.9:40.6:21.5 | 55.3:15.9:28.8 | 75.1:20.3:4.6 | 46.2:29.9:23.9 | 50.1:16.6:33.3 | |
Soil Texture | 0–15 | Sandy loam | Clay loam | Sandy loam | Loamy sand | Loam | Sandy loam |
15–30 | Sandy clay loam | Loam | Sandy clay loam | Sandy loam | Loam | Sandy loam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbani, M.; Amirahmadi, E.; Konvalina, P.; Moudrý, J.; Kopecký, M.; Hoang, T.N. Carbon Pool Dynamic and Soil Microbial Respiration Affected by Land Use Alteration: A Case Study in Humid Subtropical Area. Land 2023, 12, 459. https://doi.org/10.3390/land12020459
Ghorbani M, Amirahmadi E, Konvalina P, Moudrý J, Kopecký M, Hoang TN. Carbon Pool Dynamic and Soil Microbial Respiration Affected by Land Use Alteration: A Case Study in Humid Subtropical Area. Land. 2023; 12(2):459. https://doi.org/10.3390/land12020459
Chicago/Turabian StyleGhorbani, Mohammad, Elnaz Amirahmadi, Petr Konvalina, Jan Moudrý, Marek Kopecký, and Trong Nghia Hoang. 2023. "Carbon Pool Dynamic and Soil Microbial Respiration Affected by Land Use Alteration: A Case Study in Humid Subtropical Area" Land 12, no. 2: 459. https://doi.org/10.3390/land12020459
APA StyleGhorbani, M., Amirahmadi, E., Konvalina, P., Moudrý, J., Kopecký, M., & Hoang, T. N. (2023). Carbon Pool Dynamic and Soil Microbial Respiration Affected by Land Use Alteration: A Case Study in Humid Subtropical Area. Land, 12(2), 459. https://doi.org/10.3390/land12020459