Analysis of Flow and Land Use on the Hydraulic Structure of Southeast Mexico City: Implications on Flood and Runoff
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Hydrological Study for the Definition of Precipitation Scenarios
2.3. Flood Scenarios Modeling
3. Results
Flooding Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zúñiga, E.; Magaña, V. Vulnerability and risk to intense rainfall in Mexico: The effect of land use cover change. Investig. Goegr. 2018, 95, 1–18. [Google Scholar]
- Bonasia, R.; Lucatello, S. Linking flood susceptibility mapping and governance in Mexico for flood mitigation: A participatory approach model. Atmosphere 2019, 10, 424. [Google Scholar] [CrossRef]
- Reardon, T.; Stamoulis, K.; Pingali, P.L. Rural nonfarm employment in developing countries in an area of globalization. Agric. Econ. 2007, 37, 173–184. [Google Scholar] [CrossRef]
- PDDU. Available online: http://www.sideso.cdmx.gob.mx/documentos/progdelegacionales/milpa[1].pdf (accessed on 10 November 2022).
- PAOT, EOT-11-2010. ACTUALIZACIÓN ESTADÍSTICO ESPACIAL COMO FUENTE DE UN ORDENAMIENTO TERRITORIAL EN LA REGIÓN DE LA ZONA SUR DE LA CIUDAD DE MÉXICO, EN LAS DELEGACIONES CUAJIMALPA DE MORELOS, ALVARO OBREGÓN, MILPA ALTA, TLALPAN Y XOCHIMILCO. Available online: http://centro.paot.org.mx/documentos/paot/estudios/EOT-11-2010.pdf (accessed on 15 March 2023).
- Combaten Profepa y Sedema Cambios de Uso de Suelo en Milpa Alta. Available online: https://www.sedema.cdmx.gob.mx/comunicacion/nota/combaten-profepa-y-sedema-cambios-de-uso-de-suelo-en-milpa-alta (accessed on 30 April 2023).
- Centro Nacional Prevención de Desastres (CENAPRED). Diagnóstico de Peligros e Identificación de Riesgos de Desastres en México—Atlas Nacional de. Riesgos de la República Mexicana; Electronic Version; Secretería de Seguridad y Protección Ciudadana; Centro Nacional de Prevención de Desastres: Mexico City, Mexico, 2001; p. 232. [Google Scholar]
- Domínguez Mora, R. Las Inundaciones en la Ciudad de México. Problemática y Alternativas de Solución. Rev. Digit. Univ. 2000, 1, 3. [Google Scholar]
- La Jornada. Available online: https://www.jornada.com.mx/2004/07/18/034n1cap.php?printver=1&fly=#:~:text=Explic%C3%B3%20que%20se%20present%C3%B3%20una,de%20bienes%20de%20los%20afectados. (accessed on 10 November 2022).
- Gómez Bonilla, A.P. The native people of Milpa Alta and its problems around access to water. Argum. Estud. Críticos Soc. 2020, 3, 145–161. [Google Scholar] [CrossRef]
- Steinel, A.; Schelkes, K.; Subah, A.; Himmelsbach, T. Spatial multi-criteria analysis for selecting potential sites for aquifer recharge via harvesting and infiltration of surface runoff in north Jordan. Hydrogeol. J. 2016, 24, 1753–1774. [Google Scholar] [CrossRef]
- Bellot, J.; Bonet, A.; Sanchez, J.R.; Chirino, E. Likely effects of land use changes on the runoff and aquifer recharge in a semiarid landscape using a hydrological model. Landsc. Urban Plan. 2001, 55, 41–53. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers: A review. Sustain. Agric. 2008, 28, 65–86. [Google Scholar]
- Descheemaeker, K.; Poesen, J.; Borselli, L.; Nyssen, J.; Raes, D.; Haile, M.; Muys, B.; Deckers, J. Runoff curve numbers for steep hillslopes with natural vegetation in semi-arid tropical highlands, northern Ethiopia. Hydrol. Process. 2008, 22, 4097–4105. [Google Scholar] [CrossRef]
- Ghiglieri, G.; Carletti, A.; Pittalis, D. Runoff coefficient and average yearly natural aquifer recharge assessment by physiography-based indirect methods for the island of Sardinia (Italy) and its NW area (Nurra). J. Hydrol. 2014, 519, 1779–1791. [Google Scholar] [CrossRef]
- Eshtawi, T.; Evers, M.; Tischbein, B. Quantifying the impact of urban area expansion on groundwater recharge and surface runoff. Hydrol. Sci. J. 2016, 80, 103812. [Google Scholar] [CrossRef]
- Lin, J.; He, P.; Yang, L.; He, X.; Lu, S.; Liu, D. Predicting future urban waterlogging-prone areas by coupling the maximum entropy and FLUS model. Sustain. Cities Soc. 2022, 61, 826–843. [Google Scholar] [CrossRef]
- Siahkamari, S.; Haghizadeh, A.; Zeinivand, H.; Tahmasebipour, N.; Rahmati, O. Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int. 2017, 33, 927–941. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.W. Flood prediction using machine learning models: Literature review. Water 2018, 10, 1536. [Google Scholar] [CrossRef]
- Smith, L.S.; Liang, Q. Towards a generalized GPU/CPU shallow-flow modelling tool. Comput. Fluids 2013, 88, 334–343. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, A.S.; Fu, G.; Djordjeviç, S.; Zhang, C.; Savic, D.A. An integrated framework for high resolution urban flood modelling considering multiple information sources and urban features. Environ. Model. Softw. 2018, 107, 85–95. [Google Scholar] [CrossRef]
- Kastridis, A.; Kirkenidis, C.; Sapountzis, M. An integrated approach of flash flood analysis in ungauged Mediterranean watersheds using post-flood surveys and unmanned aerial vehicles. Hydrol. Process. 2020, 34, 4920–4939. [Google Scholar] [CrossRef]
- Huang, C.J.; Hsu, M.H.; Teng, W.H.; Wang, Y.H. The Impact of Building Coverage in the Metropolitan Area on the Flow Calculation. Water 2014, 6, 2449–2466. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Xie, Y.; Wang, H.; Leng, G.; Huang, Q.; Wei, X.; Wang, L. Identification of the Non-stationarity of Floods: Changing Patterns, Causes, and Implications. Water Resour. Manag. 2019, 33, 939–953. [Google Scholar] [CrossRef]
- Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, J.; Dolz, J.; Coll, A. IBER: Herramienta de simulación numérica de flujo en ríos. Rev. Int. Métodos Numer. Cálc. Diseño Ing. 2014, 30, 1–10. [Google Scholar] [CrossRef]
- Sistema de Administración Documental (SADSMA). Available online: http://www.sadsma.cdmx.gob.mx:9000/datos/storage/app/media/docpub/atlasriesgo/MR_Milpa_Alta.pdf (accessed on 10 November 2022).
- INEGI. Available online: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825068318.pdf (accessed on 11 November 2022).
- Mooser, F. Las Historia tectónica de la Cuenca de México. Bol. Asoc. Mex. Geol. Pet. 1963, 15, 239–245. [Google Scholar]
- Mooser, F.; Nair, A.E.M.; Negendank, J.F.W. Paleomagnetic investigations of Tertiary and Quaternary igneous rocks; VII, A paleomegnetic and petrologic study of volcanics of the Valley of Mexico. Geol. Rundsch. 1974, 63, 451–483. [Google Scholar] [CrossRef]
- INEGI. Geología. Available online: https://www.inegi.org.mx/temas/geologia/#Descargas (accessed on 11 November 2022).
- Cram, S.; Cotler, H.; Morales, L.M.; Sommer, I.; Carmona, E. Identificación de los servicios ambientales potenciales de los suelos en el paisaje urbano del Distrito Federal. Investig. Geogr. Bol. Del Inst. Geogr. UNAM 2008, 66, 81–104. [Google Scholar]
- Aparicio, F. Fundamentos de Hidrología de Superficie; Limusa: Balderas, Mexico, 1997; p. 303. [Google Scholar]
- National Surface Water Data Bank (BANDAS). Available online: https://app.conagua.gob.mx/bandas/ (accessed on 1 May 2022).
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather. Rev. 1911, 39, 1082–1089. [Google Scholar] [CrossRef]
- Gumbel, E. The return period of flood flows. Ann. Math. Stat. 1941, 12, 163–190. [Google Scholar] [CrossRef]
- Cea, L.; Bladé, E. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resour. Res. 2015, 51, 5464–5486. [Google Scholar] [CrossRef]
- García-Leal, O.; González-Cao, J.; Gómez-Gesteira, M.; Cea, L.; Domínguez, J.M.; Fornella, A. An accelerated tool for flood modelling based on Iber. Water 2018, 10, 1459. [Google Scholar] [CrossRef]
- Sañudo, E.; Cea, L.; Puertas, J. Modelling Pluvial Flooding in Urban Areas Coupling the Models Iber and SWMM. Water 2020, 12, 2647. [Google Scholar] [CrossRef]
- Bermúdez, M.; Farfán, J.F.; Willems, P.; Cea, L. Assessing the Effects of Climate Change on Compound Flooding in Coastal River Areas. Water Resour. Res. 2021, 57, 10. [Google Scholar] [CrossRef]
- Fraga, I.; Cea, L.; Puertas, J. Effect of rainfall uncertainty on the performance of physically-based rainfall-runoff models. Hydrol. Process. 2018, 33, 160–173. [Google Scholar] [CrossRef]
- Sañudo, E.; Cea, L.; Puertas, J. Comparison of three different numerical implementations to model rainfall-runoff transformation on roofs. Hydrol. Process. 2022, 36, e14588. [Google Scholar] [CrossRef]
- Areu-Rangel, O.S.; Cea, L.; Bonasia, R.; Espinosa-Echavarria, V.J. Impact of Urban Growth and Changes in Land Use on River Flood Hazard in Villahermosa, Tabasco (Mexico). Water 2019, 11, 304. [Google Scholar] [CrossRef]
- Bonasia, R.; Ceragene, M. Hydraulic Numerical Simulations of La Sabana River Floodplain, Mexico, as a Tool for a Flood Terrain Response Analysis. Water 2021, 12, 3516. [Google Scholar] [CrossRef]
- INEGI Uso de Suelo y Vegetación. Available online: https://www.inegi.org.mx/temas/usosuelo/#Descargas (accessed on 1 May 2022).
- Bermúdez, M.; Neal, J.C.; Bates, P.D.; Coxon, G.; Freer, J.E.; Cea, L.; Puertas, J. Quantifying local rainfall dynamics and uncertain boundary conditions into a nested regional-local flood modeling system. Water Resour. Res 2017, 53, 2770–2785. [Google Scholar] [CrossRef]
- Modelo Digital de Elevación Tipo Terreno con 5m de Resolución Derivado de Datos de Sensores Remotos Satelitales y Aerotransportados. E14A49c2. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463793601 (accessed on 1 May 2022).
- Soulis, K.X. Soil Conservation Service Curve Number (SCS-CN) Method: Current Applications, Remaining Challenges, and Future Per-spectives. Water 2021, 13, 192. [Google Scholar] [CrossRef]
- USDA-SCS. Urban Hydrology for Small Watersheds; Technical Release No. 55 (TR-55); USDASCS: Washington, DC, USA, 1986; p. 194. [Google Scholar]
- Nosman, G.; van der Meer, J.; Hoffmans, G.; Schüttrumpf, H.; Jan Verhagen, H. Individual Overtopping Events at Dikes. In Proceedings of the 31st International Conference, Hamburg, Germany, 31 August–5 September 2008; pp. 2944–2956. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; International Edition; McGraw-Hill Book Company: New York, NY, USA, 1988. [Google Scholar]
- Vásquez-Méndez, R.; Ventura-Ramos, E.; Oleschko, K.; Hernández-Sandoval, L.; Parrot, J.F.; Nearing, M.A. Soil erosion and runoff in different vegetation patches from semiarid Central Mexico. Catena 2010, 80, 162–169. [Google Scholar] [CrossRef]
- Sánchez, C.; Díaz-Polanco, H. Peoples, communities and ejidos in the environmental dynamics of Mexico City. Cuicuilco 2010, 18, 191–224. [Google Scholar]
- Torregrosa, M.L.; Kloster, K.; Latargere, J. El acceso al agua y la construcción de territorio en Milpa Alta, México D. F. Agua Territ. 2015, 6, 143–156. [Google Scholar] [CrossRef]
- EDOMEX. Atlas de Riesgo Chalco. Available online: http://rmgir.proyectomesoamerica.org/PDFMunicipales/EdoMex/Atlas_Chalco_2019_009.pdf (accessed on 17 March 2023).
- Kastridis, A.; Theodosiou, G.; Fotiadis, G. Investigation of Flood Management and Mitigation Measures in Ungauged NATURA Protected Watersheds. Hydrology 2021, 8, 170. [Google Scholar] [CrossRef]
- Faccini, F.; Luino, F.; Paliaga, G.; Sacchini, L.; de Jong, C. Role of rainfall intensity and urban sprawl in the 2014 flash flood in Genoa City, Bisagno catchment (Liguria, Italy). Appl. Geogr. 2018, 98, 224–241. [Google Scholar] [CrossRef]
- Booth, D.B.; Hartley, D.; Jackson, R. Forest cover, impervious-surface area, and the mitigation of stormwater impacts. J. Am. Water Resour. Assoc. 2002, 38, 835–845. [Google Scholar] [CrossRef]
- Goff, K.M.; Gentry, R.W. The influence of watershed and development characteristics on the cumulative impacts of stormwater detention ponds. Water Resour. Manag. 2006, 20, 820–860. [Google Scholar] [CrossRef]
- Del Giudice, G.; Rasulo, G.; Siciliano, D.; Padulano, R. Combined effects of parallel and series detention basins for flood peak reduction. Water Resour. Manag. 2014, 28, 3193–3205. [Google Scholar] [CrossRef]
- INEGI. Conjunto de Datos Aguas Subterráneas. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825294007 (accessed on 10 November 2022).
- FAO. Ecologia del Cultivo, Manejo y Usos del Nopal. Available online: https://www.fao.org/3/i7628es/I7628ES.pdf (accessed on 20 March 2023).
- Snyman, H.A. A case study on in situ rooting profiles and water-use efficiency of cactus pears, Opuntia ficus-indica and O. robusta. J. Prof. Assoc. Cactus Dev. 2005, 7, 1–21. [Google Scholar]
- Nobel, P.S. Environmental Biology of Agaves and Cacti; Cambridge University Press: Cambridge, UK, 1987; p. 280. [Google Scholar]
- Puigdefábregas, J. The role of vegetation patterns in structuring runoff and sediment fluxes in Drylands. Earth Surf. Process. Landf. 2005, 30, 133–147. [Google Scholar] [CrossRef]
- A Historical Overview of Hydrologic Studies of Artificial Recharge in the U.S. Geological Survey. Available online: https://water.usgs.gov/ogw/pubs/ofr0289/epw_historical.html (accessed on 3 April 2023).
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Ortíz-Rodríguez, A.J.; Borselli, L.; Sarocchi, D. Flow connectivity in active volcanic areas: Use of index of connectivity in the assessment of lateral flow contribution to main streams. Catena 2017, 157, 90–111. [Google Scholar] [CrossRef]
- Ortíz-Rodríguez, A.J.; Muñoz-Robles, C.; Borselli, L. Changes in connectivity and hydrological efficiency following wildland fires in Sierra Madre Oriental, Mexico. Sci. Total Environ. 2019, 655, 112–128. [Google Scholar] [CrossRef]
- Kristvik, E.; Johannessen, B.G.; Muthanna, T.M. Temporal downscaling of IDF curves applied to future performance of local stormwater measures. Sustainability 2019, 11, 1231. [Google Scholar] [CrossRef]
- Zabidi, H.A.; Goh, H.W.; Chang, C.K.; Chan, N.W.; Zakaria, N.A. A review of roof and pond rainwater harvesting systems for water security: The design, performance and way forward. Water 2020, 12, 3163. [Google Scholar] [CrossRef]
Station | 9051 (Lon: −99.004 Lat: 19.263) | 9032 (Lon: −99.0219 Lat: 19.1906) | 9045 (Lon: −99.0028 Lat: 19.1789) |
---|---|---|---|
(mm) | 11.008 | 9.501 | 8.383 |
(km) | 0.628 | 1.507 | 2.129 |
(mm) | 1.621 | 3.358 | 4.185 |
Land Use | Manning Coefficient | Curve Number |
---|---|---|
Brushland | 0.05 | 67 |
Residential | 0.15 | 80 |
Dense vegetation | 0.18 | 32 |
Undefined (bare land) | 0.032 | 80 |
Maximum simulation time (s) | 7200 |
Results interval (s) | 60 |
Numerical scheme | Hydraulic—first order |
Courant–Friedrichs–Lewy number | 0.45 |
Dry/Wet limit | 0.01 |
Total calculation time | Min 15 min (Tr 5 simulation)–Max 23 min (Tr 500 simulation) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonasia, R.; Borselli, L.; Madonia, P. Analysis of Flow and Land Use on the Hydraulic Structure of Southeast Mexico City: Implications on Flood and Runoff. Land 2023, 12, 1120. https://doi.org/10.3390/land12061120
Bonasia R, Borselli L, Madonia P. Analysis of Flow and Land Use on the Hydraulic Structure of Southeast Mexico City: Implications on Flood and Runoff. Land. 2023; 12(6):1120. https://doi.org/10.3390/land12061120
Chicago/Turabian StyleBonasia, Rosanna, Lorenzo Borselli, and Paolo Madonia. 2023. "Analysis of Flow and Land Use on the Hydraulic Structure of Southeast Mexico City: Implications on Flood and Runoff" Land 12, no. 6: 1120. https://doi.org/10.3390/land12061120
APA StyleBonasia, R., Borselli, L., & Madonia, P. (2023). Analysis of Flow and Land Use on the Hydraulic Structure of Southeast Mexico City: Implications on Flood and Runoff. Land, 12(6), 1120. https://doi.org/10.3390/land12061120