A Framework to Identify Priority Areas for Restoration: Integrating Human Demand and Ecosystem Services in Dongting Lake Eco-Economic Zone, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Datasets
- The land-use maps for 2000, 2005, 2010, 2015, and 2020 (30 m resolution) were obtained from the Resource Environment and Science Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 13 March 2023). Based on the characteristics of the ecosystem composition of the study area, land-use types were reclassified into six categories: cropland, forest, grassland, water bodies, artificial land, and unused land.
- Average annual rainfall, evaporation, and temperature data were downloaded from the China Meteorological Data Service Center (http://data.cma.cn/, accessed on 13 March 2023).
- The net output productivity (NPP, 100 m resolution) data were retrieved from the website of National Aeronautics and Space Administration (NASA) (https://www.nasa.gov/, accessed on 13 March 2023).
- The Digital Elevation Model (DEM, 90 m resolution) was taken from the Geo-spatial Data Cloud (https://www.gscloud.cn/, accessed on 13 March 2023).
- Soil classification and data on associated soil attributes were obtained from the 1:1 million digital soil map of China and the Second National Soil Survey of China (http://www.ncdc.ac.cn/portal/, accessed on 13 March 2023).
- Socioeconomic, population density (1000 m resolution), and road, river, and settlement data were obtained from the Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on 13 March 2023).
2.3. Methods
2.3.1. Accounting for Potential Supply of ES
- (1)
- Carbon sequestration (CS)
- (2)
- Habitat support (HS)
- (3)
- Water harvesting (WH)
2.3.2. Accounting for the Importance of ES Demand
2.3.3. Identifying PoRAs
2.3.4. Marxan
2.3.5. Identifying PRAs with Marxan
- (1)
- Setting the research unit and the restoration target
- (2)
- Constructing the comprehensive restoration cost index
- (3)
- Setting the initial state of the research unit
2.3.6. Classification of the Priority Grade, Only Considering Ecological Importance
2.3.7. Modifying the Restoration Priority Grades, Considering Human Demand and Aggregation Degree
3. Results
3.1. Potential Supply of ES
3.2. Comprehensive Cost Index (η)
3.3. Potential Restoration Areas
3.4. PRAs for Single ES
3.5. Restoration Priority Grade Based on ES Importance
3.6. Revising Priority Restoration Grades Based on Demand Importance and Aggregation Degree
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Cramer, W.; Bondeau, A.; Schaphoff, S.; Lucht, W.; Smith, B.; Sitch, S. Tropical forests and the global carbon cycle: Impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004, 359, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Nilashi, M.; Rupani, P.F.; Rupani, M.M.; Kamyab, H.; Shao, W.; Ahmadi, H.; Rashid, T.A.; Aljojo, N. Measuring sustainability through ecological sustainability and human sustainability: A machine learning approach. J. Clean. Prod. 2019, 240, 118162. [Google Scholar] [CrossRef]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef]
- Hasan, S.S.; Deng, X.; Li, Z.; Chen, D. Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development. Sustainability 2017, 9, 505. [Google Scholar] [CrossRef]
- Luo, W.; Bai, H.; Jing, Q.; Liu, T.; Xu, H. Urbanization-induced ecological degradation in Midwestern China: An analysis based on an improved ecological footprint model. Resour. Conserv. Recycl. 2018, 137, 113–125. [Google Scholar] [CrossRef]
- Iftekhar, S.; Polyakov, M.; Ansell, D.; Gibson, F.; Kay, G.M. How economics can further the success of ecological restoration. Conserv. Biol. 2016, 31, 261–268. [Google Scholar] [CrossRef]
- Richardson, B.J.; Davidson, N.J. Financing and governing ecological restoration projects: The Tasmanian Island Ark. Ecol. Manag. Restor. 2021, 22, 36–46. [Google Scholar] [CrossRef]
- Li, T.; Li, J.; Wang, Y. Carbon sequestration service flow in the Guanzhong-Tianshui economic region of China: How it flows, what drives it, and where could be optimized? Ecol. Indic. 2018, 96, 548–558. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Junqueira, A.B.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global priority areas for ecosystem restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef]
- Medland, S.J.; Shaker, R.R.; Forsythe, K.W.; Mackay, B.R.; Rybarczyk, G. A multi-Criteria Wetland Suitability Index for Restoration across Ontario’s Mixedwood Plains. Sustainability 2020, 12, 9953. [Google Scholar] [CrossRef]
- Theuerkauf, S.J.; Eggleston, D.B.; Puckett, B.J. Integrating ecosystem services considerations within a GIS-based habitat suitability index for oyster restoration. PLoS ONE 2019, 14, e0210936. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Peng, J.; Zhao, Y.; Xu, D.; Dong, J. Zoning for ecosystem restoration based on ecological network in mountainous region. Ecol. Indic. 2022, 142, 109138. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Z.; Li, S.; Gao, Z. Integrating the Ecological Security Pattern and the PLUS Model to Assess the Effects of Regional Ecological Restoration: A Case Study of Hefei City, Anhui Province. Int. J. Environ. Res. Public Health 2022, 19, 6640. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Li, X.; Liu, H.; Hu, Y.; Hu, P. Integrating Ecological Assessments to Target Priority Restoration Areas: A Case Study in the Pearl River Delta Urban Agglomeration, China. Remote Sens. 2021, 13, 2424. [Google Scholar] [CrossRef]
- Hou, X.; Liu, S.; Zhao, S.; Zhang, Y.; Wu, X.; Cheng, F.; Dong, S. Interaction mechanism between floristic quality and environmental factors during ecological restoration in a mine area based on structural equation modeling. Ecol. Eng. 2018, 124, 23–30. [Google Scholar] [CrossRef]
- Tang, C.; Yi, Y.; Yang, Z.; Zhang, S.; Liu, H. Effects of ecological flow release patterns on water quality and ecological restoration of a large shallow lake. J. Clean. Prod. 2018, 174, 577–590. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, M.; Yue, H.; Chen, X.; Feng, C. Critical thresholds in ecological restoration to achieve optimal ecosystem services: An analysis based on forest ecosystem restoration projects in China. Land Use Policy 2018, 76, 675–678. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Du, Z.; Xu, Y.; Zhao, J.; Zhao, H.; Zhang, G.; Peng, D.; Gong, P. Distribution of ecological restoration projects associated with land use and land cover change in China and their ecological impacts. Sci. Total. Environ. 2022, 825, 15398. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, S.; Liu, Y.; Wang, X. River ecosystem assessment and application in ecological restorations: A mathematical approach based on evaluating its structure and function. Ecol. Eng. 2015, 76, 151–157. [Google Scholar] [CrossRef]
- Fidelino, J.S.; Duya, M.R.M.; Duya, M.V.; Ong, P.S. Fruit bat diversity patterns for assessing restoration success in reforestation areas in the Philippines. Acta Oecol. 2020, 108, 103637. [Google Scholar] [CrossRef]
- Comín, F.A.; Miranda, B.; Sorando, R.; Felipe-Lucia, M.R.; Jiménez, J.J.; Navarro, E. Prioritizing sites for ecological restoration based on ecosystem services. J. Appl. Ecol. 2018, 55, 1155–1163. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, F.; Wang, Z. Research on optimization of ecological service function and planning control of land resources planning based on ecological protection and restoration. Environ. Technol. Innov. 2021, 24, 101904. [Google Scholar] [CrossRef]
- Poisson, A.C.; McCullough, I.N.; Cheruvelil, K.S.; Elliott, K.C.; Latimore, J.A.; Soranno, P.A. Quantifying the contribution of citizen science to broad-scale ecological databases. Front. Ecol. Environ. 2020, 18, 19–26. [Google Scholar] [CrossRef]
- Dansereau, G.; Legendre, P.; Poisot, T. Evaluating ecological uniqueness over broad spatial extents using species distribution modelling. Oikos 2022, 2022, e09063. [Google Scholar] [CrossRef]
- Gatica-Saavedra, P.; Echeverría, C.; Nelson, C.R. Ecological indicators for assessing ecological success of forest restoration: A world review. Restor. Ecol. 2017, 25, 850–857. [Google Scholar] [CrossRef]
- Ngugi, M.R.; Botkin, D.B.; Doley, D.; Cant, M.; Kelley, J. Restoration and management of callitris forest ecosystems in Eastern Australia: Simulation of attributes of growth dynamics, growth increment and biomass accumulation. Ecol. Model. 2013, 263, 152–161. [Google Scholar] [CrossRef]
- Barral, M.P.; Benayas, J.M.R.; Meli, P.; Maceira, N.O. Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: A global meta-analysis. Agric. Ecosyst. Environ. 2015, 202, 223–231. [Google Scholar] [CrossRef]
- Bullock, J.M.; Aronson, J.; Newton, A.C.; Pywell, R.F.; Rey-Benayas, J.M. Restoration of ecosystem services and biodiversity: Conflicts and opportunities. Trends Ecol. Evol. 2011, 26, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.L.d.S.R.; Mazzochini, G.G.; Oliveira-Filho, A.T.; Ganade, G.; Carvalho, A.R.; Manhães, A.P. Priority areas for restoring ecosystem services to enhance human well-being in a dry forest. Restor. Ecol. 2021, 29, e13426. [Google Scholar] [CrossRef]
- Verhagen, W.; Kukkala, A.S.; Moilanen, A.; Van Teeffelen, A.J.A.; Verburg, P.H. Use of demand for and spatial flow of ecosystem services to identify priority areas. Conserv. Biol. 2017, 31, 860–871. [Google Scholar] [CrossRef]
- Dong, X.; Wang, X.; Wei, H.; Fu, B.; Wang, J.; Uriarte-Ruiz, M. Trade-offs between local farmers’ demand for ecosystem services and ecological restoration of the Loess Plateau, China. Ecosyst. Serv. 2021, 49, 101295. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Agostinho, F.; Giannetti, B.F.; Yang, Z. Assessment of ecological restoration projects under water limits: Finding a balance between nature and human needs. J. Environ. Manag. 2022, 311, 114849. [Google Scholar] [CrossRef]
- Jia, Q.; Jiao, L.; Lian, X.; Wang, W. Linking supply-demand balance of ecosystem services to identify ecological security patterns in urban agglomerations. Sustain. Cities Soc. 2023, 92, 104497. [Google Scholar] [CrossRef]
- Jiang, M.; Jiang, C.; Huang, W.; Chen, W.; Gong, Q.; Yang, J.; Zhao, Y.; Zhuang, C.; Wang, J.; Yang, Z. Quantifying the supply-demand balance of ecosystem services and identifying its spatial determinants: A case study of ecosystem restoration hotspot in Southwest China. Ecol. Eng. 2021, 174, 106472. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, J.; Dong, J.; Liu, Y.; Liu, Q.; Lyu, D.; Qiao, R.; Zhang, Z. Spatial correlation between the changes of ecosystem service supply and demand: An ecological zoning approach. Landsc. Urban Plan. 2021, 217, 104258. [Google Scholar] [CrossRef]
- Cai, A.; Wang, J.; Wang, Y.; MacLachlan, I. Spatial optimizations of multiple plant species for ecological restoration of the mountainous areas of North China. Environ. Earth Sci. 2019, 78, 302. [Google Scholar] [CrossRef]
- Xiao, Y.; Ouyang, Z.; Xu, W.; Xiao, Y.; Zheng, H.; Xian, C. Optimizing hotspot areas for ecological planning and management based on biodiversity and ecosystem services. Chin. Geogr. Sci. 2016, 26, 256–269. [Google Scholar] [CrossRef]
- Adame, M.F.; Hermoso, V.; Perhans, K.; Lovelock, C.E.; Herrera-Silveira, J.A. Selecting cost-effective areas for restoration of ecosystem services. Conserv. Biol. 2014, 29, 493–502. [Google Scholar] [CrossRef]
- Daigle, R.M.; Metaxas, A.; Balbar, A.C.; McGowan, J.; Treml, E.A.; Kuempel, C.; Possingham, H.; Beger, M. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods Ecol. Evol. 2020, 11, 570–579. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, B.; Tu, B.; Yang, Y.; Wang, Z.; Jiang, W.; Yao, K.; Yang, J. Refining Urban Built-Up Area via Multi-Source Data Fusion for the Analysis of Dongting Lake Eco-Economic Zone Spatiotemporal Expansion. Remote Sens. 2020, 12, 1797. [Google Scholar] [CrossRef]
- Jiang, C.; Yin, L.; Wen, X.; Du, C.; Wu, L.; Long, Y.; Liu, Y.; Ma, Y.; Yin, Q.; Zhou, Z.; et al. Microplastics in Sediment and Surface Water of West Dongting Lake and South Dongting Lake: Abundance, Source and Composition. Int. J. Environ. Res. Public Health 2018, 15, 2164. [Google Scholar] [CrossRef]
- Wang, S.R.; Meng, W.; Jin, X.C.; Zheng, B.H.; Zhang, L.; Xi, H.Y. Ecological security problem of the majior key lakes in China. Environ. Earth Sci. 2015, 74, 3825–3837. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean. Prod. 2020, 278, 123333. [Google Scholar] [CrossRef]
- Adelisardou, F.; Zhao, W.; Chow, R.; Mederly, P.; Minkina, T.; Schou, J.S. Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). Int. J. Environ. Sci. Technol. 2021, 19, 5929–5944. [Google Scholar] [CrossRef]
- Beerens, J.M.; Frederick, P.C.; Noonburg, E.G.; Gawlik, D.E. Determining habitat quality for species that demonstrate dynamic habitat selection. Ecol. Evol. 2015, 5, 5685–5697. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, Y.; Bu, L.; Ye, Y. Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model. Int. J. Environ. Res. Public Health 2021, 18, 2389. [Google Scholar] [CrossRef] [PubMed]
- Al-Khuzaie, M.M.; Janna, H.; Al-Ansari, N. Assessment model of water harvesting and storage location using GIS and remote sensing in Al-Qadisiyah, Iraq. Arab. J. Geosci. 2020, 13, 1154. [Google Scholar] [CrossRef]
- Juffe-Bignoli, D.; Harrison, I.; Butchart, S.H.; Flitcroft, R.; Hermoso, V.; Jonas, H.; Lukasiewicz, A.; Thieme, M.; Turak, E.; Bingham, H.; et al. Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 133–151. [Google Scholar] [CrossRef]
- Li, M.; Liu, S.; Wang, F.; Liu, H.; Liu, Y.; Wang, Q. Cost-benefit analysis of ecological restoration based on land use scenario simulation and ecosystem service on the Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2022, 34, e02006. [Google Scholar] [CrossRef]
- Cao, S.; Xia, C.; Suo, X.; Wei, Z. A framework for calculating the net benefits of ecological restoration programs in China. Ecosyst. Serv. 2021, 50, 101325. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Zhao, S.; Hou, X.; Xu, J.; Dong, S.; Liu, G. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Sci. Total Environ. 2018, 652, 1375–1386. [Google Scholar] [CrossRef]
- Jones, S.K.; Boundaogo, M.; DeClerck, F.A.; Estrada-Carmona, N.; Mirumachi, N.; Mulligan, M. Insights into the importance of ecosystem services to human well-being in reservoir landscapes. Ecosyst. Serv. 2019, 39, 100987. [Google Scholar] [CrossRef]
- Castillo-Mandujano, J.; Smith-Ramírez, C. The need for holistic approach in the identification of priority areas to restore: A review. Restor. Ecol. 2022, 30, e13637. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, Z. Linear programming Monte Carlo method based on remote sensing for ecological restoration of degraded ecosystem. IOP Conf. Ser. Earth Environ. Sci. 2019, 295, 012041. [Google Scholar] [CrossRef]
- Woods, J.S.; Verones, F. Ecosystem damage from anthropogenic seabed disturbance: A life cycle impact assessment characterisation model. Sci. Total Environ. 2018, 649, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Salado, C.A.; Miranda-Aragón, L.; Pompa-García, M.; Reyes-Hernández, H.; Soubervielle-Montalvo, C.; Flores-Cano, J.A.; Méndez-Cortés, H. Improving Identification of Areas for Ecological Restoration for Conservation by Integrating USLE and MCDA in a GIS-Environment: A Pilot Study in a Priority Region Northern Mexico. ISPRS Int. J. Geo-Inf. 2017, 6, 262. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Yi, S. An integrated approach to constructing ecological security patterns and identifying ecological restoration and protection areas: A case study of Jingmen, China. Ecol. Indic. 2022, 137, 108723. [Google Scholar] [CrossRef]
- Jiang, H.; Qin, M.; Wang, Z.; Luo, D.; Wu, X. Research on identification of priority areas of ecological restoration in Changsha city based on ecosystem services bundle. J. Environ. Eng. 2022, 12, 47–52. [Google Scholar]
- Zhang, Z.; Xu, Y.; Wang, Z.; Zhang, Y.; Zhu, X.; Guo, L.; Zheng, Q.; Tang, L. Ecological restoration and protection of Jinci Spring in Shanxi, China. Arab. J. Geosci. 2020, 13, 744. [Google Scholar] [CrossRef]
- Aronson, J.; Alexander, S. Ecosystem Restoration is Now a Global Priority: Time to Roll up our Sleeves. Restor. Ecol. 2013, 21, 293–296. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [PubMed]
Initial States | Description |
---|---|
0 | The planning units can be excluded or included in the final plan, depending on the proportion of an initial reserve system (Marxan selects a certain number of planning units as the initial protection system at the beginning of the operation and performs iterations based on the initial protection system). Normally, the initial state of remaining planning units other than those with the initial state of 1, 2, and 3 can be set to 0. |
1 | The planning units belong to the potential protection system, and their inclusion in the final plan depends on the weight of the protection target. |
2 | The planning units are locked and will definitely appear in the final plan. |
3 | The planning units will definitely not appear in the final plan. |
Evaluation Index | Reassignment Method | Grading/Distance | Cost Index | |
---|---|---|---|---|
L | GDP density, population density, slop | Natural breakpoint method | 5 | Value assigned from 5 (highest) to 1 (lowest) |
Distance to river | Multi-ring buffer | 500 m | 1 | |
500–1000 m | 2 | |||
1000–1500 m | 3 | |||
1500–2000 m | 4 | |||
≥2000 m | 5 | |||
Distance to road, settlement | Multi-ring buffer | 500 m | 5 | |
500–1000 m | 4 | |||
1000–1500 m | 3 | |||
1500–2000 m | 2 | |||
≥2000 m | 1 | |||
B | ESV2000–2020 | Natural breakpoint method | 5 | Value assigned from 1 (highest) to 5 (lowest) |
Priority Grade for Ecological Restoration Only Considering Ecological Importance | Human Demand | |||
---|---|---|---|---|
High | Sub-High | Low | ||
3 | 2 | 1 | ||
High | 3 | 6 | 5 | 4 |
Sub-High | 2 | 5 | 4 | 3 |
Low | 1 | 4 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Luo, J.; Li, T.; Chen, J.; Mi, Y.; Wang, K. A Framework to Identify Priority Areas for Restoration: Integrating Human Demand and Ecosystem Services in Dongting Lake Eco-Economic Zone, China. Land 2023, 12, 965. https://doi.org/10.3390/land12050965
Zhao Y, Luo J, Li T, Chen J, Mi Y, Wang K. A Framework to Identify Priority Areas for Restoration: Integrating Human Demand and Ecosystem Services in Dongting Lake Eco-Economic Zone, China. Land. 2023; 12(5):965. https://doi.org/10.3390/land12050965
Chicago/Turabian StyleZhao, Yanping, Jing Luo, Tao Li, Jian Chen, Yi Mi, and Kuan Wang. 2023. "A Framework to Identify Priority Areas for Restoration: Integrating Human Demand and Ecosystem Services in Dongting Lake Eco-Economic Zone, China" Land 12, no. 5: 965. https://doi.org/10.3390/land12050965
APA StyleZhao, Y., Luo, J., Li, T., Chen, J., Mi, Y., & Wang, K. (2023). A Framework to Identify Priority Areas for Restoration: Integrating Human Demand and Ecosystem Services in Dongting Lake Eco-Economic Zone, China. Land, 12(5), 965. https://doi.org/10.3390/land12050965