Spatial Differentiation and Driving Mechanisms of Ecosystem Service Value Change in Rural Land Consolidation: Evidence from Hubei, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Effects of RLCPs on ESV
2.2. Study Area
2.3. Research Methods
2.3.1. Indices of Land Use Structure
2.3.2. ESV Calculation
2.3.3. Spatial Autocorrelation
2.3.4. Geographic Detector and Geographically Weighted Regression Model
2.4. Data Source
3. Results
3.1. Characteristics of Land Use Change
3.2. Spatial Differentiation of ESV Change
3.2.1. Spatial Distribution Characteristics of ESV Change
3.2.2. Spatial Agglomeration Characteristics of ESV Change
3.3. Driving Mechanism of ESV Change
3.3.1. Driving Factors Selection
3.3.2. Geographical Detector Results
3.3.3. GWR Results
Spatial Differentiation of the Dominant Factor Affecting the Amount of ESV Increase
Spatial Differentiation of the Leading Factor Affecting the Rate of ESV Increase
4. Discussion
4.1. Strengthening Research on ESV Change under the Background of RLCP
4.2. Implementing Differentiated RLCPs Policy
5. Conclusions
- (1)
- Although RLCPs make the unevenness of land use obvious, they evidently reduce the complexity of land use and significantly improve the dominance of land use. After RLCPs, the land use diversification index, land use diversity index, and land use dominance index of each county decreased, while the land use dominance index increased. This also indicates that RLCPs can improve ecosystem complexity and stability, and ultimately improve ESV;
- (2)
- The ESV of the RLCPs areas in 71 counties of Hubei Province increased, with an average increase of USD 2.37 × 107 a−1. The amount of ESV increase is large in central Hubei, while small in eastern and western Hubei. The rate of ESV increase is high in eastern and central-northern Hubei, while low in western and central-southern Hubei. This implies that RLCPs can improve ESV, but the improvement effect has significant regional differences;
- (3)
- The amount of ESV increase is positively corrected with GDP and construction scale, but is negatively correlated with investment scale and per capita income of rural residents. The rate of ESV increase is negatively correlated with the proportion of cultivated land and the change in the land use diversification index, but positively correlated with the change in the land use evenness index. However, their driving effects have significant spatial heterogeneity. Therefore, governments should carry out differentiated RLCPs according to regional natural geographical conditions and socioeconomic development levels in order to protect the ecological environment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Zheng, H.; Chen, Y.; Ouyang, Z.; Hu, X. Systematic review of ecosystem services flow measurement: Main concepts, methods, applications and future directions. Ecosyst. Serv. 2022, 58, 101479. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystem; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Van Den Belt, M. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Filho, L.M.; Roebeling, P.; Villasante, S.; Bastos, M.I. Ecosystem services values and changes across the Atlantic coastal zone: Considerations and implications. Mar. Policy 2022, 145, 105265. [Google Scholar] [CrossRef]
- He, Z.; Shang, X.; Zhang, T.; Yun, J. Coupled regulatory mechanisms and synergy/trade-off strategies of human activity and climate change on ecosystem service value in the loess hilly fragile region of northern Shaanxi, China. Ecol. Indic. 2022, 143, 109325. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Estimating the total ecosystem services value of Eastern Afromontane Biodiversity Hotspots in response to landscape dynamics. Environ. Sustain. Indic. 2022, 14, 100178. [Google Scholar] [CrossRef]
- Braun, D.; de Jong, R.; Schaepman, M.E.; Furrer, R.; Hein, L.; Kienast, F.; Damm, A. Ecosystem service change caused by climatological and non-climatological drivers: A Swiss Case Study. Ecol. Appl. 2019, 29, e01901. [Google Scholar] [CrossRef]
- Scheiter, S.; Schulte, J.; Pfeiffer, M.; Martens, C.; Erasmus, B.; Twine, W. How does climate change influence the economic value of ecosystem services in Savanna Rangelands? Ecol. Econ. 2019, 157, 342–356. [Google Scholar] [CrossRef]
- Zhang, R.; Li, P.; Xu, L.; Zhong, S.; Wei, H. An integrated accounting system of quantity, quality and value for assessing cultivated land resource assets: A case study in Xinjiang, China. Glob. Ecol. Conserv. 2022, 36, e02115. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhou, L.; Wang, T. Assessment of ecosystem services value in Linghekou wetland based on landscape change. Environ. Sustain. Indic. 2022, 15, 100195. [Google Scholar] [CrossRef]
- Long, X.; Lin, H.; An, X.; Chen, S.; Qi, S.; Zhang, M. Evaluation and analysis of ecosystem service value based on land use/cover change in Dongting Lake wetland. Ecol. Indic. 2022, 136, 108619. [Google Scholar] [CrossRef]
- Gu, X.; Long, A.; Liu, G.; Yu, J.; Wang, H.; Yang, Y.; Zhang, P. Changes in ecosystem service value in the 1 km lakeshore zone of Poyang Lake from 1980 to 2020. Land 2021, 10, 951. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, H.; Huang, B.; Ji, Y.; Peng, S.; Zhou, T. Are productivity and biodiversity adequate predictors for rapid assessment of forest ecosystem services values? Ecosyst. Serv. 2022, 57, 101466. [Google Scholar] [CrossRef]
- Dominati, E.J.; Mackay, A.; Lynch, B.; Heath, N.; Millner, I. An ecosystem services approach to the quantification of shallow mass movement erosion and the value of soil conservation practices. Ecosyst. Serv. 2014, 9, 204–215. [Google Scholar] [CrossRef]
- Chen, H.; Costanza, R.; Kubiszewski, I. Legitimacy and limitations of valuing the oxygen production of ecosystems. Ecosyst. Serv. 2022, 58, 101–485. [Google Scholar] [CrossRef]
- Bruijnzeel, L. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Jiang, W.; Gao, G.; Wu, X.; Lv, Y. Assessing temporal trade-offs of ecosystem services by production pssibility frontiers. Remote Sens. 2023, 15, 749. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, B.; Liu, M.; Li, Y.; Chen, D. A study on the gains and losses of the ecosystem service value of the land consolidation projects of different properties in Hubei Province: An empirical comparison based on plains, mountains and hills. Land 2022, 11, 1015. [Google Scholar] [CrossRef]
- Zhen, H.; Gao, W.; Yuan, K.; Ju, X.; Qiao, Y. Internalizing externalities through net ecosystem service analysis: A case study of greenhouse vegetable farms in Beijing. Ecosyst. Serv. 2021, 50, 101323. [Google Scholar] [CrossRef]
- Li, J.; Dong, S.; Li, Y.; Wang, Y.; Li, Z.; Li, F. Effects of land use change on ecosystem services in the China–Mongolia–Russia economic corridor. J. Clean. Prod. 2022, 360, 132175. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, D.; Song, J.; Guo, J.; You, X.; Jiang, Y. Impacts of land use changes on ecosystem services at different elevations in an ecological function area, northern China. Ecol. Indic. 2022, 140, 109003. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Leń, P.; Sobolewska-Mikulska, K. The proposed algorithm for identifying agricultural problem areas for the needs of their reasonable management under land consolidation works. Comput. Electron. Agric. 2018, 152, 333–339. [Google Scholar] [CrossRef]
- Hu, X.; Su, K.; Chen, W.; Yao, S.; Zhang, L. Examining the impact of land consolidation titling policy on farmers’ fertiliser use: Evidence from a quasi-natural experiment in China. Land Use Policy 2021, 109, 105645. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J.; Zhang, X.; Ying, L. Effects of agricultural land consolidation on ecosystem services: Trade-offs and synergies. J. Clean. Prod. 2020, 264, 121412. [Google Scholar] [CrossRef]
- Guo, B.; Fang, Y.; Jin, X. Monitoring the effects of land consolidation on the ecological environmental quality based on remote sensing: A case study of Chaohu Lake Basin, China. Land Use Policy 2020, 95, 104569. [Google Scholar] [CrossRef]
- Shi, Y.; Cao, X.; Fu, D.; Wang, Y. Comprehensive value discovery of land consolidation projects: An empirical analysis of Shanghai, China. Sustainability 2018, 10, 2039. [Google Scholar] [CrossRef]
- Stręk, Ż.; Noga, K. Method of delimiting the spatial structure of villages for the purposes of land consolidation and exchange. Remote Sens. 2019, 11, 1268. [Google Scholar] [CrossRef]
- Yin, Q.; Sui, X.; Ye, B.; Zhou, Y.; Li, C.; Zou, M.; Zhou, S. What role does land consolidation play in the multi-dimensional rural revitalization in China? A research synthesis. Land Use Policy 2022, 120, 106261. [Google Scholar] [CrossRef]
- Tran, D.; Vu, T.H.; Goto, D. Agricultural land consolidation, labor allocation and land productivity: A case study of plot exchange policy in Vietnam. Econ. Anal. Policy 2022, 73, 455–473. [Google Scholar] [CrossRef]
- Yu, G.; Feng, J.; Che, Y.; Lin, X.; Hu, L.; Yang, S. The identification and assessment of ecological risks for land consolidation based on the anticipation of ecosystem stabilization: A case study in Hubei Province, China. Land Use Policy 2010, 27, 293–303. [Google Scholar] [CrossRef]
- Janus, J.; Ertunç, E. Impact of land consolidation on agricultural decarbonization: Estimation of changes in carbon dioxide emissions due to farm transport. Sci. Total Environ. 2023, 873, 162391. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Jin, X.B.; Ren, J.; Wang, Y.C.; Xu, Z.G.; Fan, Y.T.; Gu, Z.M.; Hong, C.Q.; Lin, J.H.; Zhou, Y.K. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- Feng, W.L.; Li, Y.R. Measuring the ecological safety effects of land use transitions promoted by land consolidation projects: The case of Yan’an city on the Loess Plateau of China. Land 2021, 10, 783. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, L.; Zhang, B. Soil erosion and its basic characteristics at karst rocky-desertified land consolidation area: A case study at Muzhe Village of Xichou County in Southeast Yunnan, China. J. Mt. Sci. 2010, 7, 55–72. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J.; Zhang, X.; Ying, L.; Zhu, C. Effects of agricultural land consolidation on soil conservation service in the Hilly Region of Southeast China: Implications for land management. Land Use Policy 2020, 95, 104637. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, C.; Yue, W.; Ye, Y. Evaluation of ecological effect and landscape pattern in land consolidation project. Acta Ecol. Sin. 2008, 5, 2261–2269. [Google Scholar]
- Zhou, X.; Feng, Y.; Luo, W.; Jia, W.; Yang, J.; Li, H. Comparing two ecosystem service evaluation methods of the ecological benefits from a land consolidation project at a township level: A case study in Sanxing Town, Jintang County of Sichuan Province. Acta Ecol. Sin. 2020, 40, 1799–1809. [Google Scholar]
- Wang, K.; Shi, H.; Zhou, W.; Zheng, F.; Sun, H. Study on the relationship between land use structure change and ecological services value in the arid inland basin area: A case study of Jiuquan, China. Pop. Res. Environ. 2011, 21, 124–128. [Google Scholar]
- Kuchma, T.; Tarariko, O.; Syrotenko, O. Landscape diversity indexes application for agricultural land use optimization. Procedia Tech. 2013, 8, 566–569. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge-based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 3, 911–919. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Li, J.; Huang, L.; Cao, W. An influencing mechanism for ecological asset gains and losses and its optimization and promotion pathways in China. J. Geogr. Sci. 2022, 32, 1867–1885. [Google Scholar] [CrossRef]
- Li, L.; Tang, H.; Lei, J.; Song, X. Spatial autocorrelation in land use type and ecosystem service value in Hainan Tropical Rain Forest National Park. Ecol. Indic. 2022, 137, 108727. [Google Scholar] [CrossRef]
- Ren, H.; Shang, Y.; Zhang, S. Measuring the spatiotemporal variations of vegetation net primary productivity in Inner Mongolia using spatial autocorrelation. Ecol. Indic. 2020, 112, 106108. [Google Scholar] [CrossRef]
- Peng, W.; Fan, Z.; Duan, J.; Gao, W.; Wang, R.; Liu, N.; Li, Y.; Hua, S. Assessment of interactions between influencing factors on city shrinkage based on geographical detector: A case study in Kitakyushu, Japan. Cities 2022, 131, 103958. [Google Scholar] [CrossRef]
- Shi, S.; Wang, X.; Hu, Z.; Zhao, X.; Zhang, S.; Hou, M.; Zhang, N. Geographic detector-based quantitative assessment enhances attribution analysis of climate and topography factors to vegetation variation for spatial heterogeneity and coupling. Glob. Ecol. Conserv. 2023, 42, e02398. [Google Scholar] [CrossRef]
- Gao, F.; Yang, L.; Han, C.; Tang, J.; Li, Z. A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership. J. Transp. Geogr. 2022, 105, 103472. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.; Brunsdon, C. The geography of parameter space: An investigation of spatial non-stationarity. Int. J. Geogr. Inf. Sci. 1996, 10, 605–627. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, M. Spatial differentiation and driving mechanism of agricultural multi-functions in economically developed areas: A case study of Jiangsu Province, China. Land 2022, 11, 1728. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T.; Zhao, W.; Wang, S.; Fu, B. Landscape functional zoning at a county level based on ecosystem services bundle: Methods comparison and management indication. J. Environ. Manag. 2019, 249, 109315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Su, Y.; Yang, G.; Chen, D.; Yang, R. Spatial-temporal characteristics of cultivated land use efficiency in major function-oriented zones: A case study of Zhejiang Province, China. Land 2020, 9, 114. [Google Scholar] [CrossRef]
Cultivated Land | Garden Land | Forest Land | Water | Ditch | Grassland | Rural Roads | Other Lands | Construction Land | |
---|---|---|---|---|---|---|---|---|---|
Before consolidation/hm2 | 366,944 | 14,949 | 2624 | 28,966 | 14,957 | 4709 | 10,273 | 16,894 | 871 |
After consolidation/hm2 | 374,371 | 14,786 | 1587 | 27,471 | 14,933 | 1719 | 11,431 | 13,968 | 659 |
Area change/hm2 | 7427 | −163 | −1037 | −1495 | −24 | −2990 | 1158 | −2925 | −211 |
Range change/% | 2.02 | −1.09 | −39.52 | −5.16 | −0.16 | −63.50 | 11.27 | −17.32 | −24.26 |
Driving Factors | Factors Definition/Unit | Code | |
---|---|---|---|
Natural factors | Cultivated land area | Cultivated land area (hm2) | X1 |
Cultivated land proportion | Cultivated land area/Total land area (%) | X2 | |
Per capita cultivated land area | Cultivated land area/Total population (hm2·person−1) | X3 | |
Economic factors | GDP | GDP (USD 100 million) | X4 |
Per capita GDP | Total GDP/Total population (USD·person−1) | X5 | |
Average investment in fixed assets | Social fixed assets investment/Total land area (104 USD·km−2) | X6 | |
Social factors | Per capita income of rural residents | Per capita net income of rural residents (USD) | X7 |
Population density | Total population/Total land area (person·km−2) | X8 | |
Urbanization rate | Non-agricultural population/Total population (%) | X9 | |
Policy factors | Investment scale | Total investment scale of RLCPs (104 USD) | X10 |
Construction scale | Total construction scale of RLCPs (hm2) | X11 | |
Land use change factors | LDI variation | LDI before RLCP-LDI after RLCP | X12 |
LAI variation | LAI before RLCP-LAI after RLCP | X13 | |
LEI variation | LEI before RLCP-LEI after RLCP | X14 |
Increase Amount | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q value | 0.11 | 0.14 | 0.01 | 0.16 | 0.11 | 0.09 | 0.17 | 0.10 | 0.06 | 0.27 | 0.57 | 0.03 | 0.03 | 0.03 |
sig. | 0.14 | 0.05 | 0.86 | 0.04 | 0.12 | 0.22 | 0.01 | 0.16 | 0.30 | 0.00 | 0.00 | 0.60 | 0.63 | 0.53 |
Increase Rate | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 |
q value | 0.01 | 0.24 | 0.12 | 0.10 | 0.05 | 0.09 | 0.12 | 0.08 | 0.07 | 0.02 | 0.07 | 0.13 | 0.24 | 0.28 |
sig. | 0.99 | 0.03 | 0.25 | 0.83 | 0.83 | 0.99 | 0.23 | 0.74 | 0.38 | 0.81 | 0.89 | 0.13 | 0.01 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, C.; Sun, X.; Zhang, X.; Liao, D.; Hou, J.; Jin, Y.; Wen, G.; Jiang, B. Spatial Differentiation and Driving Mechanisms of Ecosystem Service Value Change in Rural Land Consolidation: Evidence from Hubei, China. Land 2023, 12, 1162. https://doi.org/10.3390/land12061162
Liu M, Zhang C, Sun X, Zhang X, Liao D, Hou J, Jin Y, Wen G, Jiang B. Spatial Differentiation and Driving Mechanisms of Ecosystem Service Value Change in Rural Land Consolidation: Evidence from Hubei, China. Land. 2023; 12(6):1162. https://doi.org/10.3390/land12061162
Chicago/Turabian StyleLiu, Mingqing, Chaozheng Zhang, Xiaoyu Sun, Xupeng Zhang, Dongming Liao, Jiao Hou, Yaya Jin, Gaohui Wen, and Bin Jiang. 2023. "Spatial Differentiation and Driving Mechanisms of Ecosystem Service Value Change in Rural Land Consolidation: Evidence from Hubei, China" Land 12, no. 6: 1162. https://doi.org/10.3390/land12061162
APA StyleLiu, M., Zhang, C., Sun, X., Zhang, X., Liao, D., Hou, J., Jin, Y., Wen, G., & Jiang, B. (2023). Spatial Differentiation and Driving Mechanisms of Ecosystem Service Value Change in Rural Land Consolidation: Evidence from Hubei, China. Land, 12(6), 1162. https://doi.org/10.3390/land12061162