Synergistic Effect of Multiple Metals Present at Slightly Lower Concentration than the Australian Investigation Level Can Induce Phytotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection
2.2. Soil Properties
2.3. Treating of Soil with Metals and Incubation
2.4. Chemical Analysis
2.5. Trial 1, 2 and 3
2.6. Data Analysis
3. Results and Discussion
3.1. Trial 1 and 2
3.2. Trial 3
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bohra, A.; Sanadhya, D.; Chauhan, R. Heavy Metal Toxicity and Tolerance in Plants with Special Reference to Cadmium: A Review. J. Plant Sci. Res. 2015, 31, 51–74. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.M.S.C.; Marinho-Reis, A.P.; Almeida, A.; Freitas, S.; Simões, M.R.; Diniz, M.L.; Pinto, E.; Ramos, P.; Ferreira da Silva, E.; Moreira, P.I. Fingernail trace element content in environmentally exposed individuals and its influence on their cognitive status in ageing. Expo. Health 2019, 11, 181–194. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Påhlsson, A.-M.B. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants: A literature review. Water Air Soil Pollut. 1989, 47, 287–319. [Google Scholar] [CrossRef]
- NEPC. National Environment Protection (Assessment of Site Contamination) Measure 1999: Schedule B (1)—Guideline on the Investigation Levels for Soil and Groundwater; National Environment Protection Council: Canberra, Australia, 1999; p. 16.
- Grobelak, A.; Napora, A. The chemophytostabilisation process of heavy metal polluted soil. PLoS ONE 2015, 10, e0129538. [Google Scholar] [CrossRef]
- Council of the European Communities. Council directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (86/278/EEC). Off. J. Eur. Communities 1986, L181, 1–13. [Google Scholar]
- Hudcová, H.; Vymazal, J.; Rozkošný, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, D.J.; Alloway, B.J. Complexation of copper by sewage sludge-derived dissolved organic matter: Effects on soil sorption behaviour and plant uptake. Water Air Soil Pollut. 2007, 182, 187–196. [Google Scholar] [CrossRef]
- Stacey, S.P.; McLaughlin, M.J.; Hettiarachchi, G.M. Fertilizer-Borne Trace Element Contaminants in Soils. In Trace Elements in Soils; Hooda, P.S., Ed.; John Wiley & Sons Ltd.: Wiltshire, UK, 2010; pp. 135–154. [Google Scholar]
- Chaney, R.L.; Broadhurst, C.L.; Centofanti, T. Phytoremediation of Soil Trace Elements. In Trace Elements in Soils; Hooda, P.S., Ed.; John Wiley & Sons Ltd.: Wiltshire, UK, 2010; pp. 311–352. [Google Scholar]
- Hamon, R.; Lorenz, S.; Holm, P.; Christensen, T.; McGrath, S. Changes in trace metal species and other components of the rhizosphere during growth of radish. Plant Cell Environ. 1995, 18, 749–756. [Google Scholar] [CrossRef]
- Tack, F.M.G. Trace elements: General soil chemistry, principles and processes. In Trace Elements in Soils; Hooda, P.S., Ed.; Wiley Online Library: Wiltshire, UK, 2010; pp. 9–37. [Google Scholar]
- WHO. Permissible Limits of Heavy Metals in Soil and Plants; World Health Organization: Geneva, Switzerland, 1996.
- Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. 2016, 23, 8244–8259. [Google Scholar] [CrossRef] [PubMed]
- Loix, C.; Huybrechts, M.; Vangronsveld, J.; Gielen, M.; Keunen, E.; Cuypers, A. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front. Plant Sci. 2017, 8, 1867. [Google Scholar] [CrossRef] [Green Version]
- Hayat, M.T.; Nauman, M.; Nazir, N.; Ali, S.; Bangash, N. Environmental hazards of cadmium: Past, present, and future. In Cadmium Toxicity and Tolerance in Plants; Hasanuzzaman, M., Ed.; Academic Press: London, UK, 2019; pp. 163–183. [Google Scholar]
- Gratão, P.L.; Monteiro, C.C.; Rossi, M.L.; Martinelli, A.P.; Peres, L.E.P.; Medici, L.O.; Lea, P.J.; Azevedo, R.A. Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ. Exp. Bot. 2009, 67, 387–394. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Cherif, J.; Mediouni, C.; Ammar, W.B.; Jemal, F. Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum). J. Environ. Sci. 2011, 23, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Zia-ur-Rehman, M.; Irshad, M.K.; Bharwana, S.A. The effect of excess copper on growth and physiology of important food crops: A review. Environ. Sci. Pollut. Res. 2015, 22, 8148–8162. [Google Scholar] [CrossRef]
- Tiller, K.G.; Merry, R.H. Copper pollution of agricultural soils. In Copper in Soils and Plants; Loneragan, J.F., Robson, A.D., Graham, R.D., Eds.; Academic Press: New York, USA, 1981. [Google Scholar]
- Talebi, S.; Kalat, S.N.; Darban, A.S. The study effects of heavy metals on germination characteristics and proline content of Triticale (Triticoseale wittmack). Int. J. Farming Allied Sci. 2014, 3, 1080–1087. [Google Scholar]
- Hammerschmitt, R.K.; Tiecher, T.L.; Facco, D.B.; Silva, L.O.S.; Schwalbert, R.; Drescher, G.L.; Trentin, E.; Somavilla, L.M.; Kulmann, M.S.S.; Silva, I.C.B.; et al. Copper and zinc distribution and toxicity in ‘Jade’/‘Genovesa’ young peach tree. Sci. Hortic. 2020, 259, 108763. [Google Scholar] [CrossRef]
- Song, C.; Yan, Y.; Rosado, A.; Zhang, Z.; Castellarin, S.D. ABA alleviates uptake and accumulation of zinc in grapevine (Vitis vinifera L.) by inducing expression of ZIP and detoxification-related genes. Front. Plant Sci. 2019, 10, 872. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Brezoczki, V.M.; Filip, G.M. The heavy metal ions (Cu2+, Zn2+, Cd+) toxic compounds influence on triticale plants growth. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017. [Google Scholar]
- Wallace, A. Additive, protective, and synergistic effects on plants with excess trace elements. Soil Sci. 1982, 133, 319–323. [Google Scholar] [CrossRef]
- Versieren, L.; Evers, S.; De Schamphelaere, K.; Blust, R.; Smolders, E. Mixture toxicity and interactions of copper, nickel, cadmium, and zinc to barley at low effect levels: Something from nothing? Environ. Toxicol. Chem. 2016, 35, 2483–2492. [Google Scholar] [CrossRef]
- Wallace, A.; Romney, E.M. Synergistic trace metal effects in plants. Commun. Soil Sci. Plant Anal. 1977, 8, 699–707. [Google Scholar] [CrossRef]
- Kutrowska, A.; Małecka, A.; Piechalak, A.; Masiakowski, W.; Hanć, A.; Barałkiewicz, D.; Andrzejewska, B.; Zbierska, J.; Tomaszewska, B. Effects of binary metal combinations on zinc, copper, cadmium and lead uptake and distribution in Brassica juncea. J. Trace Elem. Med. Biol. 2017, 44, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.; Baker, A.S. Sorption of copper, zinc, and cadmium by some acid soils. Soil Sci. Soc. Am. J. 1980, 44, 969–974. [Google Scholar] [CrossRef]
- Rosen, V.; Chen, Y. The influence of compost addition on heavy metal distribution between operationally defined geochemical fractions and on metal accumulation in plant. J. Soils Sed. 2014, 14, 713–720. [Google Scholar] [CrossRef]
- Hooda, P.S. Regulatory Limits for Trace Elements in Soils. In Trace Elements in Soils; Hooda, P.S., Ed.; John Wiley & Sons Ltd.: Wiltshire, UK, 2010; pp. 293–309. [Google Scholar]
- Bureau of Meteorology. Climate Data Online. Available online: http://www.bom.gov.au/climate/data (accessed on 26 January 2023).
- Hogg, D.S.; McLaren, R.G.; Swift, R.S. Desorption of copper from some New Zealand soils. Soil Sci. Soc. Am. J. 1993, 57, 361–366. [Google Scholar] [CrossRef]
- Organisation for Economic and Cultural Development. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test; OECD: Paris, France, 2006; p. 21. [Google Scholar]
- LECO. LECO Trumac CN Analyser—Carbon/Nitrogen in Soil and Plant Tissue (Organic Application Note); LECO Corporation: St Joseph, MI, USA, 2012. [Google Scholar]
- LECO. Non-Carbonate Carbon Method; LECO Corporation: St Joseph, MI, USA, 2013; p. 1. [Google Scholar]
- Prendergast-Miller, M.; Sohi, S. Investigating biochar impacts on plant roots and root carbon. In Proceedings of the Soil Organic Matter Conference, Cote d’Azur, France, 19–23 September 2010. [Google Scholar]
- Jones, D.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.; Murphy, D. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2011, 45, 113–124. [Google Scholar] [CrossRef]
- Kumar, A.; CSIRO, Urrbrae, SA, Australia. Personal communication, 2021.
Country | Cd | Cu | Zn | Soil Condition |
---|---|---|---|---|
mg kg−1 | mg kg−1 | mg kg−1 | ||
Australian Ecological Investigation Limit (Urban) [7] | 3 | 100 | 200 | (based on sand and low pH) |
European Directive 86/278/EEC [8] | 1–3 | 50–140 | 150–300 | 6 < pH < 7 |
Austria (Carinthia) [9] | 0.5 | 40 | 100 | 5 < pH < 5.5 |
1 | 50 | 150 | 5.5 < pH < 6.5 | |
1.5 | 100 | 200 | pH > 6.5 | |
Germany [9] | 1.5 | 60 | 200 | |
1 | 150 | Light soil with a clay content below 5% at 5 < pH < 6 | ||
Lithuania [9] | 0.8 | 40 | 120 | Sand, sandy loam |
1.1 | 60 | 200 | Clay, clay loam | |
Portugal [9] | 1 | 50 | 150 | pH < 5.5 |
United Kingdom [9] | 3 | 80 | 200 | 5 < pH < 5.5 |
3 | 100 | 250 | 5.5 < pH < 6.0 | |
3 | 135 | 300 | 6 < pH < 7 | |
3 | 200 | 450 | pH > 7 |
Soil | pH | EC | CEC | OC | N | P | K | S | Ca | Mg | Na |
---|---|---|---|---|---|---|---|---|---|---|---|
dS m−1 | cmol (+) kg−1 | % | % | % | % | % | % | % | % | ||
uSoil * | 3.72 | 5.77 | 3.27 | 2.29 | 0.15 | <0.01 | 0.13 | 0.01 | 0.03 | 0.04 | <0.01 |
Soil | Al | As | B | Cd | Cu | Fe | Mn | Mo | Pb | Zn | |
mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | ||
uSoil | 7053.21 | <0.1 | 1.53 | <0.1 | 1.95 | 1404.37 | 9.86 | <0.5 | 29.14 | 7.92 |
Treatment | Metal Rate | Relative Germination | Shoot Weight (Variance) | Relative Shoot Weight | Comment on Phytotoxicity | Comment on Metal Rate | Decision about Metal Rate | |||
---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 | % | g | % | |||||||
Cd | Cu | Zn | ||||||||
Investigation level * | 3 | 100 | 200 | Expected phytotoxicity | ||||||
Trial-1 (5 days) | ||||||||||
T1a (Control) | 0 | 2 | 7.9 | 100% | 0.0380 II | (1.6 × 10−6) | 100% | Not phytotoxic | Very low | |
T1b (+ve Control) | 0.5 | 9.8 | 29.7 | 123% | 0.0519 IV | (4.6 × 10−7) | 137% | Not phytotoxic (Cu & Zn acted as nutrient) | Very low | Ignore |
T1c (+ve Control) | 2.5 | 48.8 | 111.4 | 123% | 0.0467 III | (6.4 × 10−6) | 123% | Not phytotoxic (Cu & Zn acted as nutrient) | Low | Ignore |
T1d | 12.5 | 243.8 | 417.7 | 115% | 0.0143 I | (3.1 × 10−6) | 38% | Phytotoxic | High | Ignore |
T1e | 62.5 | 1218.8 | 1566.2 | 0% | 0% | (0) | 0% | Very phytotoxic | Very high | Ignore |
Trial-2 (5 days) | ||||||||||
T2a (Control) | 0 | 2 | 7.9 | 100% | 0.0473 II | (8.7 × 10−6) | 100% | Not phytotoxic | Very low | |
T2b | 5 | 97.5 | 187.9 | 100% | 0.0386 I | (7.1 × 10−7) | 82% | Phytotoxic | Cd rate high | Reduce Cd a little |
T2c | 7.5 | 146.3 | 264.5 | 100% | 0.0345 I | (4.4 × 10−5) | 73% | Phytotoxic | Cd rate high | Ignore |
Trial-3 (32 days) | ||||||||||
T3a (Control) | 0 | 2 | 7.9 | 100% | 0.2176 II | (1.6 × 10−5) | 100% | Not phytotoxic | Very low | |
T3b | 2.5 | 97.5 | 187.9 | 100% | 0.1894 I | (2.8 × 10−7) | 87% | Slightly phytotoxic | Little lower than EIL level | Accept |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Bolan, N.; Clark, I.; Meier, S.; Lewis, D.; Sánchez-Monedero, M.A. Synergistic Effect of Multiple Metals Present at Slightly Lower Concentration than the Australian Investigation Level Can Induce Phytotoxicity. Land 2023, 12, 698. https://doi.org/10.3390/land12030698
Khan N, Bolan N, Clark I, Meier S, Lewis D, Sánchez-Monedero MA. Synergistic Effect of Multiple Metals Present at Slightly Lower Concentration than the Australian Investigation Level Can Induce Phytotoxicity. Land. 2023; 12(3):698. https://doi.org/10.3390/land12030698
Chicago/Turabian StyleKhan, Naser, Nanthi Bolan, Ian Clark, Sebastian Meier, David Lewis, and Miguel A. Sánchez-Monedero. 2023. "Synergistic Effect of Multiple Metals Present at Slightly Lower Concentration than the Australian Investigation Level Can Induce Phytotoxicity" Land 12, no. 3: 698. https://doi.org/10.3390/land12030698
APA StyleKhan, N., Bolan, N., Clark, I., Meier, S., Lewis, D., & Sánchez-Monedero, M. A. (2023). Synergistic Effect of Multiple Metals Present at Slightly Lower Concentration than the Australian Investigation Level Can Induce Phytotoxicity. Land, 12(3), 698. https://doi.org/10.3390/land12030698