Spatiotemporal Analysis of Urban Expansion in the Mountainous Hindu Kush Himalayas Region
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
2.3. Methods
3. Results and Discussions
3.1. Reliability Analysis of the ISA Datasets
3.1.1. Spatial Differences of Urban Expansion Represented by the ISA Datasets
3.1.2. Incremental Analysis of the ISA Datasets
3.2. Analysis of Urban Changes in the HKH Region
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Y.; Peng, G.; Wen, C.; Zahoor, B.; Ma, X.; Hacker, C.E.; Xue, Y. Climate and land use changes shift the distribution and dispersal of two umbrella species in the Hindu Kush Himalayan region. Sci. Total Environ. 2021, 777, 146207. [Google Scholar] [CrossRef]
- Sharma, E.; Molden, D.; Wester, P.; Shrestha, R.M. The Hindu Kush Himalayan Monitoring and Assessment Programme: Action to sustain a global asset. Mt. Res. Dev. 2016, 36, 236–239. [Google Scholar] [CrossRef]
- Xu, J.; Grumbine, R.E.; Shrestha, A.; Eriksson, M.; Yang, X.; Wang, Y.; Wilkes, A. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 2009, 23, 520–530. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, Z.; Gou, S.; Zhang, Q.; Zhang, J.; Xu, L. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 2018, 14, 034008. [Google Scholar] [CrossRef]
- Alberti, M.; Correa, C.; Marzluff, J.M.; Hendry, A.P.; Palkovacs, E.P.; Gotanda, K.M.; Hunt, V.M.; Apgar, T.M.; Zhou, Y. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. USA 2017, 114, 8951–8956. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyr, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Mayewski, P.A.; Perry, L.B.; Matthews, T.; Birkel, S.D. Climate change in the Hindu Kush Himalayas: Basis and gaps. One Earth 2020, 3, 551–555. [Google Scholar] [CrossRef]
- Rusk, J.; Maharjan, A.; Tiwari, P.; Chen, T.; Shneiderman, S.; Turin, M.; Seto, K.C. Multi-hazard susceptibility and exposure assessment of the Hindu Kush Himalaya. Sci. Total Environ. 2021, 804, 150039. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 2020, 15, 094044. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Y.; Liu, Z.; He, C.; Liu, H.; Chen, Z. Understanding urban expansion on the Tibetan Plateau over the past half century based on remote sensing: The case of Xining city, China. Remote Sens. 2020, 13, 46. [Google Scholar] [CrossRef]
- Jiang, W.; Lü, Y.; Liu, Y.; Gao, W. Ecosystem service value of the Qinghai-Tibet Plateau significantly increased during 25 years. Ecosyst. Serv. 2020, 44, 101146. [Google Scholar] [CrossRef]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 101048. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Eom, J.; Yu, S.; Asrar, G.R. Projecting global urban area growth through 2100 based on historical time series data and future shared socioeconomic pathways. Earth’s Future 2019, 7, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Reba, M.; Seto, K.C. A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sens. Environ. 2020, 242, 111739. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Liang, L. Ecological risk in the Tibetan Plateau and influencing urbanization factors. Environ. Chall. 2022, 6, 100445. [Google Scholar] [CrossRef]
- Tsagkis, P.; Bakogiannis, E.; Nikitas, A. Analysing urban growth using machine learning and open data: An artificial neural network modelled case study of five Greek cities. Sustain. Cities Soc. 2023, 89, 104337. [Google Scholar] [CrossRef]
- Lu, Y.; Nakicenovic, N.; Visbeck, M.; Stevance, A. Five priorities for the UN Sustainable Development Goals. Nature 2015, 520, 432–433. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A.; et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Chao, Z.; Wang, L.; Che, M.; Hou, S. Effects of Different Urbanization Levels on Land Surface Temperature Change: Taking Tokyo and Shanghai for Example. Remote Sens. 2020, 12, 2022. [Google Scholar] [CrossRef]
- Huang, X.; Huang, J.; Wen, D.; Li, J. An updated MODIS global urban extent product (MGUP) from 2001 to 2018 based on an automated mapping approach. Int. J. Appl. Earth Obs. Geoinf. 2020, 95, 102255. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.; Yang, J.; Zhang, Z.; Li, D.; Liu, X. 30 m global impervious surface area dynamics and urban expansion pattern observed by Landsat satellites: From 1972 to 2019. Sci. China Earth Sci. 2021, 64, 1922–1933. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2019, 236, 111510. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.A.; Taubenböc, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Wu, H.; Fang, S.; Zhang, C.; Hu, S.; Nan, D.; Yang, Y. Exploring the impact of urban form on urban land use efficiency under low-carbon emission constraints: A case study in China’s Yellow River Basin. J. Environ. Manag. 2022, 311, 114866. [Google Scholar] [CrossRef]
- Shahraki, S.Z.; Hosseini, A.; Sauri, D.; Hussaini, F. Fringe more than context: Perceived quality of life in informal settlements in a developing country: The case of Kabul, Afghanistan. Sustain. Cities Soc. 2020, 63, 102494. [Google Scholar] [CrossRef]
- Chen, T.; Lang, W.; Chan, E.; Philipp, C.H. Lhasa: Urbanising China in the frontier regions. Cities 2018, 74, 343–353. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, K.; Wang, F.; Dang, A. Compact or disperse? Evolution patterns and coupling of urban land expansion and population distribution evolution of major cities in China, 1998–2018. Habitat Int. 2021, 108, 102324. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.; Lin, H.; Gamba, P.E.; Liu, X. Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale. Remote Sens. Environ. 2020, 242, 111757. [Google Scholar] [CrossRef]
- Luan, W.; Li, X. Rapid urbanization and its driving mechanism in the Pan-Third Pole region. Sci. Total Environ. 2020, 750, 141270. [Google Scholar] [CrossRef] [PubMed]
- United Nations, Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: Rome, Italy, 2019. [Google Scholar]
- Wang, Y.; Liu, Z.; He, C.; Xia, P.; Liu, Z.; Liu, H. Quantifying urbanization levels on the Tibetan Plateau with high-resolution nighttime light data. Geogr. Sustain. 2020, 1, 233–244. [Google Scholar] [CrossRef]
- Verma, A.; Schmidt-Vogt, D.; De Alban, J.D.T.; Lim, C.L.; Webb, E.L. Drivers and mechanisms of forest change in the Himalayas. Glob. Environ. Chang. 2021, 68, 102244. [Google Scholar] [CrossRef]
- Kovács, E.K.; Ojha, H.; Neupane, K.R.; Niven, T.; Agarwal, C.; Chauhan, D.; Dahal, N.; Devkota, K.; Guleria, V.; Joshi, T.; et al. A political ecology of water and small-town urbanisation across the lower Himalayas. Geoforum 2019, 107, 88–98. [Google Scholar] [CrossRef]
- Müller, J.; Dame, J.; Nüsser, M. Urban mountain waterscapes: The transformation of hydro-social relations in the Trans-Himalayan town Leh, Ladakh, India. Water 2020, 12, 1698. [Google Scholar] [CrossRef]
- Wang, L.; Jia, Y.; Li, X.; Gong, P. Analysing the driving forces and environmental effects of urban expansion by mapping the speed and acceleration of built-up areas in China between 1978 and 2017. Remote Sens. 2020, 12, 3929. [Google Scholar] [CrossRef]
- You, Q.; Ren, G.; Zhang, Y.; Ren, Y.; Sun, X.; Zhan, Y.; Shrestha, A.B.; Krishnan, R. An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Adv. Clim. Chang. Res. 2017, 8, 141–147. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Shi, F.; An, Y.; Li, M.; Liu, Y. Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar] [CrossRef]
- Bhusal, P.; Kimengsi, J.N.; Awasthi, K.R. What drives environmental (Non-)migration around the Himalayan Region? Evidence from rural Nepal. World Dev. Perspect. 2021, 23, 100350. [Google Scholar] [CrossRef]
- Dame, J.; Schmidt, S.; Müller, J.; Nüsser, M. Urbanisation and socio-ecological challenges in high mountain towns: Insights from Leh (Ladakh), India. Landsc. Urban Plan. 2019, 189, 189–199. [Google Scholar] [CrossRef]
- Zaryab, A.; Nassery, H.R.; Knoeller, K.; Alijani, F.; Minet, E. Determining nitrate pollution sources in the Kabul Plain aquifer (Afghanistan) using stable isotopes and Bayesian stable isotope mixing model. Sci. Total Environ. 2022, 823, 153749. [Google Scholar] [CrossRef] [PubMed]
- Dilshad, T.; Mallick, D.; Udas, P.B.; Goodrich, C.G.; Prakash, A.; Gorti, G.; Bhadwal, S.; Anwar, M.Z.; Khandekar, N.; Hassan, S.T.; et al. Growing social vulnerability in the river basins: Evidence from the Hindu Kush Himalaya (HKH) Region. Environ. Dev. 2019, 31, 19–33. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Jia, K.; Zhao, W.; Liu, S.; Wei, X.; Wang, B. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Liu, Y.; Wang, F.; Liu, H.; Lu, Y. Effects of urban agglomeration and expansion on landscape connectivity in the river valley region, Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2022, 34, e02004. [Google Scholar] [CrossRef]
- Hussain, N.; Ahmad, M.; Sipra, H.; Ali, S.; Syed, J.H.; Hussain, K.; Hassan, S.W. First insight into seasonal variability of urban air quality of northern Pakistan: An emerging issue associated with health risks in Karakoram-Hindukush-Himalaya region. Chemosphere 2023, 316, 137878. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xue, B.; Liu, B.; Tian, J.; Sun, X.; Huo, Q. City profile: Hainan Tibetan Autonomous Prefecture, a water tower city toward sustainability. Cities 2023, 134, 104198. [Google Scholar] [CrossRef]
- Yan, X.; Wang, J.; Liu, X.; Zhao, H.; Wu, Y. Mining the drivers of forest cover change in the upper Indus Valley, high Asia region from 1990 to 2020. Ecol. Indic. 2022, 144, 109566. [Google Scholar] [CrossRef]
Name of Dataset | Spatial Resolution | Time of Period | Abbreviation | Definition of Urban Land | Method | Data Source | Reference |
---|---|---|---|---|---|---|---|
Global artificial impervious areas | 30 m | 1985–2018 | GAIA | Artificial impervious surfaces | Conventional maximum likelihood classifier, the J4.8 decision tree classifier, the random forests ensemble classifier and the support vector machine | Landsat images | [24] |
Global annual urban dynamics | 30 m | 1985–2016 | GAUD | Impervious surface | Spectral index-based method | Landsat images, DMSP OLS NTL | [19] |
Global impervious surface area | 30 m | 1972–2019 | GISA | Impervious surface | Machine learning | Landsat images | [23] |
Global urban expansion data | 1 km | 1992, 1996, 2000, 2006, 2010, 2016 | GUE | Urban land | A fully convolutional network | MODIS, Landsat images, DMSP OLS * | [4] |
Time Period | 1993–1998 | 1998–2003 | 2003–2008 | 2008–2013 | 2013–2018 | 1993–2018 | |
---|---|---|---|---|---|---|---|
Region | |||||||
HKH | 0.03 | 0.03 | 0.03 | 0.05 | 0.07 | 0.07 | |
Afghanistan | 0.03 | 0.02 | 0.03 | 0.05 | 0.07 | 0.05 | |
PAK-BAN-BTN-IND-MMR-NEL | 0.03 | 0.03 | 0.03 | 0.03 | 0.07 | 0.05 | |
Part of China | 0.03 | 0.03 | 0.05 | 0.08 | 0.08 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, Z.; Shang, Z.; Fei, C.; Zhuang, Z.; Zhou, M. Spatiotemporal Analysis of Urban Expansion in the Mountainous Hindu Kush Himalayas Region. Land 2023, 12, 576. https://doi.org/10.3390/land12030576
Chao Z, Shang Z, Fei C, Zhuang Z, Zhou M. Spatiotemporal Analysis of Urban Expansion in the Mountainous Hindu Kush Himalayas Region. Land. 2023; 12(3):576. https://doi.org/10.3390/land12030576
Chicago/Turabian StyleChao, Zhenhua, Zhanhuan Shang, Chengdong Fei, Ziyi Zhuang, and Mengting Zhou. 2023. "Spatiotemporal Analysis of Urban Expansion in the Mountainous Hindu Kush Himalayas Region" Land 12, no. 3: 576. https://doi.org/10.3390/land12030576
APA StyleChao, Z., Shang, Z., Fei, C., Zhuang, Z., & Zhou, M. (2023). Spatiotemporal Analysis of Urban Expansion in the Mountainous Hindu Kush Himalayas Region. Land, 12(3), 576. https://doi.org/10.3390/land12030576