Housing Prices and the Characteristics of Nearby Green Space: Does Landscape Pattern Index Matter? Evidence from Metropolitan Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Housing Data Acquisition
2.3. Data on Green Space and Neighbourhood Characteristics
2.4. Construction of the Hedonic Pricing Model
3. Results
3.1. Descriptive Analysis
3.2. Baseline Results
3.3. Comparison between Two Key Distance Buffers from Residential Property to Green Spaces
3.4. Further Analysis
3.5. Robustness Check
4. Discussion
4.1. The Effect of Green Space Characteristics on Housing Price
4.2. Further Analysis and Robustness Check
4.3. Contributions and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, K.-H.; Jung, S.-K. Analysis on urban heat island effects for the metropolitan green space planning. J. Korean Assoc. Geogr. Inf. Stud. 1999, 2, 35–45. [Google Scholar]
- Zhang, Y.; Murray, A.T.; Turner, B.L. Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landsc. Urban Plan. 2017, 165, 162–171. [Google Scholar] [CrossRef]
- De Ridder, K.; Adamec, V.; Bañuelos, A.; Bruse, M.; Bürger, M.; Damsgaard, O.; Dufek, J.; Hirsch, J.; Lefebre, F.; Pérez-Lacorzana, J. An integrated methodology to assess the benefits of urban green space. Sci. Total Environ. 2004, 334, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.K.; Huang, J.-C. Can markets value air quality? A meta-analysis of hedonic property value models. J. Political Econ. 1995, 103, 209–227. [Google Scholar] [CrossRef]
- Beyer, K.M.; Kaltenbach, A.; Szabo, A.; Bogar, S.; Nieto, F.J.; Malecki, K.M. Exposure to neighborhood green space and mental health: Evidence from the survey of the health of Wisconsin. Int. J. Environ. Res. Public Health 2014, 11, 3453–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Stephens, M.; Jones, C.A. Does residents’ satisfaction with the neighbourhood environment relate to residents’ self-rated health? Evidence from Beijing. Int. J. Environ. Res. Public Health 2019, 16, 5051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutsford, D.; Pearson, A.; Kingham, S. An ecological study investigating the association between access to urban green space and mental health. Public Health 2013, 127, 1005–1011. [Google Scholar] [CrossRef]
- Groenewegen, P.P.; Van den Berg, A.E.; De Vries, S.; Verheij, R.A. Vitamin G: Effects of green space on health, well-being, and social safety. BMC Public Health 2006, 6, 149. [Google Scholar] [CrossRef] [Green Version]
- Groenewegen, P.P.; Van Den Berg, A.E.; Maas, J.; Verheij, R.A.; De Vries, S. Is a green residential environment better for health? If so, why? Ann. Assoc. Am. Geogr. 2012, 102, 996–1003. [Google Scholar] [CrossRef]
- Maas, J.; Verheij, R.A.; Groenewegen, P.P.; De Vries, S.; Spreeuwenberg, P. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Jim, C.Y.; Chen, W.Y. Impacts of urban environmental elements on residential housing prices in Guangzhou (China). Landsc. Urban Plan. 2006, 78, 422–434. [Google Scholar] [CrossRef]
- Morancho, A.B. A hedonic valuation of urban green areas. Landsc. Urban Plan. 2003, 66, 35–41. [Google Scholar] [CrossRef]
- Crompton, J.L. The impact of parks on property values: A review of the empirical evidence. J. Leis. Res. 2001, 33, 1–13. [Google Scholar] [CrossRef]
- Dehring, C.; Dunse, N. Housing density and the effect of proximity to public open space in Aberdeen, Scotland. Real Estate Econ. 2006, 34, 553–566. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Miettinen, A. Property prices and urban forest amenities. J. Environ. Econ. Manag. 2000, 39, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Qin, F.; Fukamachi, K.; Shibata, S. Land-Use/Landscape Pattern Changes and Related Environmental Driving Forces in a Dong Ethnic Minority Village in Southwestern China. Land 2022, 11, 349. [Google Scholar] [CrossRef]
- Huang, J.; Tu, Z.; Lin, J. Land-use dynamics and landscape pattern change in a coastal gulf region, southeast China. Int. J. Sustain. Dev. World Ecol. 2009, 16, 61–66. [Google Scholar] [CrossRef]
- Yii, K.-J.; Tan, C.-T.; Ho, W.-K.; Kwan, X.-H.; Nerissa, F.-T.S.; Tan, Y.-Y.; Wong, K.-H. Land availability and housing price in China: Empirical evidence from nonlinear autoregressive distributed lag (NARDL). Land Use Policy 2022, 113, 105888. [Google Scholar] [CrossRef]
- Bolitzer, B.; Netusil, N.R. The impact of open spaces on property values in Portland, Oregon. J. Environ. Manag. 2000, 59, 185–193. [Google Scholar] [CrossRef]
- Poudyal, N.C.; Hodges, D.G.; Merrett, C.D. A hedonic analysis of the demand for and benefits of urban recreation parks. Land Use Policy 2009, 26, 975–983. [Google Scholar] [CrossRef]
- Tyrväinen, L. The amenity value of the urban forest: An application of the hedonic pricing method. Landsc. Urban Plan. 1997, 37, 211–222. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, Z.; Webster, C. Estimating the mediating effect of privately-supplied green space on the relationship between urban public green space and property value: Evidence from Shanghai, China. Land Use Policy 2016, 54, 439–447. [Google Scholar] [CrossRef]
- Jiao, L.; Liu, Y. Geographic field model based hedonic valuation of urban open spaces in Wuhan, China. Landsc. Urban Plan. 2010, 98, 47–55. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, D.K.; Park, C.; Kim, H.G.; Jung, T.Y.; Kim, S. Park accessibility impacts housing prices in Seoul. Sustainability 2017, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, J.; Wüstemann, H. Estimating the Value of Urban Green Space: A Hedonic Pricing Analysis of the Housing Market in Cologne, Germany; EconStor: Berlin, Germany, 2014. [Google Scholar]
- Li, B.; Zhang, W.; Shu, X.; Pei, E.; Yuan, X.; Wang, T.; Wang, Z. Influence of breeding habitat characteristics and landscape heterogeneity on anuran species richness and abundance in urban parks of Shanghai, China. Urban For. Urban Green. 2018, 32, 56–63. [Google Scholar] [CrossRef]
- Moser, D.; Zechmeister, H.G.; Plutzar, C.; Sauberer, N.; Wrbka, T.; Grabherr, G. Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landsc. Ecol. 2002, 17, 657–669. [Google Scholar] [CrossRef]
- Kwak, S.-J.; Yoo, S.-H.; Han, S.-Y. Estimating the public’s value for urban forest in the Seoul Metropolitan Area of Korea: A contingent valuation study. Urban Stud. 2003, 40, 2207–2221. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Väänänen, H. The economic value of urban forest amenities: An application of the contingent valuation method. Landsc. Urban Plan. 1998, 43, 105–118. [Google Scholar] [CrossRef]
- He, C.; Wang, Z.; Guo, H.; Sheng, H.; Zhou, R.; Yang, Y. Driving forces analysis for residential housing price in Beijing. Procedia Environ. Sci. 2010, 2, 925–936. [Google Scholar] [CrossRef] [Green Version]
- Mora-Garcia, R.-T.; Cespedes-Lopez, M.-F.; Perez-Sanchez, V.R.; Marti, P.; Perez-Sanchez, J.-C. Determinants of the price of housing in the province of alicante (spain): Analysis using quantile regression. Sustainability 2019, 11, 437. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dong, R. Impacts of street-visible greenery on housing prices: Evidence from a hedonic price model and a massive street view image dataset in Beijing. ISPRS Int. J. Geo-Inf. 2018, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Cheong, S.A. The Regime Shift Associated with the 2004–2008 US Housing Market Bubble. PLoS ONE 2016, 11, e0162140. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wei, Y.D.; Wu, Y.; Tian, G. Analyzing housing prices in Shanghai with open data: Amenity, accessibility and urban structure. Cities 2019, 91, 165–179. [Google Scholar] [CrossRef]
- McLeod, P.B. The demand for local amenity: An hedonic price analysis. Environ. Plan. A 1984, 16, 389–400. [Google Scholar] [CrossRef]
- Lab, B.C. Data 40 Urban Green Lands in Main Chinese Cities 2017; Beijing City Lab: Beijing, China, 2019. [Google Scholar]
- Li, F.; Li, F.; Li, S.; Long, Y. Deciphering the recreational use of urban parks: Experiments using multi-source big data for all Chinese cities. Sci. Total Environ. 2020, 701, 134896. [Google Scholar] [CrossRef]
- Patton, D.R. A diversity index for quantifying habitat “edge”. Wildl. Soc. Bull. 1975, 3, 171–173. [Google Scholar]
- Yu, H.; Kong, B.; He, Z.-W.; Wang, G.; Wang, Q. The potential of integrating landscape, geochemical and economical indices to analyze watershed ecological environment. J. Hydrol. 2020, 583, 124298. [Google Scholar] [CrossRef] [Green Version]
- Barker, G. A Framework for the Future: Green Networks with Multiple Uses in and around Towns and Cities; English Nature Peterborough: Peterborough, UK, 1997. [Google Scholar]
- Kong, F.; Nakagoshi, N. Spatial-temporal gradient analysis of urban green spaces in Jinan, China. Landsc. Urban Plan. 2006, 78, 147–164. [Google Scholar] [CrossRef]
- Geoghegan, J. The value of open spaces in residential land use. Land Use Policy 2002, 19, 91–98. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Consumption preferences and environmental externalities: A hedonic analysis of the housing market in Guangzhou. Geoforum 2007, 38, 414–431. [Google Scholar] [CrossRef]
- Acharya, G.; Bennett, L.L. Valuing open space and land-use patterns in urban watersheds. J. Real Estate Financ. Econ. 2001, 22, 221–237. [Google Scholar] [CrossRef]
- Sirmans, S.; Macpherson, D.; Zietz, E. The composition of hedonic pricing models. J. Real Estate Lit. 2005, 13, 1–44. [Google Scholar] [CrossRef]
- Schipperijn, J.; Ekholm, O.; Stigsdotter, U.K.; Toftager, M.; Bentsen, P.; Kamper-Jørgensen, F.; Randrup, T.B. Factors influencing the use of green space: Results from a Danish national representative survey. Landsc. Urban Plan. 2010, 95, 130–137. [Google Scholar] [CrossRef]
- Ambrey, C.; Fleming, C. Public greenspace and life satisfaction in urban Australia. Urban Stud. 2014, 51, 1290–1321. [Google Scholar] [CrossRef]
- Krekel, C.; Kolbe, J.; Wüstemann, H. The greener, the happier? The effect of urban land use on residential well-being. Ecol. Econ. 2016, 121, 117–127. [Google Scholar] [CrossRef] [Green Version]
- O’brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, G.-E.; Lee, J.-S.; Choi, Y. Understanding the local impact of urban park plans and park typology on housing price: A case study of the Busan metropolitan region, Korea. Landsc. Urban Plan. 2019, 184, 1–11. [Google Scholar] [CrossRef]
- Biao, Z.; Gaodi, X.; Bin, X.; Canqiang, Z. The effects of public green spaces on residential property value in Beijing. J. Resour. Ecol. 2012, 3, 243–252. [Google Scholar] [CrossRef]
- Se Can, A.; Megbolugbe, I. Spatial dependence and house price index construction. J. Real Estate Financ. Econ. 1997, 14, 203–222. [Google Scholar] [CrossRef]
- Xiao, Y.; Lu, Y.; Guo, Y.; Yuan, Y. Estimating the willingness to pay for green space services in Shanghai: Implications for social equity in urban China. Urban For. Urban Green. 2017, 26, 95–103. [Google Scholar] [CrossRef]
- Kim, J.-H.; Li, W.; Newman, G.; Kil, S.-H.; Park, S.Y. The influence of urban landscape spatial patterns on single-family housing prices. Environ. Plan. B Urban Anal. City Sci. 2018, 45, 26–43. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, X.; Gu, J.; Liu, Y.; Zhou, T. Temporal and spatial effects of a ‘Shan Shui’landscape on housing price: A case study of Chongqing, China. Habitat Int. 2019, 94, 102068. [Google Scholar] [CrossRef]
- Lin, I.-H.; Wu, C.; De Sousa, C. Examining the economic impact of park facilities on neighboring residential property values. Appl. Geogr. 2013, 45, 322–331. [Google Scholar] [CrossRef]
- Richardson, E.A.; Mitchell, R.; Hartig, T.; De Vries, S.; Astell-Burt, T.; Frumkin, H. Green cities and health: A question of scale? Epidemiol Community Health 2012, 66, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-H.; Lambert, D.M.; Kim, S.G.; Roberts, R.K.; Park, W.M. Relationship between value of open space and distance from housing locations within a community. J. Geogr. Syst. 2011, 13, 393–414. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. External effects of neighbourhood parks and landscape elements on high-rise residential value. Land Use Policy 2010, 27, 662–670. [Google Scholar] [CrossRef]
- Brasington, D.M.; Hite, D. Demand for environmental quality: A spatial hedonic analysis. Reg. Sci. Urban Econ. 2005, 35, 57–82. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Lv, P.; Ma, Z.; Bi, J.; Wen, T. Environmental risk and housing price: An empirical study of Nanjing, China. J. Clean. Prod. 2020, 252, 119828. [Google Scholar] [CrossRef]
- Ridker, R.G.; Henning, J.A. The determinants of residential property values with special reference to air pollution. Rev. Econ. Stat. 1967, 246–257. [Google Scholar] [CrossRef]
- Duarte, C.M.; Tamez, C.G. Does noise have a stationary impact on residential values? J. Eur. Real Estate Res. 2009, 2, 259–279. [Google Scholar] [CrossRef]
- Lutzenhiser, M.; Netusil, N.R. The effect of open spaces on a home’s sale price. Contemp. Econ. Policy 2001, 19, 291–298. [Google Scholar] [CrossRef]
Variables | Description | n | Mean | SD |
---|---|---|---|---|
Dependent variable | ||||
Price | Selling price per square meter in CNY | 16,222 | 80,249.60 | 28,219.83 |
Ln price | Logarithmic form of the selling price in 10,000 CNY (Chinese currency, US $1 = 6.9 CNY) | 16,222 | 11.23 | 0.35 |
Price in districts | ||||
Price in Shijingshan district | Selling price per square meters in CNY | 1862 | 52,854.39 | 11,997.59 |
Price in Fengtai district | Selling price per square meters in CNY | 2985 | 57,166.82 | 11,324.8 |
Price in Chaoyang district | Selling price per square meters in CNY | 2912 | 66,710.38 | 16,588.28 |
Price in Haidian district | Selling price per square meters in CNY | 2672 | 84,605.26 | 19,498.39 |
Price in Xicheng district | Selling price per square meters in CNY | 2815 | 97,468.18 | 18,376.97 |
Price in Dongcheng district | Selling price per square meters in CNY | 2976 | 113,592.9 | 24,492.97 |
Housing characteristics | ||||
Housing age | 2019 minus the construction date of the properties | 16,222 | 26.52 | 38.04 |
Bedroom | Number of bedrooms | 16,222 | 2.24 | 0.82 |
Bathroom | Number of bathrooms | 16,222 | 1.28 | 0.55 |
Housing size | The average size of the property (m2) | 16,222 | 92.25 | 47.26 |
Elevator | Dummy variable, 1 if the property has an elevator | 16,222 | 0.63 | 0.48 |
Storey | Category variable: 0 equals to basement 1 equals to the bottom storey (below the 3rd floor) 2 equals to the low storey (between the 4th and 6th floor) 3 equals to the middle storey (between the 7th and 10th floor) 4 equals to the high storey (between the 10th and 17th floor) 5 equals to the top storey (higher than the 18th floor) | 16,222 | 3.05 | 1.19 |
Window orientation | Dummy variable, 1 if the residence has north-south facing windows | 16,222 | 0.38 | 0.49 |
District | Category variable: 1 represents the Shijingshan district 2 represents the Fengtai district 3 represents the Chaoyang district 4 represents the Haidian district 5 represents the Dongcheng district 6 represents the Xicheng district | 16,222 | 3.65 | 1.65 |
Neighbourhood characteristics | ||||
Distance to the nearest green space | Road distance to nearest green space (m) | 16,222 | 564.58 | 425.19 |
Distance to subway | Road distance to the nearest subway station (m) | 16,222 | 5302.78 | 3015.51 |
Distance to CBD | Road distance to the central business district (m) | 16,222 | 12,217.69 | 7829.55 |
Green space characteristics | ||||
Natural logarithm of landscape shape index | The total length of the green space divided by the total area, adjusted by a constant for a square standard | 16,222 | 0.7 | 0.16 |
Green spaces’ size (ha) | The size of the green space (ha) | 16,222 | 17.51 | 55.21 |
Residence buffer (300 m) | Dummy variable, 1 if housing is within 300 m buffers from the nearest green space. | 16,222 | 0.26 | 0.44 |
Residence buffer (300–1000 m) | Dummy variable, 1 if housing is within 300–1000 m buffers from the nearest green space. | 16,222 | 0.61 | 0.49 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Price | Price | Lnprice | Lnprice | |
Age | 5.521 | 5.105 | 0.000 | 0.000 |
(3.556) | (3.560) | (0.000) | (0.000) | |
Bedroom | 497.053 ** | 550.176 ** | 0.006 ** | 0.007 ** |
(241.492) | (241.627) | (0.003) | (0.003) | |
Bathroom | 6649.785 *** | 6691.339 *** | 0.086 *** | 0.087 *** |
(419.859) | (420.137) | (0.005) | (0.005) | |
Housing size | −64.680 *** | −65.344 *** | −0.001 *** | −0.001 *** |
(6.016) | (6.025) | (0.000) | (0.000) | |
Elevator | 3285.481 *** | 3249.162 *** | 0.056 *** | 0.055 *** |
(328.368) | (328.635) | (0.004) | (0.004) | |
Storey | −369.724 *** | −373.778 *** | −0.005 *** | −0.005 *** |
(111.162) | (111.239) | (0.001) | (0.001) | |
Window orientation | 3792.511 *** | 3783.455 *** | 0.047 *** | 0.046 *** |
(304.740) | (304.974) | (0.004) | (0.004) | |
Shijingshan district | Reference | Reference | Reference | Reference |
Fengtai district | −8755.901 *** | −9198.544 *** | −0.109 *** | −0.116 *** |
(611.329) | (611.727) | (0.007) | (0.007) | |
Chaoyang district | −12,938.66 *** | −13,733.41 *** | −0.156 *** | −0.167 *** |
(825.808) | (824.292) | (0.010) | (0.010) | |
Hadian district | 22,216.37 *** | 21,572.51 *** | 0.327 *** | 0.318 *** |
(565.583) | (565.449) | (0.007) | (0.007) | |
Dongcheng district | 13,629.11 *** | 12,507.49 *** | 0.171 *** | 0.156 *** |
(914.015) | (913.559) | (0.011) | (0.011) | |
Xicheng district | 41,865.95 *** | 41,302.11 *** | 0.487 *** | 0.479 *** |
(710.261) | (708.980) | (0.008) | (0.008) | |
Distance to green spaces | −5.004 *** | −0.000 *** | ||
(0.315) | (0.000) | |||
Distance to subway | 1.111 *** | 1.115 *** | 0.000 *** | 0.000 *** |
(0.057) | (0.057) | (0.000) | (0.000) | |
Distance to CBD | −1.351 *** | −1.396 *** | −0.000 *** | −0.000 *** |
(0.034) | (0.034) | (0.000) | (0.000) | |
Natural logarithm of landscape shape index | 5439.223 *** | 5543.887 *** | 0.040 *** | 0.041 *** |
(829.323) | (830.391) | (0.010) | (0.010) | |
Green spaces’ size | 18.411 *** | 17.363 *** | 0.000 *** | 0.000 *** |
(2.443) | (2.443) | (0.000) | (0.000) | |
Distance buffer (0–300 m) | 7052.248 *** | 0.088 *** | ||
(462.638) | (0.005) | |||
Distance buffer (300–1000 m) | 5068.837 *** | 0.062 *** | ||
(416.700) | (0.005) | |||
_cons | 73,614.84 *** | 66,869.96 *** | 11.193 *** | 11.109 *** |
(1172.639) | (1247.787) | (0.014) | (0.015) | |
N | 16,222 | 16,222 | 16,222 | 16,222 |
AIC | 361,486.8 | 361,508 | −6927.924 | −6870.389 |
BIC | 361,625.3 | 361,654.2 | −6789.429 | −6724.201 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
<300 M | 300–1000 M | <300 M | 300–1000 M | |
Age | 91.027 *** | 2.306 | 0.001 *** | 0.000 |
(24.954) | (3.609) | (0.000) | (0.000) | |
Bedroom | −1433.49 *** | 1568.546 *** | −0.015 *** | 0.019 *** |
(438.593) | (319.400) | (0.005) | (0.004) | |
Bathroom | 5982.370 *** | 7186.522 *** | 0.074 *** | 0.094 *** |
(778.738) | (542.004) | (0.009) | (0.006) | |
Housing size | −23.694 ** | −94.286 *** | −0.000 *** | −0.001 *** |
(10.273) | (8.157) | (0.000) | (0.000) | |
Elevator | 4956.562 *** | 3153.681 *** | 0.067 *** | 0.056 *** |
(644.594) | (425.682) | (0.008) | (0.005) | |
Storey | −418.954 ** | −388.525 *** | −0.005 ** | −0.006 *** |
(209.835) | (141.001) | (0.002) | (0.002) | |
Window direction | 4152.365 *** | 3667.148 *** | 0.046 *** | 0.047 *** |
(564.949) | (390.587) | (0.007) | (0.005) | |
Shijingshan district | Reference | Reference | Reference | Reference |
Fengtai district | −2059.774 * | −9764.051 *** | −0.016 | −0.132 *** |
(1167.804) | (803.446) | (0.014) | (0.009) | |
Chaoyang district | −963.475 | −15,001.25 *** | 0.020 | −0.200 *** |
(1544.736) | (1054.562) | (0.018) | (0.012) | |
Haidian district | 29,679.8 *** | 21,084.81 *** | 0.425 *** | 0.303 *** |
(1080.593) | (729.712) | (0.013) | (0.009) | |
Dongcheng district | 25,177.31 *** | 11,403.26 *** | 0.335 *** | 0.124 *** |
(1698.578) | (1195.870) | (0.020) | (0.014) | |
Xicheng district | 53,808.15 *** | 42,290.27 *** | 0.625 *** | 0.474 *** |
(1418.500) | (923.819) | (0.017) | (0.011) | |
Distance to green spaces | −8.365 *** | −3.762 *** | −0.000 *** | −0.000 *** |
(3.017) | (0.893) | (0.000) | (0.000) | |
Distance to subway | 0.642 *** | 1.359 *** | 0.000 *** | 0.000 *** |
(0.111) | (0.070) | (0.000) | (0.000) | |
Distance to CBD | −0.952 *** | −1.384 *** | −0.000 *** | −0.000 *** |
(0.068) | (0.046) | (0.000) | (0.000) | |
Natural logarithm of landscape shape index | 7130.456 *** | 5418.881 *** | 0.061 *** | 0.044 *** |
(1485.018) | (1063.307) | (0.017) | (0.012) | |
Green spaces’ size (ha) | −8.799 ** | 28.652 *** | −0.000 *** | 0.000 *** |
(4.411) | (3.184) | (0.000) | (0.000) | |
_cons | 60,703.68 *** | 72,922.49 *** | 11.031 *** | 11.200 *** |
(2412.823) | (1637.938) | (0.028) | (0.019) | |
N | 4288.000 | 9928.000 | 4288.000 | 9928.000 |
AIC | 95,320.89 | 221,208.8 | −2062.173 | −4322.276 |
BIC | 95,435.43 | 221,338.5 | −1947.629 | −4192.62 |
(1) | (2) | |
---|---|---|
Variables | ||
Natural logarithm of LSI (LSI ≤ 1.3) Distance buffer (0–300 m) | −2151.502 | |
(2039.206) | ||
Natural logarithm of LSI (1.3 < LSI ≤ 2.0) Distance buffer (0–300 m) | 1921.477 ** | |
(808.856) | ||
Natural logarithm of LSI (2.0 < LSI ≤ 2.7) Distance buffer (0–300 m) | 4316.784 *** | |
(803.343) | ||
Natural logarithm of LSI (LSI ≤ 1.3) Distance buffer (300–1000 m) | −3381.739 * | |
(1996.460) | ||
Natural logarithm of LSI (1.3 < LSI ≤ 2.0) Distance buffer (300–1000 m) | 1417.924 ** | |
(602.240) | ||
Natural logarithm of LSI (2.0 < LSI ≤ 2.7) Distance buffer (300–1000 m) | 3526.776 *** | |
(593.236) | ||
Natural logarithm of LSI (LSI ≤ 1.3) Green spaces’ size dummy | −1872.362 | |
(1940.355) | ||
Natural logarithm of LSI (1.3 < LSI ≤ 2.0) Green spaces’ size dummy | 1256.991 ** | |
(501.544) | ||
Natural logarithm of LSI (2.0 < LSI ≤ 2.7) Green spaces’ size dummy | 1335.093 ** | |
(577.166) | ||
_cons | 74,392.93 *** | 77,146.92 *** |
(1241.136) | (1241.136) | |
Control | Yes | Yes |
N | 16,222 | 16,222 |
Aic | 361,447 | 361,523 |
Bic | 361,623.9 | 361,676.8 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Price | Lnprice | Price | Lnprice | |
Natural logarithm of Landscape shape index | 5620.815 *** | 0.043 *** | 5271.238 *** | 0.038 *** |
(832.312) | (0.010) | (830.445) | (0.010) | |
Distance buffer (0–500 m) | 7008.434 *** | 0.106 *** | ||
(974.587) | (0.011) | |||
Distance buffer (500–1000 m) | 2948.139 *** | 0.053 *** | ||
(1003.952) | (0.012) | |||
Distance buffer (0–800 m) | 6201.011 *** | 0.076 *** | ||
(425.316) | (0.005) | |||
Distance buffer (800–1500 m) | 4882.665 *** | 0.061 *** | ||
6201.011 *** | 0.076 *** | |||
Control | Yes | Yes | Yes | Yes |
N | 16,222 | 16,222 | 16,222 | 16,222 |
AIC | 361,554.9 | −6854.140 | 361,528.1 | −6840.925 |
BIC | 361,701.1 | −6707.952 | 361,674.3 | −6694.737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Jones, C.A.; Dunse, N.A.; Li, E.; Liu, Y. Housing Prices and the Characteristics of Nearby Green Space: Does Landscape Pattern Index Matter? Evidence from Metropolitan Area. Land 2023, 12, 496. https://doi.org/10.3390/land12020496
Chen Y, Jones CA, Dunse NA, Li E, Liu Y. Housing Prices and the Characteristics of Nearby Green Space: Does Landscape Pattern Index Matter? Evidence from Metropolitan Area. Land. 2023; 12(2):496. https://doi.org/10.3390/land12020496
Chicago/Turabian StyleChen, Yiyi, Colin A. Jones, Neil A. Dunse, Enquan Li, and Ye Liu. 2023. "Housing Prices and the Characteristics of Nearby Green Space: Does Landscape Pattern Index Matter? Evidence from Metropolitan Area" Land 12, no. 2: 496. https://doi.org/10.3390/land12020496