Open Habitats under Threat in Mountainous, Mediterranean Landscapes: Land Abandonment Consequences in the Vegetation Cover of the Thessalian Part of Mt Agrafa (Central Greece)
Abstract
:1. Introduction
- (1)
- Which LULC classes were submitted to changes in time and to what extent, and how were the transitions between the LULC classes directed?
- (2)
- What was the rate of change (transitions) between LULC classes and was rate was differentiated in time or between classes or transition types?
- (3)
- Were there different patterns in LULC change and rate between the municipal districts with different population trends?
- (4)
- Which ecological or socioeconomic factors had important effects on the probability of each LULC class occurrence in the landscape and how did they affect the probability of each class?
- (5)
- How did certain landscape aspects change in time and for each LULC class?
2. Materials and Methods
2.1. Study Area
2.2. Land Cover Mapping
2.3. LULC Change and Transition Matrices
2.4. Intensity Analysis
2.5. Random Forest Model
2.6. Landscape Metrics
3. Results
3.1. Land Use/Land Cover Changes
3.2. Intensity Analysis
3.3. Comparison of Land Use/Land Cover Changes and Their Intensity between Municipal Districts with Different Trends of Population Size
3.4. Random Forest
3.5. Landscape Metrics
4. Discussion
4.1. Main Patterns of LULC Changes
4.2. Rate of LULC Changes
4.3. Factors Driving Land Abandonment and Consequent Vegetation Succession
4.4. Landscape Patterns Caused by Land Abandonment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verburg, P.H.; van Berkel, D.B.; van Doorn, A.M.; van Eupen, M.; van den Heiligenberg, H.A.R.M. Trajectories of Land Use Change in Europe: A Model-Based Exploration of Rural Futures. Landsc. Ecol. 2010, 25, 217–232. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural Abandonment in Mountain Areas of Europe: Environmental Consequences and Policy Response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- van der Sluis, T.; Arts, B.; Kok, K.; Bogers, M.; Busck, A.G.; Sepp, K.; Loupa-Ramos, I.; Pavlis, V.; Geamana, N.; Crouzat, E. Drivers of European Landscape Change: Stakeholders’ Perspectives through Fuzzy Cognitive Mapping. Landsc. Res. 2019, 44, 458–476. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, J.M.; Lasanta, T.; Nadal-Romero, E.; Lana-Renault, N.; Álvarez-Farizo, B. Rewilding and Restoring Cultural Landscapes in Mediterranean Mountains: Opportunities and Challenges. Land Use Policy 2020, 99, 104850. [Google Scholar] [CrossRef]
- Schuh, B.; Andronic, C.; Derszniak-Noirjean, M.; Gaupp-Berghausen, M.; Hsiung, C.H.; Münch, A. Research for AGRI Committee—The Challenge of Land Abandonment after 2020 and Options for Mitigating Measures; European Parliament, Policy Department for Structural and Cohesion Policies: Brussels, Belgium, 2020. [Google Scholar]
- Perpiña, C.C.; Kavalov, B.; Ribeiro, B.R.; Diogo, V.; Jacobs, C.; Batista, E.S.F.; Baranzelli, C.; Lavalle, C. Territorial Facts and Trends in the EU Rural Areas within 2015–2030. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC114016 (accessed on 18 January 2023).
- Dax, T.; Schroll, K.; Machold, I.; Derszniak-Noirjean, M.; Schuh, B.; Gaupp-Berghausen, M. Land Abandonment in Mountain Areas of the EU: An Inevitable Side Effect of Farming Modernization and Neglected Threat to Sustainable Land Use. Land 2021, 10, 591. [Google Scholar] [CrossRef]
- Săvulescu, I.; Mihai, B.-A.; Vîrghileanu, M.; Nistor, C.; Olariu, B. Mountain Arable Land Abandonment (1968–2018) in the Romanian Carpathians: Environmental Conflicts and Sustainability Issues. Sustainability 2019, 11, 6679. [Google Scholar] [CrossRef] [Green Version]
- Aide, T.M.; Grau, R. ECOLOGY: Enhanced: Globalization, Migration, and Latin American Ecosystems. Science 2004, 305, 1915–1916. [Google Scholar] [CrossRef]
- Rey Benayas, J.M.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of Agricultural Land: An Overview of Drivers and Consequences. CAB Rev. 2007, 2. [Google Scholar] [CrossRef] [Green Version]
- Cramer, V.A.; Hobbs, R.J.; Standish, R.J. What’s New about Old Fields? Land Abandonment and Ecosystem Assembly. Trends Ecol. Evol. 2008, 23, 104–112. [Google Scholar] [CrossRef]
- Keenleyside, C.; Tucker, G. Farmland Abandonment in the EU: An Assessment of Trends and Prospects; WWF and IEEP: London, UK, 2010. [Google Scholar]
- Moreira, F.; Russo, D. Modelling the Impact of Agricultural Abandonment and Wildfires on Vertebrate Diversity in Mediterranean Europe. Landsc. Ecol. 2007, 22, 1461–1476. [Google Scholar] [CrossRef]
- Janssen, J.; Rodwell, J.; García Criado, M.; Gubbay, S.; Haynes, T.; Nieto, A.; Sanders, N.; Landucci, F.; Loidi, J.; Ssymank, A.; et al. European Red List of Habitats Part 2. Terrestrial and Freshwater Habitats; European Commission: Luxembourg, 2016; ISBN 978-92-79-61588-7. [Google Scholar]
- Agnoletti, M. Rural Landscape, Nature Conservation and Culture: Some Notes on Research Trends and Management Approaches from a (Southern) European Perspective. Landsc. Urban Plan. 2014, 126, 66–73. [Google Scholar] [CrossRef]
- Halada, L.; Evans, D.; Romão, C.; Petersen, J.-E. Which Habitats of European Importance Depend on Agricultural Practices? Biodivers. Conserv. 2011, 20, 2365–2378. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Baumann, M.; Kuemmerle, T.; Müller, D. Effects of Institutional Changes on Land Use: Agricultural Land Abandonment during the Transition from State-Command to Market-Driven Economies in Post-Soviet Eastern Europe. Environ. Res. Lett. 2012, 7, 024021. [Google Scholar] [CrossRef]
- Fayet, C.M.J.; Reilly, K.H.; Van Ham, C.; Verburg, P.H. What Is the Future of Abandoned Agricultural Lands? A Systematic Review of Alternative Trajectories in Europe. Land Use Policy 2022, 112, 105833. [Google Scholar] [CrossRef]
- Tasser, E.; Tappeiner, U. Impact of Land Use Changes on Mountain Vegetation. Appl. Veg. Sci. 2002, 5, 173–184. [Google Scholar] [CrossRef]
- Rey Benayas, J.M.; Galván, I.; Carrascal, L.M. Differential Effects of Vegetation Restoration in Mediterranean Abandoned Cropland by Secondary Succession and Pine Plantations on Bird Assemblages. For. Ecol. Manag. 2010, 260, 87–95. [Google Scholar] [CrossRef] [Green Version]
- van der Sluis, T.; Sunyer, C.; Capello, J.; Manteiga, L.; Rufino, R. Input document for the 3rd Natura 2000 Seminar for the Mediterranean Biogeographical region. In Proceedings of the Support for the Natura 2000 Biogeographical Process—ENV.D.3/SER/2017/0010, Calabria, Italy, 4–7 May 2021. [Google Scholar]
- Plieninger, T.; Hui, C.; Gaertner, M.; Huntsinger, L. The Impact of Land Abandonment on Species Richness and Abundance in the Mediterranean Basin: A Meta-Analysis. PLoS ONE 2014, 9, e98355. [Google Scholar] [CrossRef] [Green Version]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping Farmland Abandonment and Recultivation across Europe Using MODIS NDVI Time Series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Strid, A.; Tan, K. Mountain Flora of Greece; Cambridge University Press: Cambridge, UK, 1986; ISBN 978-0-7486-0207-0. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
- Nakos, G. Site Classification, Mapping and Evaluation: Technical Specifications; Institute of Mediterranean Forest Ecosystems and Forest Products Technology, Ministry of Agriculture: Athens, Greece, 1991. [Google Scholar]
- Bohn, U.; Gollub, G.; Hettwer, C.; Neuhäuslová, Z.; Raus, T.; Schlüter, H.; Weber, H. Karte Der Natürlichen Vegetation Europas/Map of the Natural Vegetation of Europe. Maßstab/Scale 1 : 2 500 000; Landwirtschaftsverlag: Münster, Germany, 2004. [Google Scholar]
- Rahman, M.; Saha, S. Multi-Resolution Segmentation for Object-Based Classification and Accuracy Assessment of Land Use/Land Cover Classification Using Remotely Sensed Data. J. Indian Soc. Remote Sens. 2008, 36, 189–201. [Google Scholar] [CrossRef]
- Kosztra, B.; Büttner, G.; Hazeu, G.; Arnold, S. Updated CLC Illustrated Nomenclature Guidelines; European Environment Agency: Wien, Austria, 2017; pp. 1–124. [Google Scholar]
- OpenDEM. Available online: https://www.opendem.info/opendemeu_download_highres.html (accessed on 18 January 2023).
- MOLUSCE—QGIS Python Plugins Repository. Available online: https://plugins.qgis.org/plugins/molusce/ (accessed on 19 January 2023).
- Quan, B.; Pontius, R.G.; Song, H. Intensity Analysis to Communicate Land Change during Three Time Intervals in Two Regions of Quanzhou City, China. GIScience Remote Sens. 2020, 57, 21–36. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity Analysis to Unify Measurements of Size and Stationarity of Land Changes by Interval, Category, and Transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Gao, C.; Zhou, P.; Jia, P.; Liu, Z.; Wei, L.; Tian, H. Spatial Driving Forces of Dominant Land Use/Land Cover Transformations in the Dongjiang River Watershed, Southern China. Environ. Monit. Assess. 2016, 188, 84. [Google Scholar] [CrossRef]
- Exavier, R.; Zeilhofer, P. OpenLand: Software for Quantitative Analysis and Visualization of Land Use and Cover Change. R J. 2021, 12, 359–371. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A Random Forest Guided Tour. Test 2015, 25, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Kiziridis, D.A.; Mastrogianni, A.; Pleniou, M.; Karadimou, E.; Tsiftsis, S.; Xystrakis, F.; Tsiripidis, I. Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications. Land 2022, 11, 406. [Google Scholar] [CrossRef]
- McCune, B.; Keon, D. Equations for Potential Annual Direct Incident Radiation and Heat Load. J. Veg. Sci. 2002, 13, 603–606. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Main Page ELSTAT—ELSTAT. Available online: https://www.statistics.gr/en/home/ (accessed on 18 January 2023).
- Ragkos, A.; Koutsou, S.; Karatassiou, M.; Parissi, Z.M. Scenarios of Optimal Organization of Sheep and Goat Transhumance. Reg. Env. Chang. 2020, 20, 13. [Google Scholar] [CrossRef]
- Probst, P.; Boulesteix, A.-L. To Tune or Not to Tune the Number of Trees in Random Forest? J. Mach. Learn. Res. 2017, 18, 6673–6690. [Google Scholar]
- Probst, P.; Wright, M.; Boulesteix, A.-L. Hyperparameters and Tuning Strategies for Random Forest. WIREs Data Min. Knowl. Discov. 2019, 9, 6673–6690. [Google Scholar] [CrossRef] [Green Version]
- Cre Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; R Core Team; et al. Caret: Classifi.cation and Regression Training (Version 6.0-90). Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 17 October 2022).
- RStudio Team RStudio: Integrated Development Environment for R (Version 2022.7.2.576 “Spotted Wakerobin”); RStudio PBC: Boston, MA, USA, 2022; Available online: http://www.rstudio.com/ (accessed on 17 October 2022).
- Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E. Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. J. Comput. Graph. Stat. 2015, 24, 44–65. [Google Scholar] [CrossRef] [Green Version]
- Greenwell, B.M. Pdp: An R Package for Constructing Partial Dependence Plots. R J. 2017, 9, 421–436. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.; Marks, B.J. Spatial Pattern Analysis Program for Quantifying Landscape Structure; Gen. Tech. Rep. PNW-GTR-351; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 1995; Volume 351, pp. 1–122.
- Oikonomakis, N.; Ganatsas, P. Land Cover Changes and Forest Succession Trends in a Site of Natura 2000 Network (Elatia Forest), in Northern Greece. For. Ecol. Manag. 2012, 285, 153–163. [Google Scholar] [CrossRef]
- Chouvardas, D.; Karatassiou, M.; Stergiou, A.; Chrysanthopoulou, G. Identifying the Spatiotemporal Transitions and Future Development of a Grazed Mediterranean Landscape of South Greece. Land 2022, 11, 2141. [Google Scholar] [CrossRef]
- Xystrakis, F.; Psarras, T.; Koutsias, N. A Process-Based Land Use/Land Cover Change Assessment on a Mountainous Area of Greece during 1945–2009: Signs of Socio-Economic Drivers. Sci. Total Environ. 2017, 587–588, 360–370. [Google Scholar] [CrossRef]
- Pueyo, Y.; Beguería, S. Modelling the Rate of Secondary Succession after Farmland Abandonment in a Mediterranean Mountain Area. Landsc. Urban Plan. 2007, 83, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Arnaez, J.; Lasanta, T.; Errea, M.P.; Ortigosa, L. Land Abandonment, Landscape Evolution, and Soil Erosion in a Spanish Mediterranean Mountain Region: The Case of Camero Viejo. Land Degrad. Dev. 2011, 22, 537–550. [Google Scholar] [CrossRef]
- Malavasi, M.; Carranza, M.L.; Moravec, D.; Cutini, M. Reforestation Dynamics after Land Abandonment: A Trajectory Analysis in Mediterranean Mountain Landscapes. Reg. Env. Chang. 2018, 18, 2459–2469. [Google Scholar] [CrossRef]
- Bauer, E.-M.; Bergmeier, E. The Mountain Woodlands of Western Crete—Plant Communities, Forest Goods, Grazing Impact and Conservation. Phytocoenologia 2011, 41, 73–115. [Google Scholar] [CrossRef]
- Ministry of Agriculture First National Inventory of Greece. General Secretariat of Forests and Natural Environment, Independent Edition; Ministry of Agriculture First National Inventory of Greece: Athens, Greece, 1992. [Google Scholar]
- Peña-Angulo, D.; Khorchani, M.; Errea, P.; Lasanta, T.; Martínez-Arnáiz, M.; Nadal-Romero, E. Factors Explaining the Diversity of Land Cover in Abandoned Fields in a Mediterranean Mountain Area. CATENA 2019, 181, 104064. [Google Scholar] [CrossRef]
- Giourga, H.; Margaris, N.S.; Vokou, D. Effects of Grazing Pressure on Succession Process and Productivity of Old Fields on Mediterranean Islands. Environ. Manag. 1998, 22, 589–596. [Google Scholar] [CrossRef]
- Collins, S.L.; Knapp, A.K.; Briggs, J.M.; Blair, J.M.; Steinauer, E.M. Modulation of Diversity by Grazing and Mowing in Native Tallgrass Prairie. Science 1998, 280, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Sidiropoulou, A.; Karatassiou, M.; Galidaki, G.; Sklavou, P. Landscape Pattern Changes in Response to Transhumance Abandonment on Mountain Vermio (North Greece). Sustainability 2015, 7, 15652–15673. [Google Scholar] [CrossRef] [Green Version]
- Pickett, S.T.A.; Cadenasso, M.L.; Meiners, S.J. Vegetation Dynamics. In Vegetation Ecology; John Wiley & Sons, Ltd.: Oxford, UK, 2013; pp. 107–140. ISBN 978-1-118-45259-2. [Google Scholar]
- Odum, E.P. The Strategy of Ecosystem Development. Science 1969, 164, 262–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatfield, R.; Davies, J. Global Review of the Economics of Pastoralism; IUCN: Nairobi, Kenya, 2006. [Google Scholar]
- Koutsouris, A. The Battlefield for (Sustainable) Rural Development: The Case of Lake Plastiras, Central Greece. Sociol. Rural. 2008, 48, 240–256. [Google Scholar] [CrossRef]
- Bilewicz, A.; Bukraba-Rylska, I. Deagrarianization in the Making: The Decline of Family Farming in Central Poland, Its Roots and Social Consequences. J. Rural Stud. 2021, 88, 368–376. [Google Scholar] [CrossRef]
- Zomeni, M.; Tzanopoulos, J.; Pantis, J.D. Historical Analysis of Landscape Change Using Remote Sensing Techniques: An Explanatory Tool for Agricultural Transformation in Greek Rural Areas. Landsc. Urban Plan. 2008, 86, 38–46. [Google Scholar] [CrossRef]
- Żywiec, M.; Muter, E.; Zielonka, T.; Delibes, M.; Calvo, G.; Fedriani, J. Long-Term Effect of Temperature and Precipitation on Radial Growth in a Threatened Thermo-Mediterranean Tree Population. Trees 2017, 31, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Forner, A.; Valladares, F.; Bonal, D.; Granier, A.; Grossiord, C.; Aranda, I. Extreme Droughts Affecting Mediterranean Tree Species’ Growth and Water-Use Efficiency: The Importance of Timing. Tree Physiol. 2018, 38, 1127–1137. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.R. Land-Use History (1730–1990) and Vegetation Dynamics in Central New England, USA. J. Ecol. 1992, 80, 753–771. [Google Scholar] [CrossRef]
- Foster, D.R.; Fluet, M.; Boose, E.R. Human or Natural Disturbance: Landscape-Scale Dynamics of the Tropical Forests of Puerto Rico. Ecol. Appl. 1999, 9, 555–572. [Google Scholar] [CrossRef]
- Flinn, K.M.; Vellend, M.; Marks, P.L. Environmental Causes and Consequences of Forest Clearance and Agricultural Abandonment in Central New York, USA. J. Biogeogr. 2005, 32, 439–452. [Google Scholar] [CrossRef]
- Gellrich, M.; Zimmermann, N.E. Investigating the Regional-Scale Pattern of Agricultural Land Abandonment in the Swiss Mountains: A Spatial Statistical Modelling Approach. Landsc. Urban Plan. 2007, 79, 65–76. [Google Scholar] [CrossRef]
- Mallinis, G.; Emmanoloudis, D.; Giannakopoulos, V.; Maris, F.; Koutsias, N. Mapping and Interpreting Historical Land Cover/Land Use Changes in a Natura 2000 Site Using Earth Observational Data: The Case of Nestos Delta, Greece. Appl. Geogr. 2011, 31, 312–320. [Google Scholar] [CrossRef]
- Jongman, R.H.G. Homogenisation and Fragmentation of the European Landscape: Ecological Consequences and Solutions. Landsc. Urban Plan. 2002, 58, 211–221. [Google Scholar] [CrossRef]
- Bielsa, I.; Pons, X.; Bunce, B. Agricultural Abandonment in the North Eastern Iberian Peninsula: The Use of Basic Landscape Metrics to Support Planning. J. Environ. Plan. Manag. 2005, 48, 85–102. [Google Scholar] [CrossRef]
- Geri, F.; Amici, V.; Rocchini, D. Human Activity Impact on the Heterogeneity of a Mediterranean Landscape. Appl. Geogr. 2010, 30, 370–379. [Google Scholar] [CrossRef]
- Sitzia, T.; Semenzato, P.; Trentanovi, G. Natural Reforestation Is Changing Spatial Patterns of Rural Mountain and Hill Landscapes: A Global Overview. For. Ecol. Manag. 2010, 259, 1354–1362. [Google Scholar] [CrossRef]
- Jiménez-Olivencia, Y.; Ibáñez-Jiménez, Á.; Porcel-Rodríguez, L.; Zimmerer, K. Land Use Change Dynamics in Euro-Mediterranean Mountain Regions: Driving Forces and Consequences for the Landscape. Land Use Policy 2021, 109, 105721. [Google Scholar] [CrossRef]
- Chouvardas, D.; Karatassiou, M.; Tsioras, P.; Tsividis, I.; Palaiochorinos, S. Spatiotemporal Changes (1945–2020) in a Grazed Landscape of Northern Greece, in Relation to Socioeconomic Changes. Land 2022, 11, 1987. [Google Scholar] [CrossRef]
LULC Class | Classification Criterion |
---|---|
Forest | Canopy cover of trees and shrubs > 60% |
Woodland | Canopy cover of trees and shrubs 20–60% |
Open habitat | Grasslands or arable lands with canopy cover of trees and shrubs < 20% |
Urban | Buildings, Villages, Human settlements |
Rock | Vegetation cover < 30%, Bare lands, Roads |
Water | Water bodies, Rivers |
A: 1945–1996 | Forest | Woodland | Open Habitat | Other | 1945 (ha) | 1996 (ha) | Δ (ha) | 1945% | 1996% | Δ % |
Forest | 0.91 | 0.04 | 0.02 | 0.03 | 6589.38 | 7691.81 | 1102.44 | 58.63 | 68.44 | 9.81 |
Woodland | 0.57 | 0.29 | 0.09 | 0.05 | 1241.25 | 1418.38 | 177.12 | 11.04 | 12.62 | 1.58 |
Open habitat | 0.28 | 0.24 | 0.45 | 0.03 | 3244.12 | 1732.56 | −1511.56 | 28.87 | 15.42 | −13.45 |
Other | 0.41 | 0.22 | 0.06 | 0.31 | 163.69 | 395.69 | 232 | 1.46 | 3.52 | 2.06 |
B: 1996–2015 | Forest | Woodland | Open habitat | Other | 1996 (ha) | 2015 (ha) | Δ (ha) | 1996% | 2015% | Δ % |
Forest | 0.94 | 0.04 | 0.01 | 0.01 | 7691.81 | 8437.06 | 745.25 | 68.44 | 75.07 | 6.63 |
Woodland | 0.49 | 0.42 | 0.05 | 0.04 | 1418.38 | 1620.62 | 202.25 | 12.62 | 14.42 | 1.8 |
Open habitat | 0.22 | 0.36 | 0.4 | 0.03 | 1732.56 | 817.62 | −914.94 | 15.42 | 7.28 | −8.14 |
Other | 0.3 | 0.2 | 0.04 | 0.46 | 395.69 | 363.12 | −32.56 | 3.52 | 3.23 | −0.29 |
C: 1945–2015 | Forest | Woodland | Open habitat | Other | 1945 (ha) | 2015 (ha) | Δ (ha) | 1945% | 2015% | Δ % |
Forest | 0.93 | 0.04 | 0.01 | 0.02 | 6589.38 | 8437.06 | 1847.69 | 58.63 | 75.07 | 16.44 |
Woodland | 0.67 | 0.24 | 0.03 | 0.05 | 1241.25 | 1620.62 | 379.38 | 11.04 | 14.42 | 3.38 |
Open habitat | 0.43 | 0.32 | 0.22 | 0.04 | 3244.12 | 817.62 | −2426.5 | 28.87 | 7.28 | −21.59 |
Other | 0.47 | 0.19 | 0.04 | 0.31 | 163.69 | 363.12 | 199.44 | 1.46 | 3.23 | 1.77 |
NP | LPI | FRAC_AM | ENN_MN | IJI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1945 | 1996 | 2015 | 1945 | 1996 | 2015 | 1945 | 1996 | 2015 | 1945 | 1996 | 2015 | 1945 | 1996 | 2015 | |
Forest | 470 | 414 | 261 | 18.2 | 33.79 | 37.2 | 1.33 | 1.36 | 1.34 | 59.73 | 56.66 | 56.11 | 72.01 | 94.85 | 85.23 |
Woodland | 2198 | 2768 | 2506 | 0.58 | 0.29 | 0.61 | 1.16 | 1.17 | 1.19 | 70.27 | 65.35 | 65.65 | 76.25 | 86.31 | 76.79 |
Open habitat | 1105 | 1550 | 1234 | 3.11 | 1.24 | 0.6 | 1.28 | 1.23 | 1.18 | 69.55 | 69.28 | 77.26 | 67.77 | 80.11 | 85.97 |
Other | 666 | 2675 | 2326 | 0.18 | 0.08 | 0.12 | 1.15 | 1.10 | 1.11 | 102.6 | 76.56 | 83.21 | 94.93 | 88.00 | 87.96 |
Landscape | 4439 | 7407 | 6327 | 18.25 | 33.79 | 37.19 | 1.29 | 1.31 | 1.30 | 73.82 | 69.74 | 73.98 | 72.82 | 88.85 | 84.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chontos, K.; Tsiripidis, I. Open Habitats under Threat in Mountainous, Mediterranean Landscapes: Land Abandonment Consequences in the Vegetation Cover of the Thessalian Part of Mt Agrafa (Central Greece). Land 2023, 12, 846. https://doi.org/10.3390/land12040846
Chontos K, Tsiripidis I. Open Habitats under Threat in Mountainous, Mediterranean Landscapes: Land Abandonment Consequences in the Vegetation Cover of the Thessalian Part of Mt Agrafa (Central Greece). Land. 2023; 12(4):846. https://doi.org/10.3390/land12040846
Chicago/Turabian StyleChontos, Konstantinos, and Ioannis Tsiripidis. 2023. "Open Habitats under Threat in Mountainous, Mediterranean Landscapes: Land Abandonment Consequences in the Vegetation Cover of the Thessalian Part of Mt Agrafa (Central Greece)" Land 12, no. 4: 846. https://doi.org/10.3390/land12040846
APA StyleChontos, K., & Tsiripidis, I. (2023). Open Habitats under Threat in Mountainous, Mediterranean Landscapes: Land Abandonment Consequences in the Vegetation Cover of the Thessalian Part of Mt Agrafa (Central Greece). Land, 12(4), 846. https://doi.org/10.3390/land12040846