Fractal Features of Soil Particles as an Index of Land Degradation under Different Land-Use Patterns and Slope-Aspects
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Fractal Dimension
2.4. K-Factor
2.5. Statistical analyses
3. Result and Discussion
3.1. Description of Soil Properties
3.2. K-Factor, D, and Land Use
3.3. K-Factor, D and Aspect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirzaee, S.; Ghorbani-Dashtaki, S.; Kerry, R. Comparison of a Spatial, Spatial and Hybrid Methods for Predicting Inter-Rill and Rill Soil Sensitivity to Erosion at the Field Scale. Catena 2020, 188, 104439. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S.; Mohammadi, J.; Asadi, H.; Asadzadeh, F. Spatial Variability of Soil Organic Matter Using Remote Sensing Data. Catena 2016, 145, 118–127. [Google Scholar] [CrossRef]
- Salehi-Varnousfaderani, B.; Honarbakhsh, A.; Tahmoures, M.; Akbari, M. Soil Erodibility Prediction by Vis-NIR Spectra and Environmental Covariates Coupled with GIS, Regression and PLSR in a Watershed Scale, Iran. Geoderma Reg. 2022, 28, e00470. [Google Scholar] [CrossRef]
- Panagos, P.; Meusburger, K.; Alewell, C.; Montanarella, L. Soil Erodibility Estimation Using LUCAS Point Survey Data of Europe. Environ. Model. Softw. 2012, 30, 143–145. [Google Scholar] [CrossRef]
- Tahmoures, M.; Honarbakhsh, A.; Afzali, S.F.; Abotaleb, M.; Ingram, B.; Ostovari, Y. Fractal Features of Soil Particles as an Indicator of Land Degradation under Different Types of Land Use at the Watershed Scale in Southern Iran. Land 2022, 11, 2093. [Google Scholar] [CrossRef]
- Mohammadi, M.; Shabanpour, M.; Mohammadi, M.H.; Davatgar, N. Characterizing Spatial Variability of Soil Textural Fractions and Fractal Parameters Derived from Particle Size Distributions. Pedosphere 2019, 29, 224–234. [Google Scholar] [CrossRef]
- Peng, G.; Xiang, N.; Lv, S.; Zhang, G. Fractal Characterization of Soil Particle-Size Distribution under Different Land-Use Patterns in the Yellow River Delta Wetland in China. J. Soils Sediments 2014, 14, 1116–1122. [Google Scholar] [CrossRef]
- Deng, Y.; Cai, C.; Xia, D.; Ding, S.; Chen, J. Fractal Features of Soil Particle Size Distribution under Different Land-Use Patterns in the Alluvial Fans of Collapsing Gullies in the Hilly Granitic Region of Southern China. PLoS ONE 2017, 12, e0173555. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Cui, Z.; Ma, H. Fractal Features of Soil Particle-Size Distributions and Their Relationships with Soil Properties in Gravel-Mulched Fields. Arab. J. Geosci. 2017, 10, 211. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.-H.; Liu, S.; Liu, G. Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China. Geoderma 2006, 134, 56–61. [Google Scholar] [CrossRef]
- Tyler, S.W.; Wheatcraft, S.W. Fractal Scaling of Soil Particle-Size Distributions: Analysis and Limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Mahdi, C.M.; Dahmardeh Ghaleno, M.R. Evaluating Fractal Dimension of the Soil Particle Size Distributions and Soil Water Retention Curve Obtained from Soil Texture Components. Arch. Agron. Soil Sci. 2020, 66, 1668–1678. [Google Scholar] [CrossRef]
- Omidvar, E. Fractal Analysis of the Infiltration Curve and Soil Particle Size in a Semi-Humid Watershed. Eur. J. Soil Sci. 2021, 72, 1373–1394. [Google Scholar] [CrossRef]
- Fu, H.; Pei, S.; Wan, C.; Sosebee, R.E. Fractal Dimension of Soil Particle Size Distribution Along an Altitudinal Gradient in the Alxa Rangeland, Western Inner Mongolia. Arid Land Res. Manag. 2009, 23, 137–151. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhao, H.L.; Zhao, W.Z.; Zhang, T.H. Fractal Features of Soil Particle Size Distribution and the Implication for Indicating Desertification. Geoderma 2004, 122, 43–49. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z. Experimental Study on the Relation between the Fractal Characteristics and Solute Transport Parameters of Sandy Soil. J. Soils Sediments 2020, 20, 3181–3191. [Google Scholar] [CrossRef]
- Li, K.; Yang, H.; Han, X.; Xue, L.; Lv, Y.; Li, J.; Fu, Z.; Li, C.; Shen, W.; Guo, H.; et al. Fractal Features of Soil Particle Size Distributions and Their Potential as an Indicator of Robinia Pseudoacacia Invasion1. Sci. Rep. 2018, 8, 7075. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xie, J.; Han, J.; Nan, H.; Guo, Z. Response of Fractal Analysis to Soil Quality Succession in Long-Term Compound Soil Improvement of Mu Us Sandy Land, China. Math. Probl. Eng. 2020, 2020, e5463107. [Google Scholar] [CrossRef]
- Bai, Y.; Qin, Y.; Lu, X.; Zhang, J.; Chen, G.; Li, X. Fractal Dimension of Particle-Size Distribution and Their Relationships with Alkalinity Properties of Soils in the Western Songnen Plain, China. Sci. Rep. 2020, 10, 20603. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Zhang, R.; Liu, X.; Niu, Y.; Zhang, H.; Li, H.; Li, J.; Wang, B.; Zhang, G. Soil Particle Size Distribution Characteristics of Different Land-Use Types in the Funiu Mountainous Region. Soil Tillage Res. 2018, 184, 45–51. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: New York, NY, USA, 2018; pp. 961–1010. ISBN 978-0-89118-977-0. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-Size Analysis. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: New York, NY, USA, 1986; pp. 383–411. ISBN 978-0-89118-864-3. [Google Scholar]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.-A.; Abbasi, M.; Dematte, J.A.M.; Arthur, E.; Panagos, P. Towards Prediction of Soil Erodibility, SOM and CaCO3 Using Laboratory Vis-NIR Spectra: A Case Study in a Semi-Arid Region of Iran. Geoderma 2018, 314, 102–112. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Sadeghi, S.H.R.; Bahrami, H.A.; Mahdian, M.H. Modeling the USLE K-Factor for Calcareous Soils in Northwestern Iran. Geomorphology 2008, 97, 414–423. [Google Scholar] [CrossRef]
- U.S. Geological Survey. USGS 01646500 Potomac River near Wash, DC Little Falls Pump Sta. In USGS Water Data for the Nation: U.S. Geological Survey National Water Information System Database; 2020. Available online: https://waterdata.usgs.gov/nwis (accessed on 12 January 2020). [CrossRef]
- Bonilla, C.A.; Johnson, O.I. Soil Erodibility Mapping and Its Correlation with Soil Properties in Central Chile. Geoderma 2012, 189–190, 116–123. [Google Scholar] [CrossRef]
- Addis, H.K.; Klik, A. Predicting the Spatial Distribution of Soil Erodibility Factor Using USLE Nomograph in an Agricultural Watershed, Ethiopia. Int. Soil Water Conserv. Res. 2015, 3, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.-A.; Naderi, M.; Dematte, J.A.M.; Kerry, R. Modification of the USLE K Factor for Soil Erodibility Assessment on Calcareous Soils in Iran. Geomorphology 2016, 273, 385–395. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Kumar, L.; Shabani, F. Soil Erodibility and Its Prediction in Semi-Arid Regions. Arch. Agron. Soil Sci. 2019, 65, 1688–1703. [Google Scholar] [CrossRef]
- Ostovari, Y.; Moosavi, A.A.; Pourghasemi, H.R. Soil Loss Tolerance in Calcareous Soils of a Semiarid Region: Evaluation, Prediction, and Influential Parameters. Land Degrad. Dev. 2020, 31, 2156–2167. [Google Scholar] [CrossRef]
- Li, J.; Sang, C.; Yang, J.; Qu, L.; Xia, Z.; Sun, H.; Jiang, P.; Wang, X.; He, H.; Wang, C. Stoichiometric Imbalance and Microbial Community Regulate Microbial Elements Use Efficiencies under Nitrogen Addition. Soil Biol. Biochem. 2021, 156, 108207. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Vázquez, E.V.; Miranda, J.G.V. Assessing Soil Particle-Size Distribution on Experimental Plots with Similar Texture under Different Management Systems Using Multifractal Parameters. Geoderma 2010, 160, 47–56. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Y.; Hu, J.; Liu, F. Use of Visible and Near-Infrared Reflectance Spectroscopy Models to Determine Soil Erodibility Factor (K) in an Ecologically Restored Watershed. Remote Sens. 2020, 12, 3103. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, Y.; Wang, X.; Hu, Y. Volume Fractal Dimension of Soil Particles and Relationships with Soil Physical-Chemical Properties and Plant Species Diversity in an Alpine Grassland under Different Disturbance Degrees. J. Arid Land 2013, 5, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Zhang, C.; Liu, G.; Qu, D.; Xue, S. Fractal Feature of Particle-Size Distribution in the Rhizospheres and Bulk Soils during Natural Recovery on the Loess Plateau, China. PLoS ONE 2015, 10, e0138057. [Google Scholar] [CrossRef]
- Che, M.; Gong, Y.; Xu, M.; Kang, C.; Lv, C.; He, S.; Zheng, J. Effects of Elevation and Slope Aspect on the Distribution of the Soil Organic Carbon Associated with Al and Fe Mineral Phases in Alpine Shrub–Meadow Soil. Sci. Total Environ. 2021, 753, 141933. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chang, H.; Liu, R. Fractal Features of Soil Particle Size Distributions and Their Implications for Indicating Enclosure Management in a Semiarid Grassland Ecosystem. Pol. J. Ecol. 2020, 68, 132–144. [Google Scholar] [CrossRef]
- Xue, R.; Yang, Q.; Miao, F.; Wang, X.; Shen, Y.; Xue, R.; Yang, Q.; Miao, F.; Wang, X.; Shen, Y. Slope Aspect Influences Plant Biomass, Soil Properties and Microbial Composition in Alpine Meadow on the Qinghai-Tibetan Plateau. J. Soil Sci. Plant Nutr. 2018, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Feng, Q.; Qin, Y.; Cao, J.; Li, H.; Zhao, Y. Soil Organic Carbon as Functions of Slope Aspects and Soil Depths in a Semiarid Alpine Region of Northwest China. CATENA 2017, 152, 94–102. [Google Scholar] [CrossRef]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Soil Organic Carbon and Total Nitrogen Stocks as Affected by Topographic Aspect and Vegetation in the Bale Mountains, Ethiopia. Geoderma 2006, 135, 335–344. [Google Scholar] [CrossRef]
- Yu, H.; Zha, T.; Zhang, X.; Nie, L.; Ma, L.; Pan, Y. Spatial Distribution of Soil Organic Carbon May Be Predominantly Regulated by Topography in a Small Revegetated Watershed. CATENA 2020, 188, 104459. [Google Scholar] [CrossRef]
- Mozaffari, H.; Moosavi, A.A.; Ostovari, Y.; Cornelis, W. Comparing visible-near-infrared spectroscopy with classical regression pedotransfer functions for predicting near-saturated and saturated hydraulic conductivity of calcareous soils. J. Hydrol. 2022, 613 Pt A, 128412. [Google Scholar] [CrossRef]
Land Use | Property | Unit | Mean | Minimum | Maximum | Std.Dev. | Coef.Var. |
---|---|---|---|---|---|---|---|
Farmland | pH | - | 7.76 | 7.35 | 8.35 | 0.24 | 3.11 |
SOM | % | 1.34 | 0.23 | 4.38 | 1.04 | 37.31 | |
CEC | Meq/100 g | 24.83 | 16.24 | 43.30 | 6.78 | 27.29 | |
CaCO3 | % | 23.82 | 3.51 | 62.27 | 12.25 | 21.42 | |
Sand | % | 26.06 | 4.58 | 67.32 | 15.72 | 13.33 | |
Clay | % | 21.01 | 8.06 | 48.36 | 9.18 | 43.70 | |
Silt | % | 52.89 | 21.60 | 73.41 | 12.17 | 23.01 | |
D | - | 2.90 | 2.86 | 2.95 | 0.02 | 0.80 | |
K-factor | Mg h MJ−1 mm−1 | 0.10 | 0.07 | 0.14 | 0.02 | 15.12 | |
Slope farming | pH | - | 7.83 | 7.35 | 8.48 | 0.30 | 3.86 |
SOM | % | 1.68 | 0.28 | 3.96 | 1.04 | 32.12 | |
CEC | Meq/100 g | 30.60 | 15.30 | 43.69 | 7.65 | 25.02 | |
CaCO3 | % | 32.02 | 3.51 | 62.27 | 13.90 | 43.42 | |
Sand | % | 21.44 | 2.50 | 67.32 | 17.26 | 30.52 | |
Clay | % | 25.51 | 10.08 | 50.38 | 12.01 | 47.08 | |
Silt | % | 53.04 | 21.40 | 73.41 | 13.81 | 26.04 | |
D | - | 2.91 | 2.86 | 2.98 | 0.03 | 1.06 | |
K-factor | Mg h MJ−1 mm−1 | 0.12 | 0.08 | 0.15 | 0.01 | 10.94 | |
Rangeland | pH | - | 7.67 | 7.20 | 8.10 | 0.24 | 3.17 |
SOM | % | 1.54 | 0.56 | 4.34 | 0.75 | 28.83 | |
CEC | Meq/100 g | 25.08 | 17.53 | 38.00 | 4.27 | 17.01 | |
CaCO3 | % | 23.26 | 1.03 | 67.43 | 16.30 | 32.07 | |
Sand | % | 11.13 | 1.82 | 36.96 | 9.05 | 31.31 | |
Clay | % | 28.98 | 15.11 | 41.31 | 6.84 | 23.60 | |
Silt | % | 59.89 | 36.84 | 77.29 | 8.37 | 13.98 | |
D | - | 2.91 | 2.88 | 2.95 | 0.02 | 0.57 | |
K-factor | Mg h MJ−1 mm−1 | 0.08 | 0.03 | 0.11 | 0.02 | 27.37 | |
Woodland | pH | - | 7.50 | 7.08 | 7.90 | 0.22 | 2.92 |
SOM | % | 1.98 | 0.76 | 3.73 | 0.69 | 34.56 | |
CEC | Meq/100 g | 33.67 | 22.22 | 52.00 | 8.99 | 26.70 | |
CaCO3 | % | 19.93 | 2.08 | 67.43 | 16.51 | 32.86 | |
Sand | % | 11.23 | 2.98 | 36.96 | 6.66 | 29.36 | |
Clay | % | 35.28 | 19.14 | 46.35 | 6.78 | 19.21 | |
Silt | % | 53.50 | 36.84 | 71.32 | 7.93 | 14.82 | |
D | - | 2.93 | 2.88 | 2.99 | 0.03 | 0.92 | |
K-factor | Mg h MJ−1 mm−1 | 0.07 | 0.02 | 0.11 | 0.02 | 25.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, F.; Mohamadzadeh, N.; Sadeghnejad, M.; Ingram, B.; Ostovari, Y. Fractal Features of Soil Particles as an Index of Land Degradation under Different Land-Use Patterns and Slope-Aspects. Land 2023, 12, 615. https://doi.org/10.3390/land12030615
He F, Mohamadzadeh N, Sadeghnejad M, Ingram B, Ostovari Y. Fractal Features of Soil Particles as an Index of Land Degradation under Different Land-Use Patterns and Slope-Aspects. Land. 2023; 12(3):615. https://doi.org/10.3390/land12030615
Chicago/Turabian StyleHe, Feng, Neda Mohamadzadeh, Mostafa Sadeghnejad, Ben Ingram, and Yaser Ostovari. 2023. "Fractal Features of Soil Particles as an Index of Land Degradation under Different Land-Use Patterns and Slope-Aspects" Land 12, no. 3: 615. https://doi.org/10.3390/land12030615
APA StyleHe, F., Mohamadzadeh, N., Sadeghnejad, M., Ingram, B., & Ostovari, Y. (2023). Fractal Features of Soil Particles as an Index of Land Degradation under Different Land-Use Patterns and Slope-Aspects. Land, 12(3), 615. https://doi.org/10.3390/land12030615