Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area and Data Source
2.2. Methodologies
2.2.1. Criteria for Risk Components Mapping
- (1)
- Exposure
- (2)
- Hazard
- (3)
- Vulnerability
- (4)
- Mitigation Capacity
2.2.2. Assigning Weight Using Fuzzy Membership Function
2.2.3. Risk Assessment
2.2.4. Efficiency Test
3. Results
3.1. Risk Components Mapping
- (1)
- Exposure mapping
- (2)
- Hazard mapping
- (3)
- Vulnerability mapping
- (4)
- Mitigation capacity mapping
3.2. Comprehensive Drought Risk Mapping
3.3. Outcome of the Efficiency Test
4. Discussion
4.1. The Spatial Pattern of Drought Risks
4.2. Accuracy Verification of the Model
4.3. Policy Suggestions
4.4. Limitations and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Temporal Hydrological Drought Index Forecasting for New South Wales, Australia Using Machine Learning Approaches. Atmosphere 2020, 11, 585. [Google Scholar] [CrossRef]
- Pandey, R.P.; Pandey, A.; Galkate, R.V.; Byun, H.-R.; Mal, B.C. Integrating Hydro-Meteorological and Physiographic Factors for Assessment of Vulnerability to Drought. Water Resour. Manag. 2010, 24, 4199–4217. [Google Scholar] [CrossRef]
- Park, J.; Baik, J.; Choi, M.; Jeong, J.; Sur, C. Hydrological severity assessment of extreme climate conditions. Int. J. Climatol. 2019, 39, 2725–2736. [Google Scholar] [CrossRef]
- Pei, W.; Fu, Q.; Liu, D.; Li, T.-x.; Cheng, K.; Cui, S. Spatiotemporal analysis of the agricultural drought risk in Heilongjiang Province, China. Theor. Appl. Climatol. 2018, 133, 151–164. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Li, F.; Li, H.; Lu, W.; Zhang, G.; Kim, J.-C. Meteorological Drought Monitoring in Northeastern China Using Multiple Indices. Water 2019, 11, 72. [Google Scholar] [CrossRef] [Green Version]
- Thomas, T.; Jaiswal, R.K.; Galkate, R.; Nayak, P.C.; Ghosh, N.C. Drought indicators-based integrated assessment of drought vulnerability: A case study of Bundelkhand droughts in central India. Nat. Hazard. 2016, 81, 1627–1652. [Google Scholar] [CrossRef]
- Jiao, W.; Tian, C.; Chang, Q.; Novick, K.A.; Wang, L. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 2019, 268, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Guo, P.; Tan, Q.; Xin, J.; Li, Y.; Tang, Y. Drought risk evaluation model with interval number ranking and its application. Sci. Total Environ. 2019, 685, 1042–1057. [Google Scholar] [CrossRef] [PubMed]
- Murthy, C.S.; Laxman, B.; Sai, M.V.R.S. Geospatial analysis of agricultural drought vulnerability using a composite index based on exposure, sensitivity and adaptive capacity. Int. J. Disaster Risk Reduct. 2015, 12, 163–171. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 2009, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Qian, H.; Chen, J.; Huo, C. Assessment of Agricultural Drought Vulnerability in the Guanzhong Plain, China. Water Resour. Manag. 2017, 31, 1557–1574. [Google Scholar] [CrossRef]
- Nasrollahi, M.; Khosravi, H.; Moghaddamnia, A.; Malekian, A.; Shahid, S. Assessment of drought risk index using drought hazard and vulnerability indices. Arab. J. Geosci. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Zeng, Z.; Wu, W.; Li, Z.; Zhou, Y.; Guo, Y.; Huang, H. Agricultural Drought Risk Assessment in Southwest China. Water 2019, 11, 1064. [Google Scholar] [CrossRef] [Green Version]
- Guttman, N.B. Comparing the Palmer Drought Index and the Standardized Precipitation Index. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Safwan, M.; Karam, A.; Enaruvbe, G.O.; Bashar, B.; Ahmed, E.; Adrienn, S.; Abdullah, A.; Endre, H. Assessing the impacts of agricultural drought (SPI/SPEI) on maize and wheat yields across Hungary. Sci. Rep. 2022, 12, 8838. [Google Scholar]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Ionita, M.; Scholz, P.; Chelcea, S. Assessment of droughts in Romania using the Standardized Precipitation Index. Nat. Hazard. 2016, 81, 1483–1498. [Google Scholar] [CrossRef] [Green Version]
- Sein, Z.M.M.; Zhi, X.F.; Katchele, O.F.; Kwesi, N.I.; Kenny, T.C.L.K.S.; Tchalim, G.G. Spatio-Temporal Analysis of Drought Variability in Myanmar Based on the Standardized Precipitation Evapotranspiration Index (SPEI) and Its Impact on Crop Production. Agronomy 2021, 11, 1691. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Garrote, L.; Iglesias, A.; Vogt, J. Exploring drought vulnerability in Africa: An indicator based analysis to be used in early warning systems. Hydrol. Earth Syst. Sci. 2014, 18, 1591–1604. [Google Scholar] [CrossRef] [Green Version]
- Lina, E.; Jonathan, S. Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan. Nat. Hazard. 2015, 76, 421–441. [Google Scholar]
- Huang, S.; Huang, Q.; Chang, J.; Leng, G. Linkages between hydrological drought, climate indices and human activities: A case study in the Columbia River basin. Int. J. Climatol. 2016, 36, 280–290. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, P.; Zhao, X.; Wang, Y.; Gao, X.; Cao, X. A drought hazard assessment index based on the VIC–PDSI model and its application on the Loess Plateau, China. Theor. Appl. Climatol. 2013, 114, 125–138. [Google Scholar] [CrossRef]
- Safavi, H.R.; Esfahani, M.K.; Zamani, A.R. Integrated Index for Assessment of Vulnerability to Drought, Case Study: Zayandehrood River Basin, Iran. Water Resour. Manag. 2014, 28, 1671–1688. [Google Scholar] [CrossRef]
- Kamali, B.; Kouchi, D.H.; Yang, H.; Abbaspour, K.C. Multilevel Drought Hazard Assessment under Climate Change Scenarios in Semi-Arid Regions-A Case Study of the Karkheh River Basin in Iran. Water 2017, 9, 241. [Google Scholar] [CrossRef]
- Kwon, M.; Sung, J.H. Changes in Future Drought with HadGEM2-AO Projections. Water 2019, 11, 312. [Google Scholar] [CrossRef] [Green Version]
- Moumita, P.; Sujata, B. Application of AHP with GIS in drought risk assessment for Puruliya district, India. Nat. Hazard. 2016, 84, 1905–1920. [Google Scholar]
- He, B.; Wang, J.Q.; Wu, D.; Su, L.J.; Shan, Y.Y. Agricultural drought risk assessment in Shaanxi province using principal component analysis and AHP. Agric. Res. Arid Areas 2017, 35, 219–227. [Google Scholar]
- Ali, M.; Deo, R.C.; Downs, N.J.; Maraseni, T. Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting. Comput. Electron. Agric. 2018, 152, 149–165. [Google Scholar] [CrossRef]
- Prasad, R.; Deo, R.C.; Li, Y.; Maraseni, T. Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm. Atmos. Res. 2017, 197, 42–63. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, L.; Xu, D.; Zhang, S. Risk assessment of flood and drought in major grain-producing areas based on information diffusion theory. Trans. Chin. Soc. Agric. Eng. 2010, 26, 1–7. [Google Scholar]
- Shan, Q.; Liu, B.C.; Liu, Y.; Yang, X.J.; Le, Y.Z.; Wang, J. Analysis on drought risk of maize based on natural disaster system theory in Liaoning province. J. Geol. Hazards Environ. Preserv. 2012, 28, 186–194. [Google Scholar]
- Li, L.Y. The advances on application of artificial neural network to environmental disasters prediction. J. Geol. Hazards Environ. Preserv. 2010, 21, 8–11. [Google Scholar]
- Ekrami, M.; Marj, A.F.; Barkhordari, J.; Dashtakian, K. Drought vulnerability mapping using AHP method in arid and semiarid areas: A case study for Taft Township, Yazd Province, Iran. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Wijitkosum, S. Fuzzy AHP for drought risk assessment in Lam Ta Kong watershed, the north—Eastern region of Thailand. Soil Water Res. 2018, 14, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.M.; Fitts, G.; Kelly, M.; Dale, L. A fuzzy logic-based spatial suitability model for drought-tolerant switchgrass in the United States. Comput. Electron. Agric. 2014, 103, 39–47. [Google Scholar] [CrossRef]
- Deo, R.C.; Tiwari, M.K.; Adamowski, J.F.; Quilty, J.M. Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stoch. Environ. Res. Risk Assess. 2017, 31, 1211–1240. [Google Scholar] [CrossRef]
- Deo, R.C.; Byun, H.-R.; Adamowski, J.F.; Begum, K. Application of effective drought index for quantification of meteorological drought events: A case study in Australia. Theor. Appl. Climatol. 2017, 128, 359–379. [Google Scholar] [CrossRef]
- Li, X.H.; Yang, Y.; Yang, H.W. Combining BP Neural Network with Gray Model to Achieve Drought Predicting. J. Shenyang Agric. Univ. 2014, 45, 253–256. [Google Scholar]
- Ma, M.M.; Zhang, X.J.; Su, Z.C. Research review and perspective of drought forecasting. China Flood Drought Manag. 2021, 31, 58–63. [Google Scholar]
- Song, S.; Cai, H. Artificial neural network model for assessing the sustainable utilization of regional water resources. Trans. Chin. Soc. Agric. Eng. 2004, 20, 89–92. [Google Scholar]
- Yang, Q.; Yang, J.; Yao, R.; Huang, B.; Sun, W. Comprehensive evaluation of soil fertility by GIS and improved grey relation model. Trans. Chin. Soc. Agric. Eng. 2010, 26, 100–105. [Google Scholar]
- Dayal, K.S.; Deo, R.C.; Apan, A.A. Spatio-temporal drought risk mapping approach and its application in the drought-prone region of south-east Queensland, Australia. Nat. Hazard. 2018, 93, 823–847. [Google Scholar] [CrossRef]
- Pei, W.; Fu, Q.; Liu, D.; Li, T.; Cheng, K.; Cui, S. A Novel Method for Agricultural Drought Risk Assessment. Water Resour. Manag. 2019, 33, 2033–2047. [Google Scholar] [CrossRef]
- Al-Abadi, A.M.; Shahid, S.; Ghalib, H.B.; Handhal, A.M. A GIS-Based Integrated Fuzzy Logic and Analytic Hierarchy Process Model for Assessing Water-Harvesting Zones in Northeastern Maysan Governorate, Iraq. Arab. J. Sci. Eng. 2017, 42, 2487–2499. [Google Scholar] [CrossRef]
- Weng, B.S.; Yan, D.H. Integrated strategies for dealing with droughts in changing environment in China. Resour. Sci. 2010, 32, 309–316. [Google Scholar]
- Feng, P.; Wang, B.; Liu, D.L.; Yu, Q. Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agric. Syst. 2019, 173, 303–316. [Google Scholar] [CrossRef]
- Zhou, W.Z.; Liu, G.H.; Pan, J.J. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Al-Amin, H.M.; Biswajeet, P.; Naser, A.; Islam, S.M.S. Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques. Sci. Total Environ. 2021, 756, 143600. [Google Scholar]
- Hoque, M.A.-A.; Pradhan, B.; Ahmed, N.; Roy, S. Tropical cyclone risk assessment using geospatial techniques for the eastern coastal region of Bangladesh. Sci. Total Environ. 2019, 692, 10–22. [Google Scholar] [CrossRef] [PubMed]
- GB/T 20481-2017; Grades of Meteorological Drought. General Administration of Quality Supervision, Inspection and Quarantine of the People Republic of China, China National Standardization Administration Committee: Beijing, China, 2017.
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Long Lead Time Drought Forecasting Using Lagged Climate Variables and a Stacked Long Short-term Memory Model. Sci. Total Environ. 2020, 755, 142638. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Xian, T.; Zhao, R.; Xu, Y.; Yang, F.; Sun, M. Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change. Sustainability 2019, 11, 4463. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Pandey, A.C.; Nathawat, M.S.; Kumar, M.; Mahanti, N.C. Drought hazard assessment using geoinformatics over parts of Chotanagpur plateau region, Jharkhand, India. Nat. Hazard. 2012, 63, 279–303. [Google Scholar] [CrossRef]
- Jia, J.Y.; Han, L.Y.; Wan, X.; Liu, W.J. Risk and Regionalization of Drought for Winter Wheat in Gansu Province. Arid Zone Res. 2019, 36, 1478–1486. [Google Scholar]
- Zadeh, L.A. Fuzzy Algorithms. Inf. Control. 1968, 12, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Zhang, M.D.; Ding, Y.L.; Zeng, H.W.; Wang, W.; Liu, F. Fuzzy logic approach for eegional landslide susceptibility analysis constrained by spatial characteristics of environmental factors. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1431–1440. [Google Scholar]
- Keller, C.P. Geographic information systems for geoscientists: Modelling with GIS. Comput. Geosci. 1995, 21, 1110–1112. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Sefry, S.A. Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ. Earth Sci. 2016, 75, 12. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, H.; Li, Y.; Wen, L.; Li, J.; Lu, G.; Li, X. Climate and drought risk regionalisation in China based on probabilistic aridity and drought index. Sci. Total Environ. 2018, 612, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, O.; Falah, F.; Dayal, K.S.; Deo, R.C.; Mohammadi, F.; Biggs, T.; Moghaddam, D.D.; Naghibi, S.A.; Bui, D.T. Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia. Sci. Total Environ. 2020, 699, 134230. [Google Scholar] [CrossRef]
- Baoan, H.; Huifeng, W.; Hairong, H.; Xiaoqin, C.; Fengfeng, K. Dramatic shift in the drivers of ecosystem service trade-offs across an aridity gradient: Evidence from China’s Loess Plateau. Sci. Total Environ. 2022, 858, 159836. [Google Scholar]
- Omondi, J.O.; Chitedze, I.; Kumatso, J. Characterization, Forecasting and Assessment of Agricultural Drought Impacts in the Sudano-Sahelian Climate of Gourma Province in Burkina FASO. Environ. Ecosyst. Sci. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- ZHENG, S.H.; Tan, Z.H.; Zhang, W.B. Drought variation in Songnen Plain and its response to climate change. Chin. J. Agrometeorol. 2015, 36, 640. [Google Scholar]
- Liao, Y.; Zhang, C. Spatio-temporal distribution characteristics and disaster change of drought in China based on meteorological drought composite index. Meteorol. Mon 2017, 43, 1402–1409. [Google Scholar]
- NI, S.H.; WANG, H.L.; LIU, J.N.; GU, Y. Characteristics and Causes of Agricultural Drought Disasters in China. Chin. Agric. Sci. Bull. 2022, 38, 106–111. [Google Scholar]
- Wu, X.R.; Na, X.D.; Zang, S.Y. Application of temperature vegetation dryness index in the estimation of soil moisture of the Songnen Plain. Acta Ecol. Sin. 2019, 39, 4432–4441. [Google Scholar]
- Wang, H.R.; Liu, D.M.; Chen, P.S.; Li, Y.C.; Han, X.; Hao, X.Y. Distribution of maturity types of maize based on accumulated temperature rezone in northeast China. Chin. J. Agric. Resour. Reg. Plan. 2022, 43, 102–112. [Google Scholar]
- Shi, Y.Z.; Li, W.L.; Lu, D.M.; Wang, Z.Q.; Yang, X.J. Spatio-temporal analysis of drought vulnerability on the Loess Plateau of China at town level. Resour. Sci. 2017, 39, 2130–2140. [Google Scholar]
- Wu, X.Y.; Shan, B.Q.; Chen, Y.J. Research progress of land degradation. Guangdong Agric. Sci. 2013, 40, 63–66. [Google Scholar]
- Meza, I.; Siebert, S.; Döll, P.; Kusche, J.; Herbert, C.; Rezaei, E.E.; Nouri, H.; Gerdener, H.; Popat, E.; Frischen, J.; et al. Global-scale drought risk assessment for agricultural systems. Nat. Hazards Earth Syst. Sci. 2020, 20, 695–712. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Zhang, X.; Liu, S. Risk assessment to China’s agricultural drought disaster in county unit. Nat. Hazard. 2012, 61, 785–801. [Google Scholar] [CrossRef]
- Li, R.; Tsunekawa, A.; Tsubo, M. Index-based assessment of agricultural drought in a semi-arid region of Inner Mongolia, China. J. Arid Land 2014, 6, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Belal, A.-A.; El-Ramady, H.R.; Mohamed, E.S.; Saleh, A.M. Drought risk assessment using remote sensing and GIS techniques. Arab. J. Geosci. 2014, 7, 35–53. [Google Scholar] [CrossRef]
- Qi, S.H. Drought monitoring models with remote sensing and Spatio-Temporal characteristics of drought in China. Inst. Remote Sens. Appl. 2004. [Google Scholar]
- Gopinath, G.; Ambili, G.K.; Gregory, S.J.; Anusha, C.K. Drought risk mapping of south-western state in the Indian peninsula—A web based application. J. Environ. Manag. 2015, 161, 453–459. [Google Scholar] [CrossRef]
- Zheng, K.; Chen, H.; Zhang, L.J.; Gao, Y.H. Risk Assessment and Zoning of Agricultural Drought Disaster in Heilongjiang Province. Agric. Sci. Technol. 2011, 12, 588–591. [Google Scholar]
- Hoque, M.A.-A.; Pradhan, B.; Ahmed, N. Assessing drought vulnerability using geospatial techniques in northwestern part of Bangladesh. Sci. Total Environ. 2020, 705, 135957. [Google Scholar] [CrossRef]
- Andrić, J.M.; Lu, D.-G. Fuzzy probabilistic seismic hazard analysis with applications to Kunming city, China. Nat. Hazard. 2017, 89, 1031–1057. [Google Scholar] [CrossRef]
- WANG, Z.W.; Zhai, P.M. Variation of drought over northern China during 1950–2000. J. Geogr. Sci. 2003, 13, 98–105. [Google Scholar]
- Zhao, J.F.; Guo, J.P.; Xu, J.F.; Mao, F.; Yang, X.G.; Zhang, Y.H. Trends of Chinese dry-wet condition based on wetness index. Trans. Chin. Soc. Agric. Eng. 2010, 26, 18–24. [Google Scholar]
Data | Types | Source | Period/Year |
---|---|---|---|
DEM | Raster (30 m) | Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 6 March 2023) | - |
Slope | Raster (30 m) | Extracted from DEM | - |
Population density | Raster (100 m) | Population density spatial distribution data set (https://data.tpdc.ac.cn/zh-hans/, accessed on 26 March 2023) | 2015 |
Land use/cover (LULC) | Raster (30 m) | Google Earth Engine cloud computing platform | 2021 |
Mean annual rainfall, mean annual maximum temperature, mean annual evaporation, mean annual humidity | Raster (30 m) | National meteorological science data center (http://data.cma.cn/, accessed on 20 October 2022) | 2000–2021 |
Soil depth, sand content | Raster (90 m) | Harmonized World Soil Database (HWSD) | 2009 |
Soil moisture | Raster (250 m) | Geographic remote sensing ecological network platform (www.gisrs.cn/, accessed on 28 October 2022) | 2000–2021 |
NDVI, irrigation index | Raster (30 m) | Google Earth Engine cloud computing platform | 2021 |
Lithology | Shapefile | Resource and Environment Science and Data Center (http://www.igsnrr.ac.cn/, accessed on 13 January 2023) | 2000 |
Distance to road, distance to river, river density | Shapefile | National Geomatics Center of China (http://www.ngcc.cn/ngcc/, accessed on 16 January 2023) | 2018 |
Plant available water capacity (PAWC) | Raster (90 m) | Calculation based on HWSD [51] | - |
Water resources utilization | - | Water Resources Bulletin | 2021 |
Fuzzy Membership Function | Criteria | Very High | High | Moderate | Low | Very Low | — |
---|---|---|---|---|---|---|---|
Fuzzy-LARGE | DEM (m) | >600 | 450–600 | 300–450 | 150–300 | <150 | |
Slope (%) | >14 | 10–14 | 6–10 | 2–6 | <2 | ||
LULC | Cropland | Construction Land | Grassland | Forestland | Wetlands | Water | |
Mean maximum temperature (°C) | 13.0–14.3 | 11.9–12.9 | 10.8–11.8 | 9.5–10.7 | 8.3–9.4 | ||
Evaporation (mm) | 658.0–731.7 | 612.2–657.9 | 565.3–612.1 | 512.8–565.2 | 446.8–512.7 | ||
Sand (%) | >80 | 60–80 | 40–60 | 20–40 | <20 | ||
Lithology | a—Granite b—Basalt c—Andesite d—Gneiss | e—Sandstone f—Graywacke g—Arkose h—Siltstone, Mudstone i—Glacial facies | j—Lake facies k—Eolian sandstone l—Marine facies | m—Fluvial facies | n—Weathered layer o—Others | ||
Distance to river (km) | >4 | 3–4 | 2–3 | 1–2 | 0–1 | ||
Distance to road (km) | >4 | 3–4 | 2–3 | 1–2 | 0–1 | ||
Fuzzy-LINEAR | Population density (sq·km) | >4000 | 3000–4000 | 2000–3000 | 1000–2000 | <1000 | |
Weights assigned | 10 | 8 | 6 | 4 | 2 | −100 | |
Fuzzy-SMALL | Mean rainfall (mm) | 406.5–467.3 | 467.4–513.8 | 513.9–555.8 | 555.9–610.1 | 610.2–688.6 | |
Mean humidity (%) | 54.8–59.9 | 60.0–63.8 | 63.9–67.2 | 67.3–70.1 | 70.2–74.4 | ||
NDVI | <0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | >0.8 | ||
Soil depth (m) | 0.02–0.3 | 0.3–0.5 | 0.5–0.7 | 0.7–0.9 | 0.9–0.11 | ||
Soil moisture (%) | <10 | 10–20 | 20–30 | 30–40 | >40 | ||
River density (km/km2) | 0–0.019 | 0.020–0.059 | 0.060–0.103 | 0.104–0.157 | 0.158–0.353 | ||
Irrigation index (%) | 0.01–0.05 | 0.06–0.17 | 0.18–0.35 | 0.36–0.58 | 0.59–1.06 | ||
PAWC (10−2 cm3/cm−3) | <15 | 15–17 | 17–19 | 19–21 | >21 | ||
Weights assigned | 2 | 4 | 6 | 8 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Zhang, S.; Yu, R.; Zhao, Y.; Chen, Y.; Zhang, Y. Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China. Land 2023, 12, 1184. https://doi.org/10.3390/land12061184
Gao F, Zhang S, Yu R, Zhao Y, Chen Y, Zhang Y. Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China. Land. 2023; 12(6):1184. https://doi.org/10.3390/land12061184
Chicago/Turabian StyleGao, Fengjie, Si Zhang, Rui Yu, Yafang Zhao, Yuxin Chen, and Ying Zhang. 2023. "Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China" Land 12, no. 6: 1184. https://doi.org/10.3390/land12061184
APA StyleGao, F., Zhang, S., Yu, R., Zhao, Y., Chen, Y., & Zhang, Y. (2023). Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China. Land, 12(6), 1184. https://doi.org/10.3390/land12061184