Cumulative Spatial and Temporal Analysis of Anthropogenic Impacts in the Protected Area of the Gran Paradiso National Park in the NW Alps, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Workflow
2.2.1. Interviews and Questionnaires
2.2.2. Worksites
2.2.3. Derivations and Discharges
2.2.4. Dams and Hydroelectric Power Plants
2.2.5. Imperviousness
2.2.6. Road Network
2.2.7. Helicopter Flights
2.2.8. Tourism and Sport Activities
- Mountain huts and bivouacs: this layer contains the precise data of the location of mountain huts, bivouacs, hunting lodges, and park rangers’ lodges, digitized based on the orthophoto of 2012 with the help of various sources, such as the Gulliver site, OpenStreetMap, and the park website. The attributes considered concern name, type (mountain huts, bivouacs, hunting lodges, and park rangers’ lodges), municipality, region, and specific fields relating to the frequency of visits by tourists obtained with the data collected through the interviews. It reported the number of people who visit the refuge at least three times a year, more than once but less than three times a year, and never, derived from the tourist interviews. Moreover, the geodata reports the annual estimate of people who visit the refuge in summer and winter obtained through interviews with refuge managers.
- Pathways: the geodata of the pathways were provided by the Park. To this were added the pathways that were absent in the first geodata of the data bank of the Aosta Valley path network, made public through a dedicated geo-navigator (https://catastosentieri.regione.vda.it, accessed on 28 August 2020), and from OSM. The information in the attribute table was subsequently standardized as much as possible. The attribute table is organized in a series of generic fields: id, num. section, name, municipality, length, min altitude, max altitude, the difference in height, section, average slope, typology, paving, gutters, edges, walls, state, signs, digressions, pastures, parks, classification, hunting roads, and royal mule tracks. In addition, two specific fields related to tourist attendance were available: a field already present in the geodata provided by the park and therefore only related to that part of the paths and a field containing the information derived from the questionnaire for tourists. They contain information only for the paths present in the initial geodata provided by the park, on which the questionnaire was built.
- Sport activities: the information relating to sports was taken from the Gulliver website (https://www.gulliver.it, accessed on 12 December 2020), an outdoor community where users share information on itineraries where they can practice different types of sports. On this platform it is possible to set geographic filters by sporting activity. Each itinerary in Gulliver’s database was then digitized, where the description was clear enough to allow a correct location or the track was downloaded, when available, resulting in the following geodata: climbing, bouldering, equipped cragging, trekking (i.e., pathways), mountain biking, canyoning (summer sports), alpine/steep skiing, snowshoeing, icefalls climbing (winter sports). The shapefile relating to the skiing facilities was provided by the park, and no changes have been made.
2.2.9. Overgrazing
2.2.10. Forest Cuts
2.3. Estimate of the Threats Value
2.3.1. Normalization and Weighting of Threats Intensity
2.3.2. Cumulative Analysis of Threats
2.4. Vulnerability and Risk Assessment
- Level 1: land-use classes characterizing both natural environments with very low resilience and semi-natural environments with significant anthropic determinism that are easily impacted (e.g., rocky areas, artificial water basins, areas with sparse vegetation).
- Level 2: natural and semi-natural land-use classes which can be considered poorly resilient with respect to the pressures deriving from anthropic disturbance (e.g., areas with shrub vegetation in natural evolution, pastures).
- Level 3: natural land-use classes with good resilience (e.g., climatic tree formations).
- Level 4: all the land-use classes with total anthropogenic determinism (e.g., most of the crops and the types of artificial land use).
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Slaymaker, O.; Embleton-Hamann, C. Advances in Global Mountain Geomorphology. Geomorphology 2018, 308, 230–264. [Google Scholar] [CrossRef]
- Butler, D.R.; Malanson, G.P.; Resler, L.M.; Walsh, S.J.; Wilkerson, F.D.; Schmid, G.L.; Sawyer, C.F. Chapter 4 Geomorphic Patterns and Processes at Alpine Treeline. Dev. Earth Surf. Process. 2009, 12, 63–84. [Google Scholar] [CrossRef]
- Opedal, Ø.H.; Armbruster, W.S.; Graae, B.J. Linking Small-Scale Topography with Microclimate, Plant Species Diversity and Intra-Specific Trait Variation in an Alpine Landscape. Plant. Ecol. Divers. 2015, 8, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Fedele, F.G. Toward a Human Ecology of Mountains. Curr. Anthr. 1984, 25, 688–691. [Google Scholar] [CrossRef]
- Gambari, F.M.; Ferrero, L.; Padovan, S. (Eds.) Pionieri Delle Alpi: Il Pieno Neolitico tra le Alpi Occidentali; Soprintendenza Archeologia del Piemonte: Turin, Italy, 2016. [Google Scholar]
- Volume XVI 1992—Il Popolamento Delle Alpi Occidentali—Museo Civico Di Scienze Naturali Di Bergamo. Available online: https://www.museoscienzebergamo.it/senza-categoria/volume-xvi-1992-il-popolamento-delle-alpi-occidentali/ (accessed on 21 July 2022).
- Dirnböck, T.; Dullinger, S.; Grabherr, G. A Regional Impact Assessment of Climate and Land-Use Change on Alpine Vegetation. J. Biogeogr. 2003, 30, 401–417. [Google Scholar] [CrossRef]
- Carcaillet, C.; Brun, J.-J. Changes in Landscape Structure in the Northwestern Alps over the Last 7000 Years: Lessons from Soil Charcoal. J. Veg. Sci. 2000, 11, 705–714. [Google Scholar] [CrossRef]
- Grime, J.P. Vegetation Classification by Reference to Strategies. Nature 1974, 250, 26–31. [Google Scholar] [CrossRef]
- Zhang, J.T.; Xu, B.; Li, M. Vegetation Patterns and Species Diversity Along Elevational and Disturbance Gradients in the Baihua Mountain Reserve, Beijing, China. Mt. Res. Dev. 2013, 33, 170–178. [Google Scholar] [CrossRef]
- Niu, L.; Cheng, Z. Impact of Tourism Disturbance on Forest Vegetation in Wutai Mountain, China. Environ. Monit. Assess. 2019, 191, 1–11. [Google Scholar] [CrossRef]
- Journal, A.I.; Klug, B.; Scharfetter-Lehrl, G.; Scharfetter, E. Effects of Trampling on Vegetation above the Timberline in the Eastern Alps, Austria. Arctic Antarct. Alp. Res. 2018, 34, 377–388. [Google Scholar] [CrossRef]
- Rusch, G.M.; Pausas, J.G.; Lepš, J. Plant Functional Types in Relation to Disturbance and Land Use: Introduction. J. Veg. Sci. 2003, 14, 307–310. [Google Scholar] [CrossRef]
- Piragnolo, M.; Pirotti, F.; Guarnieri, A.; Vettore, A.; Salogni, G. Geo-Spatial Support for Assessment of Anthropic Impact on Biodiversity. ISPRS Int. J. Geoinf. 2014, 3, 599–618. [Google Scholar] [CrossRef] [Green Version]
- Ban, N.C.; Alidina, H.M.; Ardron, J.A. Cumulative Impact Mapping: Advances, Relevance and Limitations to Marine Management and Conservation, Using Canada’s Pacific Waters as a Case Study. Mar. Policy 2010, 34, 876–886. [Google Scholar] [CrossRef]
- Clark, D.; Goodwin, E.; Sinner, J.; Ellis, J.; Singh, G. Validation and Limitations of a Cumulative Impact Model for an Estuary. Ocean. Coast. Manag. 2016, 120, 88–98. [Google Scholar] [CrossRef]
- Caniani, D.; Labella, A.; Lioi, D.S.; Mancini, I.M.; Masi, S. Habitat Ecological Integrity and Environmental Impact Assessment of Anthropic Activities: A GIS-Based Fuzzy Logic Model for Sites of High Biodiversity Conservation Interest. Ecol. Indic. 2016, 67, 238–249. [Google Scholar] [CrossRef]
- Harik, G.; Alameddine, I.; Maroun, R.; Rachid, G.; Bruschi, D.; Astiaso Garcia, D.; El-Fadel, M. Implications of Adopting a Biodiversity-Based Vulnerability Index versus a Shoreline Environmental Sensitivity Index on Management and Policy Planning along Coastal Areas. J. Environ. Manag. 2017, 187, 187–200. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Stelzenmüller, V.; Coll, M.; Mazaris, A.D.; Giakoumi, S.; Katsanevakis, S.; Portman, M.E.; Degen, R.; Mackelworth, P.; Gimpel, A.; Albano, P.G.; et al. A Risk-Based Approach to Cumulative Effect Assessments for Marine Management. Sci. Total Environ. 2018, 612, 1132–1140. [Google Scholar] [CrossRef]
- Brignon, J.M.; Lejart, M.; Nexer, M.; Michel, S.; Quentric, A.; Thiebaud, L. A Risk-Based Method to Prioritize Cumulative Impacts Assessment on Marine Biodiversity and Research Policy for Offshore Wind Farms in France. Environ. Sci. Policy 2022, 128, 264–276. [Google Scholar] [CrossRef]
- Stockbridge, J.; Jones, A.R.; Gillanders, B.M. A Meta-Analysis of Multiple Stressors on Seagrasses in the Context of Marine Spatial Cumulative Impacts Assessment. Sci. Rep. 2020, 10, 11934. [Google Scholar] [CrossRef]
- Murphy, G.E.P.; Kelly, N.E.; Lotze, H.K.; Wong, M.C. Incorporating Anthropogenic Thresholds to Improve Understanding of Cumulative Effects on Seagrass Beds. Facets 2022, 7, 966–987. [Google Scholar] [CrossRef]
- Boyd, P.W.; Hutchins, D.A. Understanding the Responses of Ocean Biota to a Complex Matrix of Cumulative Anthropogenic Change. Mar. Ecol. Prog. Ser. 2012, 470, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Korpinen, S.; Andersen, J.H. A Global Review of Cumulative Pressure and Impact Assessments in Marine Environments. Front. Mar. Sci. 2016, 3, 153. [Google Scholar] [CrossRef] [Green Version]
- Stelzenmüller, V.; Coll, M.; Cormier, R.; Mazaris, A.D.; Pascual, M.; Loiseau, C.; Claudet, J.; Katsanevakis, S.; Gissi, E.; Evagelopoulos, A.; et al. Operationalizing Risk-Based Cumulative Effect Assessments in the Marine Environment. Sci. Total Environ. 2020, 724, 138118. [Google Scholar] [CrossRef] [PubMed]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and Temporal Changes in Cumulative Human Impacts on the World’s Ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, A.; Micheli, F. Effects of Model Assumptions and Data Quality on Spatial Cumulative Human Impact Assessments. Glob. Ecol. Biogeogr. 2016, 25, 1321–1332. [Google Scholar] [CrossRef]
- Trew, B.T.; Grantham, H.S.; Barrientos, C.; Collins, T.; Doherty, P.D.; Formia, A.; Godley, B.J.; Maxwell, S.M.; Parnell, R.J.; Pikesley, S.K.; et al. Using Cumulative Impact Mapping to Prioritize Marine Conservation Efforts in Equatorial Guinea. Front. Mar. Sci. 2019, 6, 717. [Google Scholar] [CrossRef]
- Wyatt, K.H.; Griffin, R.; Guerry, A.D.; Ruckelshaus, M.; Fogarty, M.; Arkema, K.K. Habitat Risk Assessment for Regional Ocean Planning in the U.S. Northeast and Mid-Atlantic. PLoS ONE 2017, 12, e0188776. [Google Scholar] [CrossRef]
- Arkema, K.K.; Verutes, G.; Bernhardt, J.R.; Clarke, C.; Rosado, S.; Canto, M.; Wood, S.A.; Ruckelshaus, M.; Rosenthal, A.; McField, M.; et al. Assessing Habitat Risk from Human Activities to Inform Coastal and Marine Spatial Planning: A Demonstration in Belize. Environ. Res. Lett. 2014, 9, 114016. [Google Scholar] [CrossRef] [Green Version]
- Fierro, P.; Valdovinos, C.; Arismendi, I.; Díaz, G.; Ruiz De Gamboa, M.; Arriagada, L. Assessment of Anthropogenic Threats to Chilean Mediterranean Freshwater Ecosystems: Literature Review and Expert Opinions. Environ. Impact Assess. Rev. 2019, 77, 114–121. [Google Scholar] [CrossRef]
- Macdiarmid, A.; Mckenzie, A.; Sturman, J.; Beaumont, J.; Mikaloff-Fletcher, S.; Dunne, J. Assessment of Anthropogenic Threats to New Zealand Marine Habitats New Zealand Aquatic Environment and Biodiversity Report No. 93 2012; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2012. Available online: http://www.maf.govt.nz/news-resources/publications.aspx (accessed on 22 May 2023).
- Depellegrin, D.; Menegon, S.; Gusatu, L.; Roy, S.; Misiunė, I. Assessing Marine Ecosystem Services Richness and Exposure to Anthropogenic Threats in Small Sea Areas: A Case Study for the Lithuanian Sea Space. Ecol. Indic. 2020, 108, 105730. [Google Scholar] [CrossRef]
- Sajjad, M.; Li, Y.; Tang, Z.; Cao, L.; Liu, X. Assessing Hazard Vulnerability, Habitat Conservation, and Restoration for the Enhancement of Mainland China’s Coastal Resilience. Earths Future 2018, 6, 326–338. [Google Scholar] [CrossRef] [Green Version]
- Halpern, B.S.; Kappel, C.V.; Selkoe, K.A.; Micheli, F.; Ebert, C.M.; Kontgis, C.; Crain, C.M.; Martone, R.G.; Shearer, C.; Teck, S.J. Mapping Cumulative Human Impacts to California Current Marine Ecosystems. Conserv. Lett. 2009, 2, 138–148. [Google Scholar] [CrossRef]
- Seitz, N.E.; Westbrook, C.J.; Noble, B.F. Bringing Science into River Systems Cumulative Effects Assessment Practice. Environ. Impact Assess. Rev. 2011, 31, 172–179. [Google Scholar] [CrossRef]
- Halpern, B.S.; Selkoe, K.A.; Micheli, F.; Kappel, C.V. Evaluating and Ranking the Vulnerability of Global Marine Ecosystems to Anthropogenic Threats. Conserv. Biol. 2007, 21, 1301–1315. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, R.; Gao, H.; Hou, C.; Jin, S.; Ye, J.; Na, G. Spatial Distribution of Cumulative Impact on Terrestrial Ecosystem of the Fildes Peninsula, Antarctica. J. Environ. Manage 2021, 279, 111735. [Google Scholar] [CrossRef]
- Egarter Vigl, L.; Marsoner, T.; Schirpke, U.; Tscholl, S.; Candiago, S.; Depellegrin, D. A Multi-Pressure Analysis of Ecosystem Services for Conservation Planning in the Alps. Ecosyst. Serv. 2021, 47, 101230. [Google Scholar] [CrossRef]
- O’Bryan, C.J.; Allan, J.R.; Holden, M.; Sanderson, C.; Venter, O.; Di Marco, M.; McDonald-Madden, E.; Watson, J.E.M. Intense Human Pressure Is Widespread across Terrestrial Vertebrate Ranges. Glob. Ecol. Conserv. 2020, 21, e00882. [Google Scholar] [CrossRef]
- Gong, M.; Fan, Z.; Zhang, X.; Liu, G.; Wen, W.; Zhang, L. Measuring the Effectiveness of Protected Area Management by Comparing Habitat Utilization and Threat Dynamics. Biol. Conserv. 2017, 210, 253–260. [Google Scholar] [CrossRef]
- Sobhani, P.; Esmaeilzadeh, H.; Barghjelveh, S.; Sadeghi, S.M.M.; Marcu, M.V. Habitat Integrity in Protected Areas Threatened by Lulc Changes and Fragmentation: A Case Study in Tehran Province, Iran. Land 2022, 11, 6. [Google Scholar] [CrossRef]
- Adem Esmail, B.; Geneletti, D. Multi-Criteria Decision Analysis for Nature Conservation: A Review of 20 Years of Applications. Methods Ecol. Evol. 2018, 9, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Vaissi, S.; Sharifi, M. Integrating Multi-Criteria Decision Analysis with a GIS-Based Siting Procedure to Select a Protected Area for the Kaiser’s Mountain Newt, Neurergus Kaiseri (Caudata: Salamandridae). Glob. Ecol. Conserv. 2019, 20, e00738. [Google Scholar] [CrossRef]
- Cegan, J.C.; Filion, A.M.; Keisler, J.M.; Linkov, I. Trends and Applications of Multi-Criteria Decision Analysis in Environmental Sciences: Literature Review. Environ. Syst. Decis. 2017, 37, 123–133. [Google Scholar] [CrossRef]
- Alberico, S.; Grasso, S.; Vayr, P.; Minciardi, M.R.; Rossi, G.; Ciadamidaro, S.; Quaglio, G. Linee Guida per Il Sistema Del Verde; Provincia di Torino: Torino, Italy; Available online: http://www.cittametropolitana.torino.it/cms/territorio-urbanistica/sistema-verde/sistema-verde (accessed on 22 May 2023).
- Siniscalco, C. Impact of Tourism on Flora, and Vegetation in the Gran Paradiso National Park (NW Alps, Italy); Dipartimento di Botanica ed Ecologia dell’Universita–Camerino et Station de Phytosociologie: Bailleul, France, 1995. [Google Scholar]
- Costanzi, L.; Brambilla, A.; Di Blasio, A.; Dondo, A.; Goria, M.; Masoero, L.; Gennero, M.S.; Bassano, B. Beware of Dogs! Domestic Animals as a Threat for Wildlife Conservation in Alpine Protected Areas. Eur. J. Wildl. Res. 2021, 67, 70. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.G.; Dietz, T.; Liu, J. Global Relationships between Biodiversity and Nature-Based Tourism in Protected Areas. Ecosyst. Serv. 2018, 34, 11–23. [Google Scholar] [CrossRef]
- Widawski, K.; Oleśniewicz, P.; Rozenkiewicz, A.; Zareba, A.; Jandová, S. Protected Areas: Geotourist Attractiveness for Weekend Tourists Based on the Example of Gorcza Nski National Park in Poland. Resources 2020, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.L.G.; Barquero, L.M.R. Tourism, Development and Protected Areas: Deconstructing the Myth. Eur. Countrys. 2020, 12, 568–597. [Google Scholar] [CrossRef]
- Rixen, C.; Rolando, A. (Eds.) The Impacts of Skiing and Related Winter Recreational Activities on Mountain Environments; Bentham Science Publishers: Soest, The Netherlands, 2013; ISBN 978-1-60805-632-3. [Google Scholar] [CrossRef] [Green Version]
- Sato, C.F.; Wood, J.T.; Lindenmayer, D.B. The Effects of Winter Recreation on Alpine and Subalpine Fauna: A Systematic Review and Meta-Analysis. PLoS ONE 2013, 8, e64282. [Google Scholar] [CrossRef]
- Żemła, M. Winter Sports Resorts and Natural Environment—Systematic Literature Review Presenting Interactions between Them. Sustainability 2021, 13, 636. [Google Scholar] [CrossRef]
- Krief, S.; Iglesias-González, A.; Appenzeller, B.M.R.; Okimat, J.P.; Fini, J.B.; Demeneix, B.; Vaslin-Reimann, S.; Lardy-Fontan, S.; Guma, N.; Spirhanzlova, P. Road Impact in a Protected Area with Rich Biodiversity: The Case of the Sebitoli Road in Kibale National Park, Uganda. Environ. Sci. Pollut. Res. 2020, 27, 27914–27925. [Google Scholar] [CrossRef]
- Hudek, C.; Barni, E.; Stanchi, S.; D’Amico, M.; Pintaldi, E.; Freppaz, M. Mid and Long-Term Ecological Impacts of Ski Run Construction on Alpine Ecosystems. Sci. Rep. 2020, 10, 11654. [Google Scholar] [CrossRef] [PubMed]
- Canteiro, M.; Córdova-Tapia, F.; Brazeiro, A. Tourism Impact Assessment: A Tool to Evaluate the Environmental Impacts of Touristic Activities in Natural Protected Areas. Tour. Manag. Perspect. 2018, 28, 220–227. [Google Scholar] [CrossRef]
- Doytchev, B. Impact Of Ski Running and Ski Orientation On The Enviroment. Trakia J. Sci. 2020, 18, 785–789. [Google Scholar] [CrossRef]
- Spenceley, A.; Snyman, S. Protected Area Tourism: Progress, Innovation and Sustainability. Tour. Hosp. Res. 2017, 17, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Tolvanen, A.; Kangas, K.; Tarvainen, O.; Huhta, E.; Jäkäläniemi, A.; Kyttä, M.; Nikula, A.; Nivala, V.; Tuulentie, S.; Tyrväinen, L. The Relationship between People’s Activities and Values with the Protection Level and Biodiversity. Tour. Manag. 2020, 81, 104141. [Google Scholar] [CrossRef]
- Jäger, H.; Schirpke, U.; Tappeiner, U. Assessing Conflicts between Winter Recreational Activities and Grouse Species. J. Environ. Manag. 2020, 276, 111194. [Google Scholar] [CrossRef]
- Senetra, A.; Dynowski, P.; Cieślak, I.; Źróbek-Sokolnik, A. An Evaluation of the Impact of Hiking Tourism on the Ecological Status of Alpine Lakes-a Case Study of the Valley of Dolina Pieciu Stawow Polskich in the Tatra Mountains. Sustainability 2020, 12, 2963. [Google Scholar] [CrossRef] [Green Version]
- Jahani, A.; Goshtasb, H.; Saffariha, M. Tourism Impact Assessment Modeling of Vegetation Density for Protected Areas Using Data Mining Techniques. Land. Degrad. Dev. 2020, 31, 1502–1519. [Google Scholar] [CrossRef]
- Negro, M.; Isaia, M.; Palestrini, C.; Rolando, A. The Impact of Forest Ski-Pistes on Diversity of Ground-Dwelling Arthropods and Small Mammals in the Alps. Biodivers. Conserv. 2009, 18, 2799–2821. [Google Scholar] [CrossRef]
- Poponi, S.; Palli, J.; Ferrari, S.; Filibeck, G.; Forte, T.G.W.; Franceschini, C.; Ruggieri, A.; Piovesan, G. Toward the Development of Sustainable Ecotourism in Italian National Parks of the Apennines: Insights from Hiking Guides. Ecol. Soc. 2020, 25, 1–13. [Google Scholar] [CrossRef]
- Cetin, M.; Zeren, I.; Sevik, H.; Cakir, C.; Akpinar, H. A Study on the Determination of the Natural Park’s Sustainable Tourism Potential. Environ. Monit. Assess. 2018, 190, 167. [Google Scholar] [CrossRef] [PubMed]
- Braunisch, V. Impacts of Outdoor Winter Recreation on Alpine Wildlife and Mitigation Approaches: A Case Study of the Black Grouse. In The Impacts of Skiing and Related Winter Recreational Activities on Mountain Environments; Bentham Science Publishers: Soest, The Netherlands, 2013; Volume 1, pp. 137–154. [Google Scholar]
- Liedtke, R.; Barros, A.; Essl, F.; Lembrechts, J.J.; Wedegärtner, R.E.M.; Pauchard, A.; Dullinger, S. Hiking Trails as Conduits for the Spread of Non-Native Species in Mountain Areas. Biol. Invasions 2020, 22, 1121–1134. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.; Rudmann-Maurer, K.; Weyand, A.; Stocklin, J. Agricultural Land Use and Biodiversity in the Alps: How Cultural Tradition and Socioeconomically Motivated Changes Are Shaping Grassland Biodiversity in the Swiss Alps. Mt. Res. Dev. 2008, 28, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gao, Q.; Dong, S.; Liu, S.; Wang, X.; Su, X.; Li, Y.; Tang, L.; Wu, X.; Zhao, H. Effects of Grazing and Climate Warming on Plant Diversity, Productivity and Living State in the Alpine Rangelands and Cultivated Grasslands of the Qinghai-Tibetan Plateau. Rangel. J. 2015, 37, 57–65. [Google Scholar] [CrossRef]
- Mayer, R.; Kaufmann, R.; Vorhauser, K.; Erschbamer, B. Effects of Grazing Exclusion on Species Composition in High-Altitude Grasslands of the Central Alps. Basic. Appl. Ecol. 2009, 10, 447–455. [Google Scholar] [CrossRef]
- Kampmann, D.; Herzog, F.; Jeanneret, P.; Konold, W.; Peter, M.; Walter, T.; Wildi, O.; Lüscher, A. Mountain Grassland Biodiversity: Impact of Site Conditions versus Management Type. J. Nat. Conserv. 2008, 16, 12–25. [Google Scholar] [CrossRef]
- Probo, M.; Lonati, M.; Pittarello, M.; Bailey, D.W.; Garbarino, M.; Gorlier, A.; Lombardi, G. Implementation of a Rotational Grazing System with Large Paddocks Changes the Distribution of Grazing Cattle in the South-Western Italian Alps. Rangel. J. 2014, 36, 445–458. [Google Scholar] [CrossRef]
- Zhu, G.; Tang, Z.; Chen, L.; Shangguan, Z.; Deng, L. Overgrazing Depresses Soil Carbon Stock through Changing Plant Diversity in Temperate Grassland of the Loess Plateau. Plant. Soil. Environ. 2018, 64, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ravetto Enri, S.; Probo, M.; Farruggia, A.; Lanore, L.; Blanchetete, A.; Dumont, B. A Biodiversity-Friendly Rotational Grazing System Enhancing Flower-Visiting Insect Assemblages While Maintaining Animal and Grassland Productivity. Agric. Ecosyst. Environ. 2017, 241, 1–10. [Google Scholar] [CrossRef]
- Negro, M.; Rolando, A.; Palestrini, C. The Impact of Overgrazing on Dung Beetle Diversity in the Italian Maritime Alps. Environ. Entomol. 2011, 40, 1081–1092. [Google Scholar] [CrossRef]
- Sartorello, Y.; Pastorino, A.; Bogliani, G.; Ghidotti, S.; Viterbi, R.; Cerrato, C. The Impact of Pastoral Activities on Animal Biodiversity in Europe: A Systematic Review and Meta-Analysis. J. Nat. Conserv. 2020, 56, 125863. [Google Scholar] [CrossRef]
- Sordello, R.; De Lachapelle, F.F.; Livoreil, B.; Vanpeene, S. Evidence of the Environmental Impact of Noise Pollution on Biodiversity: A Systematic Map Protocol. Environ. Evid. 2019, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Gangolells, M.; Casals, M.; Gassó, S.; Forcada, N.; Roca, X.; Fuertes, A. A Methodology for Predicting the Severity of Environmental Impacts Related to the Construction Process of Residential Buildings. Build. Environ. 2009, 44, 558–571. [Google Scholar] [CrossRef] [Green Version]
- Moyo, C.; Latimore, M.; Fenner, B.; Zissermann, P. Assessing the Environmental Impacts of Aircraft Noise. In The Acoustics 2019, Sound Decisions: Moving Forward with Acoustics, Proceedings of the Annual Conference of the Australian Acoustical Society 2019, Cape Schanck, Australia, 10–13 November 2019; Australian Acoustical Society (AAS): Toowong, Australia, 2020; pp. 1–7. [Google Scholar]
- Iglesias-Merchan, C.; Diaz-Balteiro, L.; Soliño, M. Transportation Planning and Quiet Natural Areas Preservation: Aircraft Overflights Noise Assessment in a National Park. Transp. Res. D Transp. Environ. 2015, 41, 1–12. [Google Scholar] [CrossRef]
- Geneletti, D. Biodiversity Impact Assessment of Roads: An Approach Based on Ecosystem Rarity. Environ. Impact Assess. Rev. 2003, 23, 343–365. [Google Scholar] [CrossRef]
- Albers, H.J.; Ando, A.W.; Bu, M.; Wing, M.G. Road-Network Agglomeration, Road Density, and Protected-Area Fragmentation. Lett. Spat. Resour. Sci. 2012, 5, 137–150. [Google Scholar] [CrossRef]
- Covaciu-Marcov, S.D.; Puskás, A.; Pop, A.N.; Ţârţ, M.; Ferenţi, S. Road-Killed Amphibians and Reptiles on a Local Road in a Protected Area in Western Romania. Acta. Zool. Bulg. 2017, 69, 115–120. [Google Scholar]
- Collinson, W.J.; Marneweck, C.; Davies-Mostert, H.T. Protecting the Protected: Reducing Wildlife Roadkill in Protected Areas. Anim. Conserv. 2019, 22, 396–403. [Google Scholar] [CrossRef]
- Gurrutxaga, M.; Rubio, L.; Saura, S. Key Connectors in Protected Forest Area Networks and the Impact of Highways: A Transnational Case Study from the Cantabrian Range to the Western Alps (SW Europe). Landsc. Urban. Plan. 2011, 101, 310–320. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Hu, T.; Zhang, M.; Ren, X.; Hou, L. Exploration of Roadway Factors and Habitat Quality Using InVEST. Transp. Res. D Transp. Environ. 2020, 87, 102551. [Google Scholar] [CrossRef]
- Garriga, N.; Santos, X.; Montori, A.; Richter-Boix, A.; Franch, M.; Llorente, G.A. Are Protected Areas Truly Protected? The Impact of Road Traffic on Vertebrate Fauna. Biodivers. Conserv. 2012, 21, 2761–2774. [Google Scholar] [CrossRef]
- Bennett, V.J. Effects of Road Density and Pattern on the Conservation of Species and Biodiversity. Curr. Landsc. Ecol. Rep. 2017, 2, 1–11. [Google Scholar] [CrossRef]
- Verones, F.; Pfister, S.; van Zelm, R.; Hellweg, S. Biodiversity Impacts from Water Consumption on a Global Scale for Use in Life Cycle Assessment. Int. J. Life Cycle Assess. 2017, 22, 1247–1256. [Google Scholar] [CrossRef]
- Saad, R.; Koellner, T.; Margni, M. Land Use Impacts on Freshwater Regulation, Erosion Regulation, and Water Purification: A Spatial Approach for a Global Scale Level. Int. J. Life Cycle Assess. 2013, 18, 1253–1264. [Google Scholar] [CrossRef]
- Strayer, D.L.; Dudgeon, D. Freshwater Biodiversity Conservation: Recent Progress and Future Challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.S.; Destouni, G.; Duke-Sylvester, S.M.; Magurran, A.E.; Oberdorff, T.; Reis, R.E.; Winemiller, K.O.; Ripple, W.J. Scientists’ Warning to Humanity on the Freshwater Biodiversity Crisis. Ambio 2021, 50, 85–94. [Google Scholar] [CrossRef]
- Gál, B.; Szivák, I.; Heino, J.; Schmera, D. The Effect of Urbanization on Freshwater Macroinvertebrates—Knowledge Gaps and Future Research Directions. Ecol. Indic. 2019, 104, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Fenoglio, M.S.; Rossetti, M.R.; Videla, M. Negative Effects of Urbanization on Terrestrial Arthropod Communities: A Meta-Analysis. Glob. Ecol. Biogeogr. 2020, 29, 1412–1429. [Google Scholar] [CrossRef]
- Wang, F.; Maberly, S.C.; Wang, B.; Liang, X. Effects of Dams on Riverine Biogeochemical Cycling and Ecology. Inland Waters 2018, 8, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Arantes, C.C.; Fitzgerald, D.B.; Hoeinghaus, D.J.; Winemiller, K.O. Impacts of Hydroelectric Dams on Fishes and Fisheries in Tropical Rivers through the Lens of Functional Traits. Curr. Opin. Environ. Sustain. 2019, 37, 28–40. [Google Scholar] [CrossRef]
- Hansen, A.J.; Knight, R.L.; Marzluff, J.M.; Powell, S.; Brown, K.; Gude, P.H.; Jones, K. Effects of Exurban Development on Biodiversity: Patterns, Mechanisms, and Research Needs. Ecol. Appl. 2005, 15, 1893–1905. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2021. Available online: https://www.R-project.org/ (accessed on 22 May 2023).
- Lewis, J. Leastcostpath: Modelling Pathways and Movement Potential Within a Landscape. 2020. Available online: https://github.com/josephlewis/leastcostpath (accessed on 22 May 2023).
- Minciardi, M.R.; Ciadamidaro, S.; Rossi, G.L.; Alberico, S.; Vayr, P. Modalità Tecniche per l’analisi e Il Miglioramento Della Reticolarità Ecologica del Territorio. Applicazione al Territorio della Città Metropolitana di Torino; Rapporto Tecnico ENEA RT/2019/3/ENEA. 2019. Available online: https://hdl.handle.net/20.500.12079/6837 (accessed on 22 May 2023).
- Diegoli, B.; Garretti, L.; Gottero, F.; Peterlin, G. Land Cover Piemonte: Progettazione Di Un Database Geografico Sulla Copertura e l ’ Uso Delle Terre Della Regione Piemonte. In Proceedings of the Atti 11a Conferenza Nazionale ASITA, Turin, Italy, 6–7 November 2007; pp. 9–12. [Google Scholar]
- Hoffmann, S. Advances in Conservation Biogeography: Towards Protected Area Effectiveness Under Anthropogenic Threats. Front. Biogeogr. 2021, 13, 1–23. [Google Scholar] [CrossRef]
- Schulze, K.; Knights, K.; Coad, L.; Geldmann, J.; Leverington, F.; Eassom, A.; Marr, M.; Butchart, S.H.M.; Hockings, M.; Burgess, N.D. An Assessment of Threats to Terrestrial Protected Areas. Conserv. Lett. 2018, 11, e12435. [Google Scholar] [CrossRef] [Green Version]
- Halpern, B.S.; Fujita, R. Assumptions, Challenges, and Future Directions in Cumulative Impact Analysis. Ecosphere 2013, 4, 1–11. [Google Scholar] [CrossRef]
- Natural Capital Project, 2022. InVEST 3.13.0.post11+ug.gfa34215 User’s Guide. Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, and Stockholm Resilience Centre. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/en/index.html (accessed on 22 May 2023).
Anthropogenic Impact | Geodata | Source | Temporal Range | References |
---|---|---|---|---|
Tourism and sports | Pathways | Park | 2020 | [49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69] |
Aosta Valley Geoportal | ||||
OSM | ||||
Mountain huts | Park | 2020 | ||
OSM | ||||
Gulliver and Questionnaires for the intensity | ||||
Bivouacs | Park | 2020 | ||
OSM | ||||
Gulliver and Questionnaires for the intensity | ||||
Ski facilities | Park | 2020 | ||
Alpine skiing | Gulliver and Questionnaires for the intensity | 2020 | ||
Climbing | 2020 | |||
Bouldering | 2020 | |||
Equipped crag | 2020 | |||
Alpinism | 2020 | |||
Mountain bike | 2020 | |||
Icefalls climbing | 2020 | |||
Steep skiing | 2020 | |||
Canyoning | 2020 | |||
Snowshoeing | 2020 | |||
Overgrazing | Overgrazing sites | Park | 2000–2018 | [70,71,72,73,74,75,76,77,78] |
Worksites | Construction sites | Park | 1980–2020 | [79,80] |
Helicopter flights | Flight routes | Interviews | 2010–2020 | [80,81,82] |
Park | ||||
Road traffic | Road traffic | Piedmont Geoportal | 2019 | [83,84,85,86,87,88,89,90] |
OSM | 2020 | |||
ARPA Aosta Valley | 2018 | |||
Derivation and discharge | Derivation/discharge | Park | 2020 | [91,92,93,94,95] |
Derivation/intakes from surface water | Piedmont Geoportal | 2018 | ||
Discharge from production settlement | ||||
Urban sewage discharge | ||||
Built-up | Urbanized generic | Imperviousness (Copernicus) | 2020 | [79,96,97,98,99] |
OSM | 2012 | |||
Dams | AGEA 2012 orthophoto | 2020 | ||
Hydroelectric power plants | Piedmont Geoportal | 2019 |
Vehicles Number | Class |
---|---|
0 | 0 |
0–100 | 1 |
100–200 | 2 |
200–500 | 3 |
500–1000 | 4 |
1000–2000 | 5 |
2000–3000 | 6 |
3000–10,000 | 7 |
>10,000 | 8 |
Impact | Intensity Factor | Value | Formula |
---|---|---|---|
Dam | Presence | 1 | - |
Helicopter flight | Annual days of flights | dayMax | [(day/dayMax) + 1]/2 × 1/(YY − year) |
Year | YY = yearMax + 1 | ||
Presence | 1 | ||
Worksites | Presence | 1 | [1 + (day/dayMax)]/2 × 1/(YY − year) |
Day of stay | dayMax | ||
Year | YY = yearMax + 1 | ||
Derivation and discharge | Presence | 1 | - |
Hydroelectric power plants | Presence | 1 | - |
Built-up areas | Density (from 0% to 100%) | D/100 | (D + 1)/2 |
Presence | 1 | ||
Road traffic | Average daily light vehicle traffic (L) | LmaxValue | [T + (L/LmaxValue) + (H/HmaxValue)]/3 |
Average daily heavy vehicle traffic (H) | HmaxValue | ||
Road type (T) | Farm road = 0.25 Neighborhood urban street = 0.5 Local road = 0.75 Suburban road = 2 | ||
Overgrazing | (Livestock Units/Area) × (Days of stay/365) | ValueMax | Value/ValueMax/(YY − year) |
Year | YY = yearMax + 1 | ||
Presence | 1 | ||
Mountain huts | Attendance | Fmax | 1 + (freq/Fmax)/2 |
Bivouacs | Presence | 1 | |
Pathways | Attendance | Fmax | 1 + (freq/Fmax)/2 |
Presence | 1 | ||
Canyoning | Presence | 1 | - |
Climbing, bouldering | Presence | 1 | - |
Equipped cragging | Presence | 1 | - |
Alpinism | Presence | 1 | - |
Mountain bike | Presence | 1 | - |
Alpine and steep ski | Presence | 1 | - |
Skiing facilities | Presence | 1 | - |
Snowshoeing | Presence | 1 | - |
Icefalls climbing | Presence | 1 | - |
Impact | Weight | Motivation |
---|---|---|
Dam | 1 | Persistent impact, impact on watercourse and proxy of constant human presence |
Helicopter flights | 0.5 | Limited impact over time |
Worksites | 0.8 | Impact limited in time but involving high disturbance (noise, material transport, human presence) |
Derivation and discharge | 1 | Impact persistent on watercourse |
Hydroelectric power plants | 1 | Persistent impact, proxy for constant anthropogenic presence |
Built-up areas | 1 | Persistent impact, proxy of constant human presence |
Road traffic | 0.5 | Impact not constant over time, proxy for human presence |
Overgrazing | 0.5 | Impact on wildlife (competition for pasture) and on habitat |
Summer tourism and sports | ||
Mountain huts | 1 | Persistent human disturbance over time in summer |
Bivouacs | 0.2 | Values assigned based on the results of the questionnaire addressed to tourists |
Pathways | 0.5 | |
Canyoning | 0.2 | |
Climbing | 0.2 | |
Bouldering | 0.1 | |
Equipped cragging | 0.2 | |
Alpinism | 0.2 | |
Mountain bike | 0.5 | |
Winter tourism and sports | ||
Snowshoeing | 0.2 | Values assigned based on the results of the questionnaire addressed to tourists |
Icefall climbing | 0.2 | |
Alpine and steep skiing | 0.2 | |
Ski facilities | 0.2 | |
Mountain huts | 0.2 | Occasional human disturbance in winter |
Bivouacs | 0 | Negligible human disturbance in winter |
Risk Class | Area (ha) | Percentage (%) |
---|---|---|
None | 24,489 | 35 |
Low | 44,573 | 63 |
Low to moderate | 1136 | 1.6 |
Moderate | 282 | 0.4 |
Moderate to high | 49 | 0.07 |
High | 47 | 0.07 |
High to very high | 35 | 0.05 |
Very high | 13 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richiardi, C.; Minciardi, M.R.; Siniscalco, C.; Adamo, M. Cumulative Spatial and Temporal Analysis of Anthropogenic Impacts in the Protected Area of the Gran Paradiso National Park in the NW Alps, Italy. Land 2023, 12, 1124. https://doi.org/10.3390/land12061124
Richiardi C, Minciardi MR, Siniscalco C, Adamo M. Cumulative Spatial and Temporal Analysis of Anthropogenic Impacts in the Protected Area of the Gran Paradiso National Park in the NW Alps, Italy. Land. 2023; 12(6):1124. https://doi.org/10.3390/land12061124
Chicago/Turabian StyleRichiardi, Chiara, Maria Rita Minciardi, Consolata Siniscalco, and Maria Adamo. 2023. "Cumulative Spatial and Temporal Analysis of Anthropogenic Impacts in the Protected Area of the Gran Paradiso National Park in the NW Alps, Italy" Land 12, no. 6: 1124. https://doi.org/10.3390/land12061124
APA StyleRichiardi, C., Minciardi, M. R., Siniscalco, C., & Adamo, M. (2023). Cumulative Spatial and Temporal Analysis of Anthropogenic Impacts in the Protected Area of the Gran Paradiso National Park in the NW Alps, Italy. Land, 12(6), 1124. https://doi.org/10.3390/land12061124