The Costs of Agglomeration: Misallocation of Credit in Chinese Cities
Abstract
:1. Introduction
2. Literature Review and Theoretical Analysis
2.1. Literature Review
2.2. Impact of Agglomeration on Credit Misallocation
2.3. Agglomeration and Credit Misallocation in China
3. Econometric Specifications and Data
3.1. Model and Variables
3.2. Data
4. Empirical Results
4.1. Benchmark Regression Results
4.2. Endogenous Test
4.3. Mechanism Analysis
4.4. Heterogeneity Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | |
2 | It is only since 2012 that foreign-owned financial institutions have been implementing the statistical system for classifying loans by sector. Prior to that, foreign capital was not included in the industrial classification of loan statistics. Furthermore, the earliest available data on loan balances by sector is from 2009. |
3 | For more information on the industrial enterprises above the designated size, please visit the website (https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E020U&sj=2021, accessed on 9 June 2022). |
4 | Data source: (1) China Statistical Yearbook; (2) Yearbook of the Chinese Investment in Fixed Assets. |
5 | Please see Section 3.2 data of this paper for more details about the variables and data. |
6 | Notes: Stata’s binScatter command is used for drawing. For a detailed explanation of this command, please refer to Michael Stepner’s (2014) binscatter: Binned Scatterplots in Stata: https://michaelstepner.com/binscatter/binscatter-StataConference2014.pdf (accessed on 27 February 2023). We divide all samples equally into 20 groups according to population density and record the median of population density as x (x1, x2, …, x20), and then calculate the average (y) of fines respectively in each group. Finally, the combination of (x, y) is the corresponding point in the scatter plot. |
7 | “Three examinations of loans” is the abbreviation of “investigation before loan, examination during loan, and inspection after loan”. |
8 | The following variables will be introduced later in the paper: density2, region, level, Caputilise, Hspr_real, Hsinr, Rdls, nCohesion10, lnpcgdp, Salary. |
9 | Persons Employed in Various Units in Districts under City at Year-end. |
10 | For a detailed description and calculation of the variable, please refer to Liu and Tian [53]. |
11 | It should be noted that Tibet has the lowest NPL rate, but it is not included in our regression sample because of the lack of statistics. |
12 | Cities are classified into several categories based on their commercial attractiveness. The detailed categories can be found at https://www.yicai.com/news/101063860.html (accessed on 13 June 2022). |
References
- Eberts, R.W.; McMillen, D.P. Agglomeration economies and urban public infrastructure. Handb. Reg. Urban Econ. 1999, 3, 1455–1495. [Google Scholar]
- Andersson, R.; Quigley, J.M.; Wilhelmsson, M. Agglomeration and the spatial distribution of creativity. Pap. Reg. Sci. 2005, 84, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Baltzopoulos, A. Agglomeration Externalities and Entrepreneurship—Micro-Level Evidence from Sweden. CESIS Electronic Working Paper No. 190. 2009. Available online: https://static.sys.kth.se/itm/wp/cesis/cesiswp190.pdf (accessed on 27 February 2023).
- Boix, R.; Trullén, J. Knowledge, networks of cities and growth in regional urban systems. Pap. Reg. Sci. 2007, 86, 551–574. [Google Scholar] [CrossRef] [Green Version]
- Combes, P.-P.; Gobillon, L. The empirics of agglomeration economies. In Handbook of Regional and Urban Economics; Elsevier: Amsterdam, The Netherlands, 2015; Volume 5, pp. 247–348. [Google Scholar]
- Davis, M.A.; Fisher, J.D.; Whited, T.M. Macroeconomic implications of agglomeration. Econometrica 2014, 82, 731–764. [Google Scholar]
- Thisse, J.-F.; Fujita, M. (Eds.) Increasing Returns and Transport Costs: The Fundamental Trade-off of a Spatial Economy. In Economics of Agglomeration: Cities, Industrial Location, and Globalization, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 99–148. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects; Department of Economic and Social Affairs Population Division: New York, NY, USA, 2018. [Google Scholar]
- Brinkman, J.C. Congestion, agglomeration, and the structure of cities. J. Urban Econ. 2016, 94, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecol. Indic. 2016, 61, 1024–1032. [Google Scholar] [CrossRef]
- Combes, P.-P.; Duranton, G.; Gobillon, L. The Costs of Agglomeration: House and Land Prices in French Cities. Rev. Econ. Stud. 2019, 86, 1556–1589. [Google Scholar] [CrossRef]
- Ge, Y. Regional Inequality, Industry Agglomeration and Foreign Trade: The Case of China. WIDER Research Paper. 2006. Available online: https://www.researchgate.net/profile/Ying-Ge-11/publication/252653403_Regional_Inequality_Industry_Agglomeration_and_Foreign_Trade_The_Case_of_China/links/00b7d532cf59e73a1c000000/Regional-Inequality-Industry-Agglomeration-and-Foreign-Trade-The-Case-of-China.pdf (accessed on 27 February 2023).
- Grover, A.; Lall, S.V.; Maloney, W.F. Agglomeration Economies, Productivity, and the Persistence of Place. In Place, Productivity, and Prosperity: Revisiting Spatially Targeted Policies for Regional Development; The World Bank: Washington, DC, USA, 2022; pp. 11–44. [Google Scholar] [CrossRef]
- Ge, Y. Globalization and Industry Agglomeration in China. World Dev. 2009, 37, 550–559. [Google Scholar] [CrossRef]
- Li, D.; Lu, Y.; Wu, M. Industrial agglomeration and firm size: Evidence from China. Reg. Sci. Urban Econ. 2012, 42, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-T.; Klenow, P.J. Misallocation and manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Wu, G.L. Identifying Capital Misallocation; Work Paper; University Chicago: Chicago, IL, USA, 2015. [Google Scholar]
- Banerjee, A.V.; Moll, B. Why Does Misallocation Persist? Am. Econ. J. Macroecon. 2010, 2, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Duranton, G.; Ghani, S.E.; Goswami, A.G.; Kerr, W.; Ghani, S.E.; Kerr, W.R. Effects of Land Misallocation on Capital Allocations in India. SSRN Scholarly Paper No. 2677021. 2015. Available online: https://papers.ssrn.com/abstract=2677021 (accessed on 27 February 2023).
- Pan, S.; Shi, K.; Wang, L.; Xu, J. Excess liquidity and credit misallocation: Evidence from China. China Econ. J. 2017, 10, 265–286. [Google Scholar] [CrossRef]
- Levine, R. Financial development and economic growth: Views and agenda. J. Econ. Lit. 1997, 35, 688–726. [Google Scholar]
- Levine, R. Finance and growth: Theory and evidence. Handb. Econ. Growth 2005, 1, 865–934. [Google Scholar]
- Beck, T.; Demirgüç-Kunt, A.; Maksimovic, V. Financial and legal constraints to growth: Does firm size matter? J. Financ. 2005, 60, 137–177. [Google Scholar] [CrossRef]
- Charumilind, C.; Kali, R.; Wiwattanakantang, Y. Connected Lending: Thailand before the Financial Crisis. J. Bus. 2006, 79, 181–218. [Google Scholar] [CrossRef]
- Boyreau-Debray, G.; Wei, S.-J. Pitfalls of a State-Dominated Financial System: The Case of China; National Bureau of Economic Research: Cambridge, MA, USA, 2005. [Google Scholar]
- Song, Z.; Storesletten, K.; Zilibotti, F. Growing like china. Am. Econ. Rev. 2011, 101, 196–233. [Google Scholar] [CrossRef] [Green Version]
- Acharya, V.V.; Crosignani, M.; Eisert, T.; Steffen, S. Zombie lending: Theoretical, international, and historical perspectives. Annu. Rev. Financ. Econ. 2022, 14, 21–38. [Google Scholar] [CrossRef]
- Bruche, M.; Llobet, G. Preventing zombie lending. Rev. Financ. Stud. 2014, 27, 923–956. [Google Scholar] [CrossRef] [Green Version]
- Restuccia, D.; Rogerson, R. Misallocation and productivity. In Review of Economic dynamics; Elsevier: Amsterdam, The Netherlands, 2013; Volume 16, pp. 1–10. [Google Scholar]
- Buera, F.J.; Kaboski, J.P.; Shin, Y. Finance and development: A tale of two sectors. Am. Econ. Rev. 2011, 101, 1964–2002. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Irarrazabal, A. The role of allocative efficiency in a decade of recovery. Rev. Econ. Dyn. 2015, 18, 523–550. [Google Scholar] [CrossRef]
- Fujii, D.; Nozawa, Y. Misallocation of Capital during Japan’s Lost Two Decades. Development Bank of Japan Working Paper, 1304. 2013. Available online: https://www.dbj.jp/ricf/pdf/research/DBJ_DP_1304.pdf (accessed on 27 February 2023).
- Gopinath, G.; Kalemli-Özcan, Ş.; Karabarbounis, L.; Villegas-Sanchez, C. Capital allocation and productivity in South Europe. Q. J. Econ. 2017, 132, 1915–1967. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.L. Capital misallocation in China: Financial frictions or policy distortions? J. Dev. Econ. 2018, 130, 203–223. [Google Scholar] [CrossRef]
- Banerjee, A.; Munshi, K. How efficiently is capital allocated? Evidence from the knitted garment industry in Tirupur. Rev. Econ. Stud. 2004, 71, 19–42. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.V.; Duflo, E. Growth theory through the lens of development economics. Handb. Econ. Growth 2005, 1, 473–552. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, J.; Sanchez, J.M.; Wang, C. Financing development: The role of information costs. Am. Econ. Rev. 2010, 100, 1875–1891. [Google Scholar] [CrossRef] [Green Version]
- McMillan, J.; Woodruff, C. Interfirm relationships and informal credit in Vietnam. Q. J. Econ. 1999, 114, 1285–1320. [Google Scholar] [CrossRef]
- Johnson, S.; McMillan, J.; Woodruff, C. Courts and relational contracts. J. Law Econ. Organ. 2002, 18, 221–277. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Chen, Y.; Zhou, M.; Zhou, Y. SOE preference and credit misallocation: A model and some evidence from China. Econ. Lett. 2016, 138, 38–41. [Google Scholar] [CrossRef]
- Park, J. Corruption, soundness of the banking sector, and economic growth: A cross-country study. J. Int. Money Financ. 2012, 31, 907–929. [Google Scholar] [CrossRef]
- Palley, T.I. A theory of Minsky super-cycles and financial crises. Contrib. Political Econ. 2011, 30, 31–46. [Google Scholar] [CrossRef]
- Chen, T.; Liu, L.X.; Zhou, L.-A. The Crowding-Out Effects of Real Estate Shocks—Evidence from China. SSRN Scholarly Paper No. 2584302. Social Science Research Network. 2015. Available online: https://ssrn.com/abstract=2584302 (accessed on 27 February 2023).
- Miao, J.; Wang, P. Asset bubbles and credit constraints. Am. Econ. Rev. 2018, 108, 2590–2628. [Google Scholar] [CrossRef] [Green Version]
- Bleck, A.; Liu, X. Credit expansion and credit misallocation. J. Monet. Econ. 2018, 94, 27–40. [Google Scholar] [CrossRef]
- Stein, J.C. Prices and trading volume in the housing market: A model with down-payment effects. Q. J. Econ. 1995, 110, 379–406. [Google Scholar] [CrossRef] [Green Version]
- Wurgler, J. Financial markets and the allocation of capital. J. Financ. Econ. 2000, 58, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Guo, P.; Jin, J.Y.; Geng, H. Political uncertainty and city bank lending in China: Evidence from city government official changes. Emerg. Mark. Rev. 2021, 49, 100802. [Google Scholar] [CrossRef]
- Marconi, D.; Upper, C. Capital Misallocation and Financial Development: A Sector-Level Analysis. Bank of Italy Temi di Discussione (Working Paper) No. 1143. 2017. Available online: https://ssrn.com/abstract=3066694 (accessed on 27 February 2023).
- He, G.; Shen, L. Whether Digital Financial Inclusion Can Improve Capital Misallocation or Not: A Study Based on the Moderating Effect of Economic Policy Uncertainty. Discret. Dyn. Nat. Soc. 2021, 2021, e4912836. [Google Scholar] [CrossRef]
- Boyko, C.T.; Cooper, R. Clarifying and re-conceptualising density. Prog. Plan. 2011, 76, 1–61. [Google Scholar] [CrossRef]
- Holman, N.; Mace, A.; Paccoud, A.; Sundaresan, J. Coordinating density; working through conviction, suspicion and pragmatism. Prog. Plan. 2015, 101, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Tian, Y. Compact urban form and human development: Retest based on heterogeneous effects. Int. J. Environ. Res. Public Health 2022, 19, 2198. [Google Scholar] [CrossRef]
- Pan, J.-N.; Huang, J.-T.; Chiang, T.-F. Empirical study of the local government deficit, land finance and real estate markets in China. China Econ. Rev. 2015, 32, 57–67. [Google Scholar] [CrossRef]
- Fu, Q. When fiscal recentralisation meets urban reforms: Prefectural land finance and its association with access to housing in urban China. Urban Stud. 2015, 52, 1791–1809. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, H.; Cui, X.; Wang, Z. Do compact cities have higher efficiencies of agglomeration economies? A dynamic panel model with compactness indicators. Land Use Policy 2022, 115, 106005. [Google Scholar] [CrossRef]
- Ahfeldt, G.M.; Pietrostefani, E. The Compact City in Empirical Research: A Quantitative Literature Review. 2017. Available online: http://eprints.lse.ac.uk/id/eprint/83638 (accessed on 27 February 2023).
- Chauvin, J.P.; Glaeser, E.; Ma, Y.; Tobio, K. What is different about urbanization in rich and poor countries? Cities in Brazil, China, India and the United States. J. Urban Econ. 2017, 98, 17–49. [Google Scholar] [CrossRef] [Green Version]
- Grover, A.; Lall, S.V.; Timmis, J. Agglomeration Economies in Developing Countries [Working Paper]; World Bank: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Leamer, E.E. Housing Is the Business Cycle; National Bureau of Economic Research: Cambridge, MA, USA, 2007. [Google Scholar]
- Leamer, E.E. Housing Really Is the Business Cycle: What Survives the Lessons of 2008–09? J. Money Credit Bank. 2015, 47, 43–50. [Google Scholar] [CrossRef]
- Crowe, C.; Dell’Ariccia, G.; Igan, D.; Rabanal, P. How to deal with real estate booms: Lessons from country experiences. J. Financ. Stab. 2013, 9, 300–319. [Google Scholar] [CrossRef]
- Dong, F.; Xu, Z. Cycles of credit expansion and misallocation: The Good, the Bad and the Ugly. J. Econ. Theory 2020, 186, 104994. [Google Scholar] [CrossRef]
- Chen, T.; Liu, L.; Xiong, W.; Zhou, L.-A. Real Estate Boom and Misallocation of Capital in China; Work Paper; Princeton University: Princeton, NJ, USA, 2017; Volume 9. [Google Scholar]
- Chortareas, G.E.; Girardone, C.; Ventouri, A. Bank supervision, regulation, and efficiency: Evidence from the European Union. J. Financ. Stab. 2012, 8, 292–302. [Google Scholar] [CrossRef]
VarName | Obs | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
fine_real, one thousand CNY | 4560 | 11.4980 | 52.1431 | 0.0000 | 0.0000 | 1103.0455 |
density, people per square kilometer | 4560 | 466.0057 | 556.7326 | 5.0094 | 330.1671 | 8562.8320 |
density2, people per square kilometer | 4560 | 45.5948 | 137.9822 | 0.1567 | 13.0782 | 2481.1853 |
lnpop, one thousand people, in log | 4560 | 8.1588 | 0.6958 | 5.1930 | 8.1719 | 10.3697 |
fiscal | 4560 | 0.1687 | 0.0963 | 0.0118 | 0.1453 | 1.0268 |
IndStr | 4560 | 0.9107 | 0.4922 | 0.0943 | 0.8024 | 5.1692 |
fncdvl | 4560 | 1.0470 | 0.6522 | 0.1180 | 0.8960 | 20.0959 |
Internetuser | 4560 | 0.0148 | 0.0135 | 0.0000 | 0.0116 | 0.2247 |
region | 4560 | 0.3053 | 0.4606 | 1.0000 | 0.0000 | 4.0000 |
level | 4560 | 0.0667 | 0.2495 | 0.0000 | 0.0000 | 5.0000 |
Caputilise | 4560 | 0.9288 | 0.1265 | 0.0000 | 0.7400 | 1.0000 |
HsPr_real, RMB/m2 | 4560 | 3186.6451 | 2463.0754 | 50.6809 | 2668.3040 | 3.75 × 104 |
Hsinr | 4560 | 133.3829 | 66.6207 | 1.8319 | 120.8291 | 912.5823 |
Rdls | 4560 | 0.6768 | 0.7542 | 0.0013 | 0.3672 | 3.8138 |
nCohesion10 | 4560 | 0.9241 | 0.0571 | 0.3762 | 0.9412 | 0.9964 |
lnpcgdp, one thousand CNY, in log | 4560 | 3.1102 | 0.7233 | 0.6864 | 3.1170 | 5.1933 |
Salary, CNY | 4560 | 4.03 × 104 | 2.18 × 104 | 6207.1100 | 3.72 × 104 | 1.73 × 105 |
fine_real | density | density2 | lnpop | fiscal | IndStr | fncdvl | Internetuser | ||
fine_real | 1 | ||||||||
density | 0.183 | 1 | |||||||
density2 | 0.215 | 0.874 | 1 | ||||||
lnpop | 0.183 | 0.421 | 0.247 | 1 | |||||
fiscal | 0.014 | −0.243 | −0.099 | −0.213 | 1 | ||||
IndStr | 0.243 | 0.069 | 0.176 | 0.11 | 0.384 | 1 | |||
fncdvl | 0.221 | 0.163 | 0.231 | 0.118 | 0.125 | 0.478 | 1 | ||
Internetuser | 0.288 | 0.24 | 0.272 | 0.072 | 0.064 | 0.27 | 0.295 | 1 | |
region | 0.091 | 0.36 | 0.238 | 0.29 | −0.331 | 0.074 | 0.048 | 0.217 | |
level | −0.217 | −0.568 | −0.443 | −0.706 | 0.383 | −0.153 | −0.302 | −0.292 | |
Caputilise | −0.069 | −0.23 | −0.158 | −0.198 | 0.204 | −0.037 | −0.134 | −0.169 | |
HsPr_real | 0.413 | 0.648 | 0.728 | 0.312 | −0.026 | 0.36 | 0.337 | 0.541 | |
Hsinr | −0.018 | 0.015 | 0.013 | 0.162 | 0.387 | 0.306 | 0.115 | −0.205 | |
Rdls | −0.039 | −0.336 | −0.155 | −0.289 | 0.396 | 0.086 | 0.148 | −0.077 | |
nCohesion10 | 0.022 | 0.099 | 0.066 | 0.252 | −0.094 | −0.081 | −0.026 | −0.04 | |
lnpcgdp | 0.254 | 0.341 | 0.361 | 0.063 | −0.238 | 0.017 | 0.136 | 0.626 | |
Salary | 0.423 | 0.203 | 0.267 | 0.102 | 0.269 | 0.359 | 0.292 | 0.722 | |
region | level | Caputilise | HsPr_real | Hsinr | Rdls | nCohesion10 | lnpcgdp | Salary | |
region | 1 | ||||||||
level | −0.422 | 1 | |||||||
Caputilise | −0.701 | 0.293 | 1 | ||||||
HsPr_real | 0.369 | −0.549 | −0.296 | 1 | |||||
Hsinr | −0.127 | 0.09 | 0.01 | 0.091 | 1 | ||||
Rdls | −0.558 | 0.289 | 0.114 | −0.155 | 0.215 | 1 | |||
nCohesion10 | 0.181 | −0.211 | −0.24 | 0.059 | −0.031 | −0.013 | 1 | ||
lnpcgdp | 0.354 | −0.464 | −0.252 | 0.599 | −0.606 | −0.234 | 0.054 | 1 | |
Salary | 0.096 | −0.218 | −0.11 | 0.614 | −0.177 | 0.001 | −0.039 | 0.681 | 1 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Benchmark | Robust1 | Robust2 | Robust3 | Robust4 | Robust5 | |
density | 0.0617 * | 0.0601 * | 0.0617 * | 0.0888 *** | ||
(1.80) | (1.85) | (1.80) | (4.29) | |||
density2 | 0.0826 ** | |||||
(2.09) | ||||||
nCohesion10 | 79.46 ** | |||||
(2.07) | ||||||
lnpop | 60.32 *** | 58.90 *** | 81.80 *** | 97.06 *** | 59.96 ** | 17.26 * |
(2.64) | (2.66) | (3.23) | (3.62) | (2.47) | (1.80) | |
fiscal | −59.36 *** | −42.36 *** | −56.65 *** | −59.69 *** | −59.79 *** | −42.96 *** |
(−2.93) | (−2.91) | (−2.85) | (−2.89) | (−2.91) | (−3.49) | |
IndStr | 7.572 | −4.054 | 8.730 | 9.850 | 7.390 | −2.875 |
(0.72) | (−0.92) | (0.84) | (0.91) | (0.64) | (−0.81) | |
fncdvl | −3.318 ** | −3.672 * | −3.298 ** | −3.161 ** | −3.357 ** | −6.028 *** |
(−2.11) | (−1.94) | (−2.14) | (−2.08) | (−2.10) | (−2.81) | |
Internetuser | −337.5 ** | −147.3 | −348.7 ** | −378.4 *** | −338.0 ** | −183.9 |
(−2.41) | (−1.24) | (−2.49) | (−2.64) | (−2.42) | (−1.56) | |
lnpcgdp | −0.854 | −4.768 | ||||
(−0.09) | (−1.14) | |||||
_cons | −511.1 *** | −489.9 *** | −662.6 *** | −858.3 *** | −505.9 ** | −152.7 * |
(−2.83) | (−2.80) | (−3.24) | (−3.64) | (−2.46) | (−1.91) | |
Adj R-squared | 0.2169 | 0.2175 | 0.2106 | 0.2048 | 0.2168 | 0.3525 |
N | 4560 | 4496 | 4560 | 4560 | 4560 | 4560 |
(1) | (2) | |
---|---|---|
Rdls | Salary | |
density | 0.3688 * | 0.8292 ** |
(1.7999) | (2.0554) | |
lnpop | −126.8303 | −407.4840 * |
(−1.1832) | (−1.9459) | |
fiscal | −54.7023 * | −47.7222 |
(−1.9224) | (−0.8943) | |
IndStr | −2.8232 | −18.4115 |
(−0.2142) | (−1.1548) | |
fncdvl | −3.2344 | −3.1094 |
(−1.2751) | (−0.6424) | |
Internetuser | −117.4835 | 212.4786 |
(−0.6026) | (0.8313) | |
year | Yes | Yes |
N | 4560 | 4560 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Density of House Price | House Price on Fine | Density of Housing Price-to-Income Ratio | Housing Price-to-Income Ratio on Fine | |
density | 6.349 *** | −0.0176 | 0.0423 *** | 0.0596 * |
(15.52) | (−0.43) | (4.27) | (1.76) | |
HsPr_real | 0.0125 *** | |||
(3.06) | ||||
Hsinr | 0.0491 * | |||
(1.93) | ||||
lnpop | 911.6 * | 48.93 ** | 39.93 *** | 58.36 ** |
(1.68) | (2.11) | (3.01) | (2.55) | |
fiscal | −904.5 ** | −48.05 *** | 31.42 | −60.90 *** |
(−2.26) | (−2.95) | (1.22) | (−2.92) | |
IndStr | 371.8 | 2.926 | 27.28 *** | 6.232 |
(1.42) | (0.40) | (4.71) | (0.60) | |
fncdvl | −21.43 | −3.050 * | 4.274 ** | −3.528 ** |
(−0.51) | (−1.66) | (2.40) | (−2.18) | |
Internetuser | 4238.1 | −390.5 *** | 165.1 ** | −345.6 ** |
(0.93) | (−2.92) | (2.07) | (−2.45) | |
_cons | −8817.4 * | −400.9 ** | −218.4 ** | −500.4 *** |
(−1.96) | (−2.17) | (−2.08) | (−2.77) | |
Adj R-squared | 0.7230 | 0.2542 | 0.1730 | 0.2178 |
N | 4560 | 4560 | 4560 | 4560 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Low Dependence | High Dependence | Low Dependence | High Dependence | |
density | 3.940 *** | 10.00 *** | 0.0331 *** | 0.0922 ** |
(8.25) | (4.53) | (2.85) | (2.54) | |
lnpop | 427.1 | 1866.4 * | 14.26 | 14.01 |
(0.75) | (1.77) | (1.19) | (0.42) | |
fiscal | ||||
IndStr | 542.3 | 413.1 | 29.92 *** | 27.65 *** |
(1.50) | (1.47) | (5.29) | (3.45) | |
fncdvl | 114.9 | −42.55 | 6.378 * | 4.072 ** |
(1.05) | (−1.50) | (1.68) | (2.24) | |
Internetuser | 15,700.9 * | −2809.7 | 143.9 | 31.86 |
(1.82) | (−1.06) | (1.04) | (0.36) | |
_cons | −4476.0 | −17301.3 ** | −39.06 | 52.23 |
(−0.96) | (−2.00) | (−0.40) | (0.20) | |
Adj R-squared | 0.7430 | 0.6030 | 0.1396 | 0.2055 |
N | 2280 | 2280 | 2280 | 2280 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Eastern China | Other Regions | First Tier Cities | Other Cities | |
density | 0.0337 | 0.251 *** | −0.0426 * | 0.131 * |
(1.58) | (3.58) | (−1.85) | (1.90) | |
lnpop | 28.02 | 15.15 | 166.2 | 3.257 |
(0.33) | (1.04) | (0.88) | (0.29) | |
fiscal | −452.5 *** | −19.84 | 337.7 | −29.18 ** |
(−2.94) | (−1.57) | (1.36) | (−2.38) | |
IndStr | 46.37 | −2.075 | 144.5 *** | −7.866 ** |
(1.19) | (−0.68) | (3.18) | (−2.14) | |
fncdvl | 3.667 | −2.128 * | 25.11 | −2.444 * |
(0.29) | (−1.75) | (0.75) | (−1.68) | |
Internetuser | −439.4 ** | −253.6 ** | −58.07 | −119.1 |
(−2.19) | (−1.98) | (−0.15) | (−1.40) | |
_cons | −256.8 | −193.5 | −1666.4 | −63.51 |
(−0.38) | (−1.62) | (−1.00) | (−0.81) | |
Adj R-squared | 0.3081 | 0.2012 | 0.5510 | 0.2128 |
N | 1392 | 3168 | 304 | 4256 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Sufficient Capacity | Insufficient Capacity | Low Dependence | High Dependence | |
density | 0.0371 | 0.271 *** | 0.0442 | 0.216 ** |
(1.47) | (4.85) | (1.26) | (2.56) | |
lnpop | 110.5 * | 22.60 | 1.199 | 33.23 |
(1.68) | (1.37) | (0.03) | (1.11) | |
fiscal | −149.7 ** | −11.00 | ||
(−2.25) | (−1.02) | |||
IndStr | 21.75 | −9.923 ** | 30.85 * | 6.489 |
(0.88) | (−2.19) | (1.89) | (0.47) | |
fncdvl | −2.078 | −5.766 ** | 0.0515 | −2.426 |
(−0.91) | (−2.03) | (0.01) | (−1.23) | |
Internetuser | −328.0 ** | −241.0 * | −167.7 | −451.9 *** |
(−2.07) | (−1.88) | (−0.67) | (−2.65) | |
_cons | −919.6 * | −271.0 ** | −54.98 | −338.1 |
(−1.71) | (−2.00) | (−0.20) | (−1.37) | |
Adj R-squared | 0.2127 | 0.2881 | 0.2789 | 0.1859 |
N | 1850 | 2710 | 2280 | 2280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Tian, Y.; Chen, H. The Costs of Agglomeration: Misallocation of Credit in Chinese Cities. Land 2023, 12, 578. https://doi.org/10.3390/land12030578
Liu L, Tian Y, Chen H. The Costs of Agglomeration: Misallocation of Credit in Chinese Cities. Land. 2023; 12(3):578. https://doi.org/10.3390/land12030578
Chicago/Turabian StyleLiu, Lu, Yu Tian, and Haiquan Chen. 2023. "The Costs of Agglomeration: Misallocation of Credit in Chinese Cities" Land 12, no. 3: 578. https://doi.org/10.3390/land12030578
APA StyleLiu, L., Tian, Y., & Chen, H. (2023). The Costs of Agglomeration: Misallocation of Credit in Chinese Cities. Land, 12(3), 578. https://doi.org/10.3390/land12030578