Migration of Dissolved Organic Matter in the Epikarst Fissured Soil of South China Karst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Area
2.2. Sample Collection and Processing
2.3. Optical Factor
2.4. Statistical Analysis
3. Results
3.1. DOM Overall Feature Parameters
3.2. Characteristics of DOC Content and Optical Factors of DOM in Fissured Soils
3.3. Component Differences of DOM
3.4. Factors That Affect DOM Migration
4. Discussion
4.1. Characterization of SOC and DOM Content in Fissured Soil
4.2. Drivers That Influence Changes in DOM Components in Fissured Soil
4.3. Indicative Significance of DOM Distribution in Fractured Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.; Ok, Y.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 2013, 8, 034015. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zsolnay, A. Dissolved organic matter: Artefacts, definitions, and functions. Geoderma 2003, 113, 187–209. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world (EJSS Land Mark Paper No. 3). Eur. J. Soil Sci. 2014, 47, 151–163. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling downwards–dissolved organic matter in soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Cheng, W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol. Biochem. 2001, 33, 1915–1925. [Google Scholar] [CrossRef]
- Tong, H.; Simpson, A.J.; Paul, E.A.; Simpson, M.J. Land-Use Change and Environmental Properties Alter the Quantity and Molecular Composition of Soil-Derived Dissolved Organic Matter. ACS Earth Sp. Chem. 2021, 5, 1395–1406. [Google Scholar] [CrossRef]
- Kaiser, K.; Zech, W. Rates of dissolved organic matter release and sorption in forest soils. Soil Sci. 1998, 163, 714–725. [Google Scholar] [CrossRef]
- Raulund-Rasmussen, K.; Borggaard, O.K.; Hansen, H.C.B.; Olsson, M. Effect of natural organic soil solutes on weathering rates of soil minerals. Eur. J. Soil Sci. 1998, 49, 397–406. [Google Scholar] [CrossRef]
- Dawson, H.J.; Ugolini, F.C.; Hrutfiord, B.F.; Zachara, J. Role of soluble organics in the soil processes of a podzol, Central Cascades, Washington. Soil Sci. 1978, 126, 290–296. [Google Scholar] [CrossRef]
- Temminghoff, E.J.; Van der Zee, S.E.; de Haan, F.A. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ. Sci. Technol. 1997, 31, 1109–1115. [Google Scholar] [CrossRef]
- Post, W.M.; Peng, T.H.; Emanuel, W.R.; King, A.W.; Dale, V.H.; DeAngelis, D.L. The global carbon cycle. Am. Sci. 1990, 78, 310–326. [Google Scholar]
- He, W.; Bai, Z.L.; Li, Y.L.; Liu, W.X.; He, Q.S.; Yang, C.; Xu, F.L. Advances in the characteristics analysis and source identification of the dissolved organic matter. Acta Sci. Circums 2016, 36, 359–372. [Google Scholar]
- Kalbitz, K.; Geyer, S.; Geyer, W. A comparative characterization of dissolved organic matter by means of original aqueous samples and isolated humic substances. Chemosphere 2000, 40, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Tipping, E.; Woof, C.; Rigg, E. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environ. Int. 1999, 25, 83–96. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Zou, L.; Cui, H. Optical Characteristics and Chemical Composition of Dissolved Organic Matter (DOM) from Riparian Soil by Using Excitation-Emission Matrix (EEM) Fluorescence Spectroscopy and Mass Spectrometry. Appl. Soil Ecol. 2015, 69, 623–634. [Google Scholar] [CrossRef]
- Kalbitz, K.; Schmerwitz, J.; Schwesig, D.; Matzner, E. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 2003, 113, 273–291. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S.; Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Wickland, K.P.; Neff, J.C.; Aiken, G.R. Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability. Ecosystems 2007, 10, 1323–1340. [Google Scholar] [CrossRef]
- McDowell, W.H. Dissolved organic matter in soils-future directions and unanswered questions. Geoderma 2003, 113, 179–186. [Google Scholar] [CrossRef]
- Qiu, Q.; Wu, L.; Ouyang, Z.; Li, B.; Xu, Y.; Wu, S.; Gregorich, E.G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations. Appl. Soil Ecol. 2015, 96, 122–130. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Chang, X.; Nie, X.; Liu, L.; Xiao, H.; Zeng, G. Apportioning source of erosion-induced organic matter in the hilly-gully region of loess plateau in China: Insight from lipid biomarker and isotopic signature analysis. Sci. Total Environ. 2018, 621, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.X. World Correlation of karst ecosystem: Objectives and implementation plan. Adv. Ear. Sci. 2001, 16, 461–466. [Google Scholar]
- Li, Y.; Liu, Z.; Liu, G.; Xiong, K.; Cai, L. Dynamic Variations in Soil Moisture in an Epikarst Fissure in the Karst Rocky Desertification Area. J. Hydrol. 2020, 591, 125587. [Google Scholar] [CrossRef]
- Yang, M.D. The geomorphological regularities of karst water occurences in Guizhou plateau. Cars Sin. 1982, 2, 81–87. (In Chinese) [Google Scholar]
- Jiang, Z.C.; Luo, W.Q.; Deng, Y.; Cao, J.H.; Tan, X.M.; Li, Y.Q.; Yang, Q.Y. The Leakage of Water and Soil in the Karst Peak Cluster Depression and Its Prevention and Treatment. Acta Geos. Sin. 2014, 5, 535–542. (In Chinese) [Google Scholar]
- Yang, P.; Tang, Y.Q.; Zhou, N.Q.; Wang, J.X.; She, T.Y.; Zhang, X.H. Characteristics of red clay creep in karst caves and loss leakage of soil in the karst rocky desertification area of Puding County, Guizhou, China. Environ. Earth Sci. 2011, 63, 543–549. [Google Scholar] [CrossRef]
- Zhang, X.B.; Bai, X.Y.; He, X.B. Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest China. Carbonates Evaporites 2011, 26, 149–153. [Google Scholar] [CrossRef]
- Dai, Q.; Peng, X.; Zhao, L.; Shao, H.; Yang, Z. Effects of underground pore fissures on soil erosion and sediment yield on karst slopes. Land Degrad. Dev. 2017, 28, 1922–1932. [Google Scholar] [CrossRef]
- Lin, H. Linking principles of soil formation and flow regimes. J. Hydrol. 2010, 393, 3–19. [Google Scholar] [CrossRef]
- Youjin, Y.; Quanhou, D.; Li, J.; Wang, X. Geometric morphology and soil properties of shallow karst fissures in an area of karst rocky desertification in SW China. Catena 2019, 174, 48–58. [Google Scholar]
- Cai, L.L. Study on Soil Moisture and Nutrient Transport in Typical Karst Fractures. Master’s Thesis, Guizhou Normal University, Guizhou, China, 2021. (In Chinese). [Google Scholar]
- Li, C.L.; Dai, Q.H.; Peng, X.D.; Yuan, Y.F. Characteristics of nutrients loss in runoff of underground pore fissure on the karst bare slope. J. Soil Water Conserv. 2016, 30, 19–23+114. (In Chinese) [Google Scholar]
- Peng, X.D.; Dai, Q.H.; Li, C.L.; Yuan, Y.F.; Zhao, L.S. Effect of simulated rainfall intensities and underground pore fissure degrees on soil nutrient loss from slope farmlands in Karst Region. Trans. Chin. Soci. Agri. Engi. 2017, 2, 131–140. (In Chinese) [Google Scholar]
- Xian, Q.; Li, P.; Liu, C.; Cui, J.; Guan, Z.; Tang, X. Concentration and spectroscopic characteristics of DOM in surface runoff and fracture flow in a cropland plot of a loamy soil. Sci. Total Environ. 2018, 622, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Akagi, J.; Zsolnay, A.; Bastida, F. Quantity and spectroscopic properties of soil dissolved organic matter (DOM) as a function of soil sample treatments: Air-drying and pre-incubation. Chemosphere 2007, 69, 1040–1046. [Google Scholar] [CrossRef]
- Aufdenkampe, A.K.; Mayorga, E.; Raymond, P.A.; Melack, J.M.; Doney, S.C.; Alin, S.R.; Aalto, R.E.; Yoo, K. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 2011, 9, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Barriuso, E.; Baer, U.; Calvet, R. Dissolved organic matter and adsorption-desorption of dimefuron, atrazine, and carbetamide by soils. J. Environ. Qual. 1992, 21, 359–367. [Google Scholar] [CrossRef]
- Hu, S.; Lu, C.; Zhang, C.; Zhang, Y.; Yao, H.; Wu, Y. Effects of fresh and degraded dissolved organic matter derived from maize straw on copper sorption onto farmland loess. J. Soils Sediments 2016, 16, 327–338. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Xie, Z.; Lan, J.; Li, T.; Yuan, D.; Xing, B. Characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in soil seepage water in karst terrains, southwest China. Ecotox. Environ. Safe 2020, 190, 110122. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.; Tipping, E.; Thacker, S.A.; Gondar, D. Relating dissolved organic matter fluorescence and functional properties. Chemosphere 2008, 73, 1765–1772. [Google Scholar] [CrossRef]
- He, Q.; Xiao, Q.; Fan, J.; Zhao, H.; Cao, M.; Zhang, C.; Jiang, Y. Excitation-emission matrix fluorescence spectra of chromophoric dissolved organic matter reflected the composition and origination of dissolved organic carbon in Lijiang River, Southwest China. J. Hydrol. 2021, 598, 126–240. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Asefaw, B.A.; Xiao, H.; Liu, L.; Wang, D.; Peng, H.; Zeng, G. Characterizing dissolved organic matter in eroded sediments from a loess hilly catchment using fluorescence EEM-PARAFAC and UV-Visible absorption: Insights from source identification and carbon cycling. Geoderma 2019, 334, 37–48. [Google Scholar] [CrossRef]
- Liu, C.; Hu, B.X.; Li, Z.; Yu, L.; Peng, H.; Wang, D.; Huang, X. Linking soils and streams: Chemical composition and sources of eroded organic matter during rainfall events in a Loess hilly-gully region of China. J. Hydrol. 2021, 600, 126518. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Nie, X.; Huang, M.; Wang, D.; Xiao, H.; Liu, C.; Peng, H.; Jiang, J.; Zeng, G. The role of dissolved organic matter in soil organic carbon stability under water erosion. Ecol. Indic 2019, 102, 724–733. [Google Scholar] [CrossRef]
- Xiong, K.N.; Zhu, D.Y.; Peng, T.; Yu, L.F.; Xue, J.H.; Li, P. Study on Ecological industry technology and demonstration for Karst rocky desertification control of the Karst Plateau-Gorge. Acta Ecol. Sin. 2016, 36, 7109–7113. (In Chinese) [Google Scholar]
- Xiong, K.; Li, J.; Long, M. Characteristics and key problems of soil erosion in typical karst rocky desertification control area. Acta Geogr. Sin. 2012, 67, 878–888. (In Chinese) [Google Scholar]
- Huang, M.; Li, Z.; Huang, B.; Luo, N.; Zhang, Q.; Zhai, X.; Zeng, G. Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM-PARAFAC combined with two-dimensional FTIR correlation analyses. J. Hazard. Mater 2017, 344, 539–548. [Google Scholar] [CrossRef]
- Lawaetz, A.J.; Stedmon, C.A. Fluorescence Intensity Calibration Using the Raman Scatter Peak of Water. Appl. Spectrosc. 2009, 63, 936–940. [Google Scholar] [CrossRef]
- ElBishlawi, H.; Jaffe, P.R. Characterization of dissolved organic matter from a restored urban marsh and its role in the mobilization of trace metals. Chemosphere 2015, 127, 144–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.Y.; Fengchang, W.; Zhang, R.; Wen, L.I.; Liao, H.Q. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau. J. Environ. Sci. 2009, 21, 581–588. [Google Scholar] [CrossRef]
- Jaffé, R.; Boyer, J.N.; Lu, X.; Maie, N.; Yang, C.; Scully, N.M.; Mock, S. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar. Chem. 2004, 84, 195–210. [Google Scholar] [CrossRef]
- Spencer, R.G.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.; Smart, D.R.; Hernes, P.J. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA). Hydrol. Process 2007, 21, 3181–3189. [Google Scholar] [CrossRef]
- Santos, P.S.; Otero, M.; Duarte, R.M.; Duarte, A.C. Spectroscopic characterization of dissolved organic matter isolated from rainwater. Chemosphere 2009, 74, 1053–1061. [Google Scholar] [CrossRef]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef] [Green Version]
- Ohno, T. Fluorescence inner-filtering correction for determining the humi-fication index of dissolved organic matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Saubusse, S.; Etcheber, H.; Abril, G.; Relexans, S.; Ibalot, F.; Parlanti, E. New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. Org. Geochem. 2010, 41, 595–610. [Google Scholar] [CrossRef]
- Mcknight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Wilson, H.F.; Xenopoulos, M.A. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat. Geosci. 2009, 2, 37–41. [Google Scholar] [CrossRef]
- Yamashita, Y.; Maie, M.; Briceño, H.; Jaffe, R. Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield. Venezuela. J. Geophys. Res. 2010, 115, G00F10. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, Y.; Scinto, L.J.; Maie, N.; Liu, Y.; Zhang, Y.; Zhang, Y.; Gu, W. Dissolved Organic Matter Characteristics across a Subtropical Wetland’s Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics. Ecosystems 2010, 13, 1006–1019. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; Spencer, R.G. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol. Oceanogr. 2010, 55, 2452–2462. [Google Scholar] [CrossRef]
- Gao, Z.; Guéguen, C. Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 2017, 121, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.R.; Reynolds, D.M. Monitoring of water quality using fluorescence technique: Prospect of on-line process control. Water Res. 1999, 33, 2069–2074. [Google Scholar] [CrossRef]
- Ismaili, M.M.; Belin, C.; Lamotte, M.; Texier, H. Distribution and characterisation by fluorescence of the dissolved organic matter within the central Channel waters. Ocea. Acta 1998, 5, 645–676. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Feng, Q.; Qin, Y.; Cao, J.; Zhang, M.; Liu, W.; Deo, R.C.; Zhang, C.; Li, R.; Li, B. The role of topography in shaping the spatial patterns of soil organic carbon. Catena 2019, 176, 296–305. [Google Scholar] [CrossRef]
- Dilling, J.; Kaiser, K. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry. Water Res. 2002, 36, 5037–5044. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–47028. [Google Scholar] [CrossRef]
- Marschner, B.; Bredow, A. Temperature effects on release and ecologically relevant properties of dissolved organic carbon in sterilized and biologically active soil samples. Soil Biol. Biochem. 2002, 34, 459–466. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Y. The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province. China. Geoderma 2020, 357, 113938. [Google Scholar] [CrossRef]
- Pang, D.; Cui, M.; Liu, Y.; Wang, G.; Cao, J.; Wang, X.; Dan, X.; Zhou, J. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China. Ecol. Eng. 2019, 138, 391–402. [Google Scholar] [CrossRef]
- Han, F.; Hu, W.; Zheng, J.; Du, F.; Zhang, X. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma 2010, 154, 261–266. [Google Scholar] [CrossRef]
- Jia, X.X.; Yang, Y.; Zhang, C.C.; Shao, M.A.; Huang, L.M. A state-space analysis of soil organic carbon in China’s Loess Plateau. L. Degrad. Dev. 2017, 28, 983–993. [Google Scholar] [CrossRef]
- Gao, J.; Liang, C.; Shen, G.; Lv, J.; Wu, H. Spectral characteristics of dissolved organic matter in various agri-cultural soils throughout China. Chemosphere 2017, 176, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, Z.; Zhou, Y.; Wang, X.; Zhang, J.; Zhou, X. Characteristics of soil organic carbon under different karst landforms. Carbonates Evaporites 2021, 36, 40. [Google Scholar] [CrossRef]
- Wang, J. Study on Nutrient Loss of Fissure Water and Soil in Karst Rocky Desertification Area. Master’s Thesis, Guizhou Normal University, Guizhou, China, 2020. (In Chinese). [Google Scholar]
- Bunting, B.T.; Lundberg, J. The humus profile-concept, class and reality. Geoderma 1987, 40, 17–36. [Google Scholar] [CrossRef]
- Kleber, M.M. What is recalcitrant soil organic matter? Environ. Chem. 2010, 7, 320–332. [Google Scholar] [CrossRef]
- Sierra, M.M.D.; Giovanela, M.; Parlanti, E.; Esteves, V.I.; Duarte, A.C.; Fransozo, A.; Soriano-Sierra, E.J. Structural description of humic substances from subtropical coastal environments using elemental analysis, FT-IR and ¹³C-solid state NMR data. J. Coast. Res. 2005, 42, 370–382. [Google Scholar]
- Wang, X.W.; Liu, Z.Q.; Xiong, K.L.; He, Q.F.; Li, Y.; Li, K.P. Characteristics and controlling factors of soil dissolved organic matter in the rainy season after vegetation restoration in a karst drainage area, South China. Catena 2022, 217, 106483. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Chen, X.; Shi, P. The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environ. Earth Sci. 2009, 59, 811–820. [Google Scholar] [CrossRef]
- Li, Y. The Desertification Hydro-Process and Carbon and Nitrogen Loss in A Typical Catchment of the Karst Plateau-Gorge. Ph.D. Thesis, Guizhou Normal University, Guizhou, China, 2021. (In Chinese). [Google Scholar]
- Lan, J. Responses of soil organic carbon components and their sensitivity to karst rocky desertification control measures in Southwest China. J. Soils Sediments 2021, 21, 978–989. [Google Scholar] [CrossRef]
- Song, X.W. Migration and Hydrological Process Differentiation of Carbon and Nitrogen in the Slope of Karst Critical Zone. Master’s Thesis, Southwest University, Chongqing, China, 2018. (In Chinese). [Google Scholar]
- Yan, L.; Liu, Q.; Liu, C.; Liu, Y.; Zhang, M.; Zhang, Y.; Gu, W. Effect of swine biogas slurry application on soil dissolved organic matter (DOM) content and fluorescence characteristics. Ecotoxicol. Env. Saf. 2019, 184, 109616. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Dai, Q.; Hu, G.; Jiao, Q.; Mei, L.; Fu, W. Effects of vegetation type on the microbial characteristics of the fissure soil-plant systems in karst rocky desertification regions of SW China. Sci. Total Environ. 2020, 712, 136543. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Balser, T.C. Microbial production of recalcitrant organic matter in global soils: Implications for productivity and climate policy. Nat. Rev. Microbiol. 2011, 106, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Weyers, E.; Strawn, D.G.; Peak, D.; Baker, L.L. Inhibition of phosphorus sorption on calcite by dairy manure-sourced DOC. Chemosphere 2017, 184, 99–105. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Shouse, P.J.; Alves, W.J.; Manteghi, N.A.; Lesch, S.M. Determining soil salinity from soil electrical conductivity using different models and estimates. Soil Sci. Soc. Am. J. 1990, 54, 46–54. [Google Scholar] [CrossRef]
- Xu, Y.L.; Zhu, W.; Qi, J.M.; Xu, J.Q.; Xi, R.C. Relationship between relative electric conductivity and its nutrient contents in soils at Camellia oleifera forests. Non-Wood For. Res. 2016, 3, 126–129. (In Chinese) [Google Scholar]
- Li, S.; Ren, H.D.; Xue, L.; Chang, J.; Yao, X.H. Influence of bare rocks on surrounding soil moisture in the karst rocky desertification regions under drought conditions. Catena 2014, 116, 157–162. [Google Scholar] [CrossRef]
- Cory, R.M.; Mcknight, D.M. Fluorescence Spectroscopy Reveals Ubiquitous Presence of Oxidized and Reduced Quinones in Dissolved Organic Matter. Environ. Sci. Technol. 2005, 39, 8142–8149. [Google Scholar] [CrossRef]
- Ishii, S.K.L.; Boyer, T.H. Behavior of reoccurring parafac components in fluo-rescent dissolved organic matter in natural and engineered systems: A critical review. Environ. Sci. Technol. 2012, 46, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Kalbitz, K.; Solinger, S.; Park, J.H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Aiken, G.R.; Hsu-Kim, H.; Ryan, J.N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ. Sci. Technol. 2011, 45, 3196–3201. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Kunhikrishnan, A.; James, T.; Mcdowell, R.; Senesi, N. Chapter one-dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. Adv. Agron. 2011, 110, 1–75. [Google Scholar]
- Deb, S.; Shukla, M.K. An overview of some soil hydrological watershed models. In Soil Hydro, Land Use. Agric, Measurement. Modelling; Manoj, K.S., Ed.; MPG Books Group: Bodmin, UK, 2011; Volume 7, pp. 75–116. [Google Scholar] [CrossRef]
- Ren, Z.L.; Tella, M.; Bravin, M.N.; Comans, R.N.; Dai, J.; Garnier, J.M.; Sivry, Y.; Doelsch, E.; Straathof, A.; Benedetti, M.F. Effect of dissolved organic matter composition on metal speciation in soil solutions. Chem. Geol. 2015, 398, 61–69. [Google Scholar] [CrossRef]
Type | Longitude and Latitude | Altitude (m) | Depth (cm) | Aperture (cm) | Average Width (cm) | Dip Angle (°) | Near-Surface Vegetation |
---|---|---|---|---|---|---|---|
HJ-1 | 25°39′23.70″ N, 105°39′23.70″ E | 739 | 290 | 42 | 37 | 82 | Celtis sinensis and Cipadessa baccifera |
HJ-2 | 25°39′24.56″ N, 105°39′23.82″ E | 739 | 190 | 31 | 25 | 87 | Eriobotrya japonica and Zanthoxylum bungeanum |
HJ-3 | 25°39′26.42″ N, 105°39′23.96″ E | 739 | 285 | 39 | 32 | 80 | Celtis sinensis and Lonicera japonica |
DOM Quality Index | Definition and Significance |
---|---|
SVUA254 and SUVA260 absorbance: SUVA254/260 = a(λ)/c(DOC) | a(λ) is the UV–Vis absorbance at wavelength 254, 260 (mm) and r is the path-length of the optical (0.01 m), c(DOC) is the concentration of extractable DOM (mg·L−1) [52]. |
E2/E3: a(254)/a(365) or a(250)/a(365) E2/E4: a(240)/a(420) or a(250)/a(436) | a(240, 250, 254, 365, 420, and 436) is the UV–Vis absorbance at wavelength λ(mm). E2/E3 is an indication of the degree of organic matter humification, with low values indicating low humification. E2/E4 indicates the source of organic matter, with higher values being endogenous and lower values being exogenous [53,54]. |
Slope ratio: a(λ) = a(λ400)exp[S(λ400 − λ)] + K SR = S(275–295)/S(350–400) | S(275–295) and S(350–400) are the spectral slope S values in each range, respectively, and λ400 is the reference wavelength [55,56,57]. |
Humification index: HIX = (∑I435–480)/(∑I300–345) | Ex at 254 nm, the ratio of the integral values of the fluorescence intensity of Em in the range 435–480 and 300–345 nm, reflects the degree of humification of DOM. HIX < 4 belongs to biological or aquatic bacterial sources, 4 < HIX < 6 belong to weakly humified features and important recent autotrophic sources [58,59]. |
Fluorescence index: FI = Em(470/520) | Ex at 370 nm, the ratio of the fluorescence intensity of Em at 470 and 520 nm reflects the source of the DOM. Microbial activity is the main source of DOM for 1.7 < FI < 2.0, and the contribution of organisms is lower when 1.2 < FI < 1.5 [60]. |
Biological index: BIX = Em(380/430) | Ex at 310 nm, the ratio of fluorescence intensity at 380 and 520 nm for Em. BIX value reflects the ratio of albuminoid and biological components. BIX value reflects the ratio of albuminoid and biological components. Low biological fraction (0.6 < BIX < 0.7), DOM of biological or aquatic bacterial origin (BIX > 1) [59,61]. |
Type | SOC (g·kg−1) | DOC (mg·L−1) | SUVA254 | SUVA260 | E2/E3 | E2/E4 | SR | FI | BIX | HIX |
---|---|---|---|---|---|---|---|---|---|---|
HJ-1 | 14.85 ± 6.8 | 15.34 ± 10.39 | 0.33 ± 0.08 | 0.31 ± 0.08 | 5.08 ± 1.21 | 12.9 ± 2.62 | 1.06 ± 0.22 | 1.99 ± 0.40 | 0.82 ± 0.13 | 1.59 ± 0.68 |
HJ-2 | 19.35 ± 8.6 | 18.94 ± 6.92 | 0.37 ± 0.12 | 0.35 ± 0.11 | 4.25 ± 1.09 | 11.51 ± 1.99 | 0.90 ± 0.16 | 2.03 ± 0.36 | 0.77 ± 0.12 | 1.63 ± 0.74 |
HJ-3 | 17.57 ± 8.2 | 16.50 ± 6.97 | 0.34 ± 0.07 | 0.32 ± 0.07 | 4.38 ± 0.60 | 12.06 ± 1.89 | 0.96 ± 0.08 | 2.03 ± 0.21 | 0.77 ± 0.15 | 1.56 ± 0.60 |
Mean | 17.26 ± 2.7 | 16.72 ± 8.50 | 0.34 ± 0.09 | 0.33 ± 0.09 | 4.62 ± 1.07 | 12.23 ± 2.28 | 0.98 ± 0.18 | 2.02 ± 0.33 | 0.79 ± 0.14 | 1.59 ± 0.67 |
Type | Maximum Wavelength | HJ-1 | HJ-2 | HJ-3 | Description of the Source |
---|---|---|---|---|---|
C1 | Exmax | 255 | 255 | 255 | A peak, terrestrial humic [62]. High molecular weight and aromatic humus, widely distributed, highest in wetland and forest environments [65]. |
Emmax | 461 | 471 | 452 | ||
C2 | Exmax | 305 | 305 | 305 | M peak, marine humic [64], Low molecular weight, similar in marine, wastewater, wetlands, and farmland [63,66]. |
Emmax | 415 | 428 | 403 | ||
C3 | Exmax | 255 | 245 | 250 | T peak, protein-like peaks, and microbial by-product-like substances are related [64,67,68]. |
Emmax | 369 | 366 | 369 | ||
C4 | Exmax | 280 | 285 | 280 | B peak, protein-like Complexine [64], leachate production mainly by microorganisms, phytoplankton, and higher plants [20,63]. |
Emmax | 336 | 334 | 328 | ||
C5 | Exmax | 290 | 290 | 285 | A and C peak, terrestrial humus [63]. |
Emmax | 521 | 521 | 521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, K.; Liu, Z.; Xiong, K.; He, Q.; Li, Y.; Cai, L.; Chen, Y. Migration of Dissolved Organic Matter in the Epikarst Fissured Soil of South China Karst. Land 2023, 12, 887. https://doi.org/10.3390/land12040887
Cheng K, Liu Z, Xiong K, He Q, Li Y, Cai L, Chen Y. Migration of Dissolved Organic Matter in the Epikarst Fissured Soil of South China Karst. Land. 2023; 12(4):887. https://doi.org/10.3390/land12040887
Chicago/Turabian StyleCheng, Kun, Ziqi Liu, Kangning Xiong, Qiufang He, Yuan Li, Lulu Cai, and Yi Chen. 2023. "Migration of Dissolved Organic Matter in the Epikarst Fissured Soil of South China Karst" Land 12, no. 4: 887. https://doi.org/10.3390/land12040887
APA StyleCheng, K., Liu, Z., Xiong, K., He, Q., Li, Y., Cai, L., & Chen, Y. (2023). Migration of Dissolved Organic Matter in the Epikarst Fissured Soil of South China Karst. Land, 12(4), 887. https://doi.org/10.3390/land12040887