Metric-Based Approach for Quantifying Urban Expansion Impact on Urban Form Changes in the JBMUR South Conurbation Corridor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Concentric Ring Analysis
2.3.2. Spatial Metric
- Density (PD);
- Landscape Dominance (PLAND and LPI);
- Shape/Form (SHAPE);
- Continuity (COHESION and CONTIG);
- Fragmentation (MESH and SPLIT).
2.3.3. Urban Expansion and Landscape Fragmentation Intensity
3. Results
3.1. Land-Use Dynamic of the JBMUR South Conurbation Corridor
3.2. Form and Pattern Changes in the Urban Zones of JBMUR South Conurbation Corridor
- High concentration and intensity of built-up area;
- High diversity of urban land-use and activities;
- High availability of services and infrastructures;
- High social diversity;
- Low distance from nearest urban core (municipality level).
3.3. Urban Growth and Expansion Intensity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGee, T.G.; Greenberg, C. The Emergence of Extended Metropolitan Regions in ASEAN. ASEAN Econ. Bull. 1992, 9, 10–34. [Google Scholar] [CrossRef] [PubMed]
- Rustiadi, E.; Pravitasari, A.E.; Setiawan, Y.; Mulya, S.P.; Pribadi, D.O.; Tsutsumida, N. Impact of continuous Jakarta megacity urban expansion on the formation of the Jakarta-Bandung conurbation over the rice farm regions. Cities 2021, 111, 103000. [Google Scholar] [CrossRef]
- D’Amour, B.C.; Reitsma, M.; Baiocchi, G.; Barthel, S.; Guneralp, B.; Erb, K.H.; Haberl, H.; Kreutzig, F.; Seto, K.D. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [Green Version]
- Douglass, M. Mega-Urban Regions and World City Formation: Globalisation, the Economic Crisis and Urban Policy Issues in Pacific Asia. Urban Stud. 2000, 37, 231–245. [Google Scholar] [CrossRef]
- Rustiadi, E.; Pribadi, D.O.; Pravitasari, A.E.; Indraprahasta, G.S.; Iman, L.O. Jabodetabek Megacity: From City Development towards Urban Complex Management System. In Urban Development Challenges, Risks and Resilience in Asia Mega Cities, Advances in Geographical and Environmental Sciences; Singh, R.B., Ed.; Springer: Tokyo, Japan, 2015; pp. 421–445. [Google Scholar]
- Rustiadi, E.; Mizuno, K.; Kobayashi, S. Measuring Spatial Pattern of the Suburbanization Process. J. Rural. Plan. Assoc. 1999, 18, 31–42. [Google Scholar] [CrossRef]
- Cournane, F.C.; Cain, T.; Greenhalgh, S. Attitudes of a Farming Community Towards Urban Growth and Rural Fragmentation—An Auckland Case Study. Land Use Policy 2016, 58, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, A.; Okata, J. Megacities: Urban Form, Governance, and Sustainability; Springer: Tokyo, Japan, 2011; pp. 301–302. [Google Scholar]
- Ramachandra, T.; Bharath, H.; Vinay, S.; Joshi, N.; Kumar, N.; Venugopal, R. Modelling Urban Revolution in Greater Bangalore, India. In Proceedings of the 30th Annual In-House Symposium on Space Science and Technology, Bangalore, India, 7–8 November 2013. [Google Scholar]
- Jatayu, A.; Rustiadi, E.; Pribadi, D.O. A Quantitative Approach on Characterizing the Changes and Managing Urban Form for Sustaining the Suburb of Mega Urban Region: The Case of North Cianjur. Sustainability 2020, 12, 8085. [Google Scholar] [CrossRef]
- Jatayu, A.; Saizen, I.; Rustiadi, E.; Pribadi, D.O.; Juanda, B. Urban Form Dynamics and Modelling towards Sustainable Hinterland Development in North Cianjur, Jakarta–Bandung Mega-Urban Region. Sustainability 2022, 14, 907. [Google Scholar] [CrossRef]
- Batty, M.; Xie, Y.; Sun, Z. Modelling Urban Dynamics through GIS-Based Cellular Automata. Comput. Environ. Urban Syst. 1999, 23, 205–233. [Google Scholar] [CrossRef] [Green Version]
- Marinescu, I.E.; Ayram, S. Evaluation of Urban Fragmentation in Craiova City, Romania. Landsc. Environ. Eur. Identity 2012, 14, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Schuh, B.; Sedlacek, S. City, Hinterlands—Sustainable Relations. In Proceedings of the 40th Congress of the European Regional Association (ERSA), Barcelona, Spain, 29 August–1 September 2000. [Google Scholar]
- Dorodjatoen, A.M. The Emergence of Jakarta-Bandung Mega-Urban Region and Its Future Challenges. J. Perenc. Wil. Dan Kota 2009, 20, 15–33. [Google Scholar]
- Kurnianti, D.N.; Rustiadi, E.; Baskoro, D.P.T. Land Use Projection for Spatial Plan Consistency in Jabodetabek. Indones. J. Geogr. 2015, 47, 124–131. [Google Scholar] [CrossRef] [Green Version]
- McGee, T.G. The Emergence of Desakota Regions in Asia: Expanding a Hypothesis. Ext. Metrop. Settl. Transit. Asia 1991, 12, 3–25. [Google Scholar]
- Samodra, P.; Rahmatunnisa, M.; Endyana, C. Kajian Daya Dukung Lingkungan dalam Pemanfaatan Ruang di Kawasan Bandung Utara. J. Wil. Dan Lingkung. 2020, 8, 214–229. [Google Scholar] [CrossRef]
- Wajdi, R. Daya Dukung dan Daya Tampung Lingkungan Hidup Berbasis Jasa Ekosistem di Kawasan Cekungan Bandung. In Prosiding FTSP Series 2; Penerbit Itenas: Bandung, Indonesia, 2021. [Google Scholar]
- Murtadho, A.; Usra, R.H.; Wulandari, S.; Rustiadi, E. Flood-vulnerability Area Analysis in Karawang Regency as an Impact of Jakarta-Bandung Mega-Urban Region Formation Using Weighted Overlay Approach. In Proceedings of the Sixth International Symposium on LAPAN-IPB Satellite, Bogor, Indonesia, 24 December 2019. [Google Scholar]
- Murtadho, A.; Pravitasari, A.E.; Munibah, K.; Rustiadi, E. Spatial Distribution Pattern of Village Development Index in Karawang Regency Using Spatial Autocorrelation Approach. J. Pembang. Wil. Dan Kota 2020, 16, 102–111. [Google Scholar] [CrossRef]
- Fitriani, R. The Extent of Sparwl in the Fringe of Jakarta Metropolitan Area from the Perspective of Externalities. In Proceedings of the 55th Annlual Australian Agricultural and Resource Economics Society Conference, Melbourne, Australia, 8–11 February 2011. [Google Scholar]
- Hudalah, D.; Firman, T. Beyond Property: Industrial Estates and Post-Suburban Transformation in Jakarta Metropolitan Region. Cities 2012, 29, 40–48. [Google Scholar] [CrossRef]
- Pribadi, D.O.; Pauleit, S. Peri-Urban Agriculture in Jabodetabek Metropolitan Area and Its Relationship with the Urban Socioeconomic System. Land Use Policy 2016, 55, 265–274. [Google Scholar] [CrossRef]
- Bharath, H.; Chandan, M.; Vinay, S.; Ramachandra, T. Modelling Urban Dynamics in Rapidly Urbanising Indian Cities. Egypt. J. Remote Sens. Space Sci. 2018, 21, 201–210. [Google Scholar] [CrossRef]
- West Java Statistical Bureau. West Java in Figures 2021; West Java Government: Bandung, Indonesia, 2021. [Google Scholar]
- Jiao, L.; Xu, G.; Xiao, F.; Liu, Y.; Zhang, B. Analyzing the Impacts of Urban Expansion on Green Fragmentation Using Constraint Gradient Analysis. Prof. Geogr. 2017, 69, 22–32. [Google Scholar] [CrossRef]
- Rodrigue, J.P. The Geography of Transport Systems; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Xu, G.; Dong, T.; Cobbinah, P.B.; Jiao, L.; Sumari, N.S.; Chai, B.; Liu, Y. Urban Expansion and Form Changes Across African Cities with a Global Outlook Spatiotemporal Analysis of Urban Land Densities. J. Clean. Prod. 2019, 224, 802–810. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; United States Department of Agriculture: Corvallis, OR, USA, 1995. [Google Scholar]
- Gustafson, E.J. Quantifying Landscape Spatial Pattern: What Is the State of the Art. Ecosystems 1998, 4, 143–156. [Google Scholar] [CrossRef]
- Hargis, C.D.; Bissonette, J.A.; David, J.L. The behavior of Landscape Metrics Commonly Used in the Study of Habitat Fragmentation. Landsc. Ecol. 1998, 13, 15–23. [Google Scholar] [CrossRef]
- Debbage, N.A. Quantifying Urban Form Via Spatial Metrics and Its Climatic Implication; The University of Georgia: Athens, GA, USA, 2012. [Google Scholar]
- Brody, S.D.; Kim, H.; Gunn, J. The Effect of Urban Form on Flood Damage along the Gulf of Mexico Coast. J. Am. Plan. Assoc. 2013, 5, 289–306. [Google Scholar]
- Magidi, J.; Ahmed, F. Assessing Urban Sprawl Using Remote Sensing and Landscape Metrics: A Case Study of City of Tshwane, South Africa. Egypt. J. Remote Sens. Space Sci. 2018, 21, 241–253. [Google Scholar]
- Jaeger, J.A.G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Firman, T. The continuity and change in mega-urbanization in Indonesia: A Survey of Jakarta—Bandung Region (JBR) development. Habitat Int. 2009, 33, 327–339. [Google Scholar] [CrossRef]
- Vioya, A. Tahapan Perkembangan Kawasan Metropolitan Jakarta. J. Perenc. Wil. Dan Kota 2010, 21, 215–226. [Google Scholar]
- Fahmi, F.Z.; Hudalah, D.; Rahayu, P.; Woltjer, J. Extended Urbanization in Small and Medium-Sized Cities: The Case of Cirebon, Indonesia. Habitat Int. 2014, 42, 1–10. [Google Scholar] [CrossRef]
- Arifsihati, Y.; Kaswanto. Analysis of Land Use and Cover Changes in Ciliwung and Cisadane Watershed in Three Decades. Procedia Environ. Sci. 2016, 33, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Mahtta, R.; Mahendra, A.; Seto, K.C. Building Up or Spreading Out? Typologies of Urban Growth Across 478 Cities of 1 Million+. Environ. Res. Lett. 2019, 14, 124077. [Google Scholar] [CrossRef] [Green Version]
- Frank, L.D.; Engelke, P.O. The built environment and human activity patterns: Exploring the impacts of urban form on public health. J. Plan. Lit. 2001, 16, 202–218. [Google Scholar] [CrossRef]
- Bloom, D.E.; Canning, D.; Fink, G. Urbanization and the wealth of nations. Science 2008, 319, 772–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budiyantini, Y.; Pratiwi, V. Peri-urban Typology of Bandung Metropolitan Area. Procedia Soc. Behav. Sci. 2016, 227, 833–837. [Google Scholar] [CrossRef] [Green Version]
- Pisman, A.; Vanacker, S. Diagnosis of the State of the Territory in Flanders. Reporting about New Maps and Indicators Differentiating between Urban and Rural Areas within Flanders. In Green Energy and Technology; Springer: Berlin, Germany, 2021. [Google Scholar]
- Dempsey, N.; Brown, C.; Raman, S.; Porta, S.; Jenks, M.; Jones, C.; Bramley, G. Elements of Urban Forms. In Dimensions of the Sustainable Cities; Jenks, M., Jones, C., Eds.; Springer: London, UK, 2010; pp. 21–51. [Google Scholar]
- Angotti, T. New Anti-Urban Theories of the Metropolitan Region: “Planet of Slums" and Apocalyptic Regionalism; Collegiate School of Planner Press: Kansas, MI, USA, 2005. [Google Scholar]
- Moser, B.; Jaeger, J.A.; Tappeiner, U.; Tasser, E.; Eisselt, B. Modification of the effective mesh size for measuring landscape fragmentation to solve the boundary problem. Landsc. Ecol. 2007, 22, 447–459. [Google Scholar] [CrossRef]
Indicator | Metrics | Formula | Description |
---|---|---|---|
Density | PD (Patch Density) | PD represents the density of patch distribution in a landscape, explaining landscape fragmentation. In the formula, ni is the number of patches in class i in a landscape, and A is the total area of the landscape, PD > 0. | |
Continuity | COHESION | | COHESION measures the physical connectedness in an analyzed class, where higher value of COHESION show that the class is having an averagely higher physical connectivity. 0 < COHESION ≤ 100 as it is measured in percentage, where pij is the perimeter of patch ij; aij is the total area of patch ij; Z is the number of cells in the observed landscape. |
CONTIG (Contiguity Index) | CONTIG measures spatial contiguity or connectivity of patches in a class with a 3 × 3 neighborhood configuration. Its values are ranged between 0–1 where higher values show a closer or more connected class in the landscape. In this formula, cijr is the neighborhood value of cell r in ij patch; v is the value of neighbor’s cell within 3 × 3 rules, and aij is the number of cells in patch ij. | ||
Landscape Dominance | PLAND (Precentage of Landscape) | PLAND measures the total area of class i over the total area of landscape, explaining domination over the landscape and landscape composition. aij is the area of patch ij; A is total area of the landscape; the measurement unit is percent with 0 < PLAND ≤ 100. | |
LPI (Largest Patch Index) | LPI measures the indication of largest average patch in each class, showing dominance in a landscape. With the same notion as PLAND in the formula, it measures only the largest patch area. 0 < LPI ≤ 100 | ||
Shape | SHAPE (Shape Index) | SHAPE measures the complexity of the shape in each class, where the lowest value of SHAPE (SHAPE = 1) means that it has a perfectly compact form, and higher value (SHAPE ≥ 1) means that the shape is less compact and more complex. SHAPE equals the total patch perimeter in a class (pij) divided by the minimum number of patch perimeter to form a class (min pij) | |
Fragmentation | MESH | MESH shows the fragmentation rate of a class in a landscape, where higher MESH values means a less fragmented class type. MESH shows fragmentation by squaring all patch area, with ratio of cell size to landscape area ≤ MESH ≤ the entire landscape area. | |
SPLIT | SPLIT also shows the rate of fragmentation with inverted interpretation as MESH (SPLIT = A/MESH), where higher SPLIT values means a higher fragmentation, adding to MESH interpretation on landscape fragmentation. SPLIT is the squared area of the landscape divided by the squared area of all patches in class i. |
Land-Use Class | Total Area (Ha) | Percentage (%) | ||||
---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
Builtup | 30,361.23 | 37,444.14 | 65,925.56 | 10.26 | 12.65 | 22.27 |
Dryland | 11,810.70 | 18,766.44 | 19,582.20 | 3.99 | 6.34 | 6.62 |
Forest | 20,293.92 | 20,083.14 | 19,446.20 | 6.86 | 6.79 | 6.57 |
Mixgarden | 135,174.69 | 127,436.76 | 126,522.80 | 45.67 | 43.06 | 42.75 |
Paddy | 95,496.39 | 90,989.19 | 63,216.09 | 32.26 | 30.74 | 21.36 |
Water | 2845.35 | 1262.61 | 1289.43 | 0.96 | 0.43 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jatayu, A.; Rustiadi, E.; Juanda, B.; Pribadi, D.O. Metric-Based Approach for Quantifying Urban Expansion Impact on Urban Form Changes in the JBMUR South Conurbation Corridor. Land 2023, 12, 864. https://doi.org/10.3390/land12040864
Jatayu A, Rustiadi E, Juanda B, Pribadi DO. Metric-Based Approach for Quantifying Urban Expansion Impact on Urban Form Changes in the JBMUR South Conurbation Corridor. Land. 2023; 12(4):864. https://doi.org/10.3390/land12040864
Chicago/Turabian StyleJatayu, Anoraga, Ernan Rustiadi, Bambang Juanda, and Didit Okta Pribadi. 2023. "Metric-Based Approach for Quantifying Urban Expansion Impact on Urban Form Changes in the JBMUR South Conurbation Corridor" Land 12, no. 4: 864. https://doi.org/10.3390/land12040864
APA StyleJatayu, A., Rustiadi, E., Juanda, B., & Pribadi, D. O. (2023). Metric-Based Approach for Quantifying Urban Expansion Impact on Urban Form Changes in the JBMUR South Conurbation Corridor. Land, 12(4), 864. https://doi.org/10.3390/land12040864