Soil Quality Evaluation Based on a Minimum Data Set (MDS)—A Case Study of Tieling County, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Data Sources and Sample Collection
2.3. Soil Quality Evaluation Method
2.3.1. Indicator Selection
2.3.2. Principal Component Analysis (PCA)
2.3.3. Weight Assignment
2.3.4. Indicator Scoring
2.3.5. Developing the Soil Quality Index
2.3.6. Spatial Interpolation Analysis and Quality Classification
3. Results
3.1. Statistical Analysis of Indicators and Establishment of MDS
3.2. Spatial Interpolation Analysis
3.3. Soil Quality Evaluation Based on MDS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karlen, D.L.; Eash, N.S.; Unger, P.W. Soil and Crop Management Effects on Soil Quality Indicators. Am. J. Altern. Agric. 1992, 7, 48–55. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. A Minimum Data Set for Soil Quality Assessment of Wheat and Maize Cropping in the Highlands of Mexico. Soil Tillage Res. 2006, 87, 163–174. [Google Scholar] [CrossRef]
- Wu, C.; Liu, G.; Huang, C.; Liu, Q. Soil Quality Assessment in Yellow River Delta: Establishing a Minimum Data Set and Fuzzy Logic Model. Geoderma 2019, 334, 82–89. [Google Scholar] [CrossRef]
- Jin, H.; Zhong, Y.; Shi, D.; Li, J.; Lou, Y.; Li, Y.; Li, J. Quantifying the Impact of Tillage Measures on the Cultivated-Layer Soil Quality in the Red Soil Hilly Region: Establishing the Thresholds of the Minimum Data Set. Ecol. Indic. 2021, 130, 108013. [Google Scholar] [CrossRef]
- Qi, Y.; Darilek, J.L.; Huang, B.; Zhao, Y.; Sun, W.; Gu, Z. Evaluating Soil Quality Indices in an Agricultural Region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Atalay, I. A New Approach to the Land Capability Classification: Case Study of Turkey. Procedia Environ. Sci. 2016, 32, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Rezaee, L.; Moosavi, A.A.; Davatgar, N.; Sepaskhah, A.R. Soil Quality Indices of Paddy Soils in Guilan Province of Northern Iran: Spatial Variability and Their Influential Parameters. Ecol. Indic. 2020, 117, 106566. [Google Scholar] [CrossRef]
- Zahedifar, M. Assessing Alteration of Soil Quality, Degradation, and Resistance Indices under Different Land Uses through Network and Factor Analysis. Catena 2023, 222, 106807. [Google Scholar] [CrossRef]
- Gabiri, G.; Burghof, S.; Diekkrüger, B.; Leemhuis, C.; Steinbach, S.; Näschen, K. Modeling Spatial Soil Water Dynamics in a Tropical Floodplain, East Africa. Water 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Mikha, M.M.; Jin, V.L.; Johnson, J.M.F.; Lehman, R.M.; Karlen, D.L.; Jabro, J.D. Land Management Effects on Wet Aggregate Stability and Carbon Content. Soil Sci. Soc. Am. J. 2021, 85, 2149–2168. [Google Scholar] [CrossRef]
- Emmet-Booth, J.P.; Forristal, P.D.; Fenton, O.; Ball, B.C.; Holden, N.M. A Review of Visual Soil Evaluation Techniques for Soil Structure. Soil Use Manag. 2016, 32, 623–634. [Google Scholar] [CrossRef]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Soil Quality Response to Long-Term Nutrient and Crop Management on a Semi-Arid Inceptisol. Agric. Ecosyst. Environ. 2007, 118, 130–142. [Google Scholar] [CrossRef]
- Wienhold, B.J.; Karlen, D.L.; Andrews, S.S.; Stott, D.E. Protocol for Indicator Scoring in the Soil Management Assessment Framework (SMAF). Renew. Agric. Food Syst. 2009, 24, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A Comparison of Soil Quality Indexing Methods for Vegetable Production Systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Ashwood, F.; Butt, K.R.; Doick, K.J.; Vanguelova, E.I. Interactive Effects of Composted Green Waste and Earthworm Activity on Tree Growth and Reclaimed Soil Quality: A Mesocosm Experiment. Appl. Soil Ecol. 2017, 119, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-D.; Wang, H.-Y.; Zhou, J.-M.; Xing, L.; Zhu, B.-S.; Zhao, Y.-C.; Chen, X.-Q. Minimum Data Set for Assessing Soil Quality in Farmland of Northeast China. Pedosphere 2013, 23, 564–576. [Google Scholar] [CrossRef]
- Shi, Z.-H.; Chen, L.-D.; Hao, J.-P.; Wang, T.-W.; Cai, C.-F. The Effects of Land Use Change on Environmental Quality in the Red Soil Hilly Region, China: A Case Study in Xianning County. Environ. Monit. Assess. 2009, 150, 295. [Google Scholar] [CrossRef]
- Li, P.; Zhang, T.; Wang, X.; Yu, D. Development of Biological Soil Quality Indicator System for Subtropical China. Soil Tillage Res. 2013, 126, 112–118. [Google Scholar] [CrossRef]
- Rahmanipour, F.; Marzaioli, R.; Bahrami, H.A.; Fereidouni, Z.; Bandarabadi, S.R. Assessment of Soil Quality Indices in Agricultural Lands of Qazvin Province, Iran. Ecol. Indic. 2014, 40, 19–26. [Google Scholar] [CrossRef]
- Volchko, Y.; Norrman, J.; Rosèn, L.; Norberg, T. A Minimum Data Set for Evaluating the Ecological Soil Functions in Remediation Projects. J. Soils Sediments 2014, 14, 1850–1860. [Google Scholar] [CrossRef] [Green Version]
- Lyu, S.; Chen, W. Soil Quality Assessment of Urban Green Space under Long-Term Reclaimed Water Irrigation. Environ. Sci. Pollut. Res. 2016, 23, 4639–4649. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhou, W.; Shen, J.; Li, S.; Ai, C. Soil Quality Assessment of Yellow Clayey Paddy Soils with Different Productivity. Biol. Fertil. Soils 2014, 50, 537–548. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Li, D.; Peng, C. Nitrogen-Fixing Cyanobacteria Have the Potential to Improve Nitrogen Use Efficiency through the Reduction of Ammonia Volatilization in Red Soil Paddy Fields. Soil Tillage Res. 2022, 217, 105274. [Google Scholar] [CrossRef]
- Li, G.; Chen, J.; Sun, Z.; Tan, M. Establishing a Minimum Dataset for Soil Quality Assessment Based on Soil Properties and Land-Use Changes. Acta Ecol. Sin. 2007, 27, 2715–2724. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, H.; Lian, K.; Yu, Z. Comprehensive Evaluation of Cultivated Land Quality at County Scale: A Case Study of Shengzhou, Zhejiang Province, China. Int. J. Environ. Res. Public Health 2020, 17, 1169. [Google Scholar] [CrossRef] [Green Version]
- Lark, R.M.; Rawlins, B.G.; Robinson, D.A.; Lebron, I.; Tye, A.M. Implications of Short-Range Spatial Variation of Soil Bulk Density for Adequate Field-Sampling Protocols: Methodology and Results from Two Contrasting Soils: Bulk Density Sampling. Eur. J. Soil Sci. 2014, 65, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Fan, X. Detection and Analysis of Soil Water Content Based on Experimental Reflectance Spectrum Data. Asia-Pac. J. Chem. Eng. 2020, 15, e2507. [Google Scholar] [CrossRef]
- Bargrizan, S.; Smernik, R.J.; Fitzpatrick, R.W.; Mosley, L.M. The Application of a Spectrophotometric Method to Determine PH in Acidic (PH < 5) Soils. Talanta 2018, 186, 421–426. [Google Scholar] [CrossRef]
- Kremer, R.J.; Hezel, L.F. Soil Quality Improvement under an Ecologically Based Farming System in Northwest Missouri. Renew. Agric. Food Syst. 2013, 28, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, Y.; Wang, G.; Zhang, H.; Yu, R.; Li, N.; Zheng, J.; Yu, Y. Soil Quality Assessment in Farmland of a Rapidly Industrializing Area in the Yangtze Delta, China. Int. J. Environ. Res. Public Health 2022, 19, 12912. [Google Scholar] [CrossRef]
- Mihelič, R.; Pečnik, J.; Glavan, M.; Pintar, M. Impact of Sustainable Land Management Practices on Soil Properties: Example of Organic and Integrated Agricultural Management. Land 2020, 10, 8. [Google Scholar] [CrossRef]
- Wang, D.; Bai, J.; Wang, W.; Zhang, G.; Cui, B.; Liu, X.; Li, X. Comprehensive Assessment of Soil Quality for Different Wetlands in a Chinese Delta. Land Degrad. Dev. 2018, 29, 3783–3794. [Google Scholar] [CrossRef]
- Kazmierczak, R.; Giarola, N.F.B.; Riferte, F.B.; dos Santos, J.B.; Fogaça, A.M.; Carpinelli, S. Selection of Indicators to Discriminate Soil Tillage Systems and to Assess Soil Quality in a Red Latosol. Braz. Arch. Biol. Technol. 2020, 63, e20190489. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Yang, L.; Ren, Y. Assessment of Soil Quality of Croplands in the Corn Belt of Northeast China. Sustainability 2018, 10, 248. [Google Scholar] [CrossRef] [Green Version]
- de Santana, F.B.; de Souza, A.M.; Poppi, R.J. Visible and near Infrared Spectroscopy Coupled to Random Forest to Quantify Some Soil Quality Parameters. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 191, 454–462. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, R.; Li, H.; Zhao, X.; Liu, X. Heavy Metal Pollution and Soil Quality Assessment under Different Land Uses in the Red Soil Region, Southern China. Int. J. Environ. Res. Public Health 2022, 19, 4125. [Google Scholar] [CrossRef]
- Wang, X.; Gong, Z. Assessment and Analysis of Soil Quality Changes after Eleven Years of Reclamation in Subtropical China. Geoderma 1998, 81, 339–355. [Google Scholar] [CrossRef]
- Nesbitt, J.E.; Adl, S.M. Differences in Soil Quality Indicators between Organic and Sustainably Managed Potato Fields in Eastern Canada. Ecol. Indic. 2014, 37, 119–130. [Google Scholar] [CrossRef]
- Xue, Y.-J.; Liu, S.-G.; Hu, Y.-M.; Yang, J.-F. Soil Quality Assessment Using Weighted Fuzzy Association Rules. Pedosphere 2010, 20, 334–341. [Google Scholar] [CrossRef]
- Kaufmann, M.; Tobias, S.; Schulin, R. Quality Evaluation of Restored Soils with a Fuzzy Logic Expert System. Geoderma 2009, 151, 290–302. [Google Scholar] [CrossRef]
- Xu, Y.; An, S.; Chen, Y.; Yuan, C.; Tao, P. Effect of Biomass Improvement Method on Reclaimed Soil of Mining Wasteland. Adv. Civ. Eng. 2022, 2022, 8375918. [Google Scholar] [CrossRef]
- Tang, D.; Yang, J.; Cheng, P. Comprehensive Evaluation of Soil Substrate Improvement Based on the Minimum Data Set Method. Sustainability 2022, 14, 3939. [Google Scholar] [CrossRef]
- Raiesi, F. A Minimum Data Set and Soil Quality Index to Quantify the Effect of Land Use Conversion on Soil Quality and Degradation in Native Rangelands of Upland Arid and Semiarid Regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Napoletano, P.; Colombo, C.; Di Iorio, E.; Memoli, V.; Panico, S.C.; Ruggiero, A.G.; Santorufo, L.; Maisto, G.; De Marco, A. Integrated Approach for Quality Assessment of Technosols in Experimental Mesocosms. Sustainability 2021, 13, 9101. [Google Scholar] [CrossRef]
- Vasu, D.; Tiwari, G.; Sahoo, S.; Dash, B.; Jangir, A.; Sharma, R.P.; Naitam, R.; Tiwary, P.; Karthikeyan, K.; Chandran, P. A Minimum Data Set of Soil Morphological Properties for Quantifying Soil Quality in Coastal Agroecosystems. CATENA 2021, 198, 105042. [Google Scholar] [CrossRef]
- Qian, F.; Lal, R.; Wang, Q. Land Evaluation and Site Assessment for the Basic Farmland Protection in Lingyuan County, Northeast China. J. Clean. Prod. 2021, 314, 128097. [Google Scholar] [CrossRef]
- Della Chiesa, S.; la Cecilia, D.; Genova, G.; Balotti, A.; Thalheimer, M.; Tappeiner, U.; Niedrist, G. Farmers as Data Sources: Cooperative Framework for Mapping Soil Properties for Permanent Crops in South Tyrol (Northern Italy). Geoderma 2019, 342, 93–105. [Google Scholar] [CrossRef]
Indicators | Type of Membership Function | Membership Function Expression | Parameter | Unit | |
---|---|---|---|---|---|
a | b | ||||
TK | Type S | 17.583 | 27.423 | g kg−1 | |
SOM | 13.321 | 43.431 | g kg−1 | ||
SWC | 14.462 | 50.883 | % | ||
CEC | 6.947 | 57.451 | cmol kg−1 | ||
Zn | Type reverse S | 26.186 | 86.979 | mg kg−1 | |
Cu | 19.83 | 43.337 | mg kg−1 | ||
Clay | Type parabola | 7.225 | 16.253 | % | |
pH | 4.345 | 6.946 |
Unit | Minimum | Maximum | Mean | SD | CV | |
---|---|---|---|---|---|---|
ESLT | cm | 0.00 | 150.00 | 38.00 | 53.56 | 1.41 |
Slope | ° | 0.00 | 5.00 | 1.35 | 1.71 | 1.27 |
BD | g cm−3 | 0.95 | 1.58 | 1.25 | 0.11 | 0.09 |
pH | 4.54 | 6.89 | 5.78 | 0.36 | 0.06 | |
SWC | % | 14.65 | 49.67 | 26.35 | 5.08 | 0.19 |
EC | μS cm−1 | 29.58 | 90.18 | 50.85 | 9.59 | 0.19 |
WSSC | % | 0.12 | 0.37 | 0.21 | 0.04 | 0.19 |
Clay | % | 7.93 | 16.28 | 12.15 | 1.44 | 0.12 |
Silt | % | 68.57 | 79.17 | 74.62 | 2.04 | 0.03 |
Sand | % | 7.02 | 19.83 | 13.22 | 2.45 | 0.19 |
SOM | g kg−1 | 13.37 | 39.65 | 21.14 | 3.91 | 0.19 |
TN | g kg−1 | 1.01 | 2.13 | 1.33 | 0.16 | 0.12 |
TC | g kg−1 | 7.92 | 22.40 | 12.31 | 2.28 | 0.19 |
TK | g kg−1 | 17.96 | 27.52 | 24.71 | 1.59 | 0.06 |
TP | g kg−1 | 0.38 | 1.02 | 0.63 | 0.12 | 0.18 |
AvP | mg kg−1 | 7.38 | 99.82 | 34.49 | 10.87 | 0.32 |
AvK | mg kg−1 | 47.30 | 360.07 | 101.73 | 27.03 | 0.27 |
CEC | cmol kg−1 | 7.41 | 55.41 | 15.19 | 5.05 | 0.33 |
Cu | mg kg−1 | 19.96 | 43.46 | 31.11 | 4.21 | 0.14 |
Zn | mg kg−1 | 26.29 | 87.52 | 60.88 | 7.72 | 0.13 |
Pb | mg kg−1 | 9.82 | 48.12 | 23.19 | 4.53 | 0.20 |
Hg | mg kg−1 | 0.01 | 0.22 | 0.09 | 0.04 | 0.46 |
As | mg kg−1 | 1.64 | 15.39 | 9.84 | 2.94 | 0.30 |
Cd | mg kg−1 | 0.02 | 0.22 | 0.06 | 0.02 | 0.33 |
Ni | mg kg−1 | 18.38 | 68.32 | 32.17 | 6.41 | 0.20 |
Cr | mg kg−1 | 46.65 | 279.04 | 90.06 | 26.07 | 0.29 |
Component | Initial Eigenvalues | ||
---|---|---|---|
Total | Percentage of Variance | Accumulation (%) | |
1 | 6.118 | 23.532 | 23.532 |
2 | 4.072 | 15.662 | 39.194 |
3 | 3.589 | 13.805 | 52.999 |
4 | 2.706 | 10.409 | 63.408 |
5 | 1.854 | 7.130 | 70.538 |
6 | 1.186 | 4.560 | 75.098 |
7 | 1.094 | 4.209 | 79.307 |
Indicators | Component | Group | Norm | Included | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||||
TK | −0.756 | −0.214 | 0.336 | −0.098 | −0.255 | 0.073 | 0.099 | 1 | 2.074 | Yes |
Slope | 0.704 | −0.043 | 0.036 | −0.204 | 0.003 | 0.027 | −0.251 | 1 | 1.805 | |
Ni | 0.689 | −0.327 | 0.253 | 0.439 | −0.009 | −0.116 | 0.253 | 1 | 2.064 | |
As | −0.652 | 0.270 | 0.250 | 0.058 | −0.443 | −0.024 | 0.036 | 1 | 1.884 | |
TP | 0.599 | −0.422 | 0.357 | 0.279 | 0.132 | 0.297 | −0.077 | 1 | 1.956 | |
Silt | 0.592 | 0.518 | 0.217 | 0.055 | −0.100 | −0.058 | −0.156 | 1 | 1.881 | |
Cr | 0.591 | −0.364 | 0.209 | 0.459 | 0.013 | −0.152 | 0.349 | 1 | 1.909 | |
Pb | 0.574 | −0.066 | 0.454 | 0.003 | −0.078 | −0.147 | 0.101 | 1 | 1.693 | |
ESLT | 0.548 | −0.067 | 0.138 | −0.297 | −0.024 | −0.015 | −0.294 | 1 | 1.512 | |
Cd | −0.545 | 0.129 | 0.161 | 0.277 | −0.434 | 0.437 | −0.009 | 1 | 1.681 | |
SOM | 0.431 | 0.693 | −0.455 | 0.104 | 0.072 | 0.228 | 0.163 | 2 | 2.026 | Yes |
TC | 0.429 | 0.689 | −0.456 | 0.103 | 0.074 | 0.233 | 0.170 | 2 | 2.019 | |
Sand | −0.315 | −0.676 | −0.407 | 0.315 | 0.062 | −0.005 | 0.113 | 2 | 1.866 | |
TN | 0.497 | 0.671 | −0.320 | −0.062 | 0.150 | 0.285 | 0.203 | 2 | 2.008 | |
AvP | 0.006 | −0.618 | 0.432 | −0.139 | 0.366 | 0.299 | 0.119 | 2 | 1.666 | |
SWC | −0.441 | 0.498 | 0.237 | 0.424 | 0.183 | −0.331 | −0.155 | 6 | 1.794 | Yes |
Cu | 0.031 | 0.044 | 0.739 | 0.390 | −0.249 | 0.211 | 0.118 | 3 | 1.635 | Yes |
Hg | 0.285 | 0.056 | 0.580 | −0.427 | 0.227 | −0.209 | −0.128 | 3 | 1.568 | |
pH | −0.324 | 0.435 | 0.542 | −0.254 | −0.203 | 0.073 | 0.177 | 3 | 1.689 | Yes |
Avk | 0.088 | −0.075 | 0.474 | −0.348 | 0.399 | 0.421 | −0.121 | 6 | 1.345 | |
BD | −0.167 | −0.340 | −0.457 | 0.138 | −0.234 | 0.247 | −0.326 | 6 | 1.341 | |
Clay | −0.300 | 0.420 | 0.388 | −0.615 | 0.036 | 0.090 | 0.028 | 4 | 1.720 | Yes |
Zn | 0.428 | 0.316 | 0.440 | 0.489 | −0.285 | 0.222 | −0.091 | 6 | 1.784 | Yes |
EC | −0.553 | 0.148 | 0.094 | 0.443 | 0.564 | 0.158 | −0.143 | 1 | 1.799 | |
WSSC | −0.553 | 0.148 | 0.094 | 0.443 | 0.564 | 0.158 | −0.143 | 1 | 1.799 | |
CEC | −0.368 | −0.048 | −0.017 | −0.366 | 0.270 | 0.034 | 0.572 | 5 | 1.314 | Yes |
pH | SWC | Clay | SOM | TK | CEC | Cu | Zn | |
---|---|---|---|---|---|---|---|---|
pH | 1.000 | 0.360 | 0.464 | −0.129 | 0.483 | 0.328 | 0.427 | 0.124 |
SWC | 0.360 | 1.000 | 0.187 | −0.003 | 0.244 | 0.169 | 0.238 | 0.115 |
Clay | 0.464 | 0.187 | 1.000 | −0.062 | 0.391 | 0.322 | 0.070 | −0.113 |
SOM | −0.129 | −0.003 | −0.062 | 1.000 | 0.412 | −0.197 | −0.197 | 0.295 |
TK | 0.483 | 0.244 | 0.391 | 0.412 | 1.000 | 0.335 | 0.306 | −0.256 |
CEC | 0.328 | 0.169 | 0.322 | −0.197 | 0.335 | 1.000 | 0.015 | −0.251 |
Cu | 0.427 | 0.238 | 0.070 | −0.197 | 0.306 | 0.015 | 1.000 | 0.470 |
Zn | 0.124 | 0.115 | −0.113 | 0.295 | −0.256 | −0.251 | 0.470 | 1.000 |
Indicator | Common Factor Variance | Weight |
---|---|---|
TK | 0.849 | 0.119 |
Clay | 0.808 | 0.114 |
Zn | 0.858 | 0.121 |
SOM | 0.977 | 0.137 |
SWC | 0.847 | 0.119 |
CEC | 0.526 | 0.074 |
PH | 0.73 | 0.103 |
Cu | 0.809 | 0.114 |
Total | 7.113 | 1 |
SQI | Grade | Area (km2) | Proportion (%) |
---|---|---|---|
0.589–0.677 | I | 141.31 | 17.0 |
0.539–0.589 | II | 245.11 | 28.5 |
0.503–0.539 | III | 224.96 | 26.3 |
0.462–0.503 | IV | 166.49 | 18.6 |
0.395–0.462 | V | 71.48 | 9.6 |
Classification | I | II | III | Ⅳ | V | Total | |
---|---|---|---|---|---|---|---|
Dry land | Area (km2) | 141.31 | 245.11 | 224.96 | 166.49 | 71.48 | 849.43 |
Proportion (%) | 16.64 | 28.86 | 26.48 | 19.60 | 8.41 | 100 | |
Paddy field | Area (km2) | 40.25 | 58.91 | 55.96 | 33.83 | 29.94 | 218.89 |
Proportion (%) | 18.39 | 26.91 | 25.57 | 15.46 | 13.68 | 100 | |
Irrigable land | Area (km2) | 3.16 | 5.59 | 4.44 | 2.08 | 3.10 | 18.38 |
Proportion (%) | 17.22 | 30.40 | 24.18 | 11.32 | 16.88 | 100 | |
Total | Area (km2) | 184.72 | 309.60 | 285.37 | 202.40 | 104.52 | 1086.61 |
Proportion (%) | 17.00 | 28.49 | 26.26 | 18.63 | 9.62 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, F.; Yu, Y.; Dong, X.; Gu, H. Soil Quality Evaluation Based on a Minimum Data Set (MDS)—A Case Study of Tieling County, Northeast China. Land 2023, 12, 1263. https://doi.org/10.3390/land12061263
Qian F, Yu Y, Dong X, Gu H. Soil Quality Evaluation Based on a Minimum Data Set (MDS)—A Case Study of Tieling County, Northeast China. Land. 2023; 12(6):1263. https://doi.org/10.3390/land12061263
Chicago/Turabian StyleQian, Fengkui, Yuanjun Yu, Xiuru Dong, and Hanlong Gu. 2023. "Soil Quality Evaluation Based on a Minimum Data Set (MDS)—A Case Study of Tieling County, Northeast China" Land 12, no. 6: 1263. https://doi.org/10.3390/land12061263
APA StyleQian, F., Yu, Y., Dong, X., & Gu, H. (2023). Soil Quality Evaluation Based on a Minimum Data Set (MDS)—A Case Study of Tieling County, Northeast China. Land, 12(6), 1263. https://doi.org/10.3390/land12061263