Ecological Security Assessment Based on the “Importance–Sensitivity–Connectivity” Index and Pattern Construction: A Case Study of Xiliu Ditch in the Yellow River Basin, China
Abstract
:1. Introduction
2. Study Area and Materials
3. Methodology
3.1. Identify Ecological Sources through Ecological Security Assessment
3.1.1. Ecosystem Service Importance Assessment
- (1)
- Wind and Sand Control Importance
- (2)
- Water Conservation Importance
- (3)
- Soil and Water Conservation Importance
- (4)
- Habitat Quality Importance
3.1.2. Ecological Sensitivity Assessment
3.1.3. Landscape Connectivity Assessment Based on MSPA
3.2. Screening Ecological Corridors
3.2.1. Constructing Resistance Surface
3.2.2. Calculating Potential Corridors
3.2.3. Extracting Important Corridors
4. Results
4.1. Spatial Patterns of Ecological Safety Assessment
4.2. Distribution of Ecological Sources
4.3. Identification of Ecological Corridors and Nodes
4.4. Construction of Ecological Security Pattern
5. Discussion
5.1. Rationality of Ecological Security Assessment
5.2. Suggestions for Optimizing the Ecological Security Pattern
5.3. Limitations of the Study and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Zhang, T.; Cao, X.S.; Zhang, Q.Q. Establishing and Optimizing the Ecological Security Pattern in Shaanxi Province (China) for Ecological Restoration of Land Space. Forests 2022, 13, 766. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Yi, S.Q. An integrated approach to constructing ecological security patterns and identifying ecological restoration and protection areas: A case study of Jingmen, China. Ecol. Indic. 2022, 137, 13. [Google Scholar] [CrossRef]
- Kang, J.M.; Li, C.L.; Li, M.R.; Zhang, T.; Zhang, B.L. Identifying priority areas for conservation in the lower Yellow River basin from an ecological network perspective. Ecosyst. Health Sustain. 2022, 8, 16. [Google Scholar] [CrossRef]
- Nie, W.B.; Shi, Y.; Siaw, M.J.; Yang, F.; Wu, R.W.; Wu, X.; Zheng, X.Y.; Bao, Z.Y. Constructing and optimizing ecological network at county and town Scale: The case of Anji County, China. Ecol. Indic. 2021, 132, 14. [Google Scholar] [CrossRef]
- Zhang, M.X.; Bao, Y.B.; Xu, J.; Han, A.R.; Liu, X.P.; Zhang, J.Q.; Tong, Z.J. Ecological security evaluation and ecological regulation approach of East-Liao River basin based on ecological function area. Ecol. Indic. 2021, 132, 13. [Google Scholar] [CrossRef]
- Dong, J.Q.; Peng, J.; Xu, Z.H.; Liu, Y.X.; Wang, X.Y.; Li, B. Integrating regional and interregional approaches to identify ecological security patterns. Landsc. Ecol. 2021, 36, 2151–2164. [Google Scholar] [CrossRef]
- Wei, H.; Zhu, H.; Chen, J.; Jiao, H.Y.; Li, P.H.; Xiong, L.Y. Construction and Optimization of Ecological Security Pattern in the Loess Plateau of China Based on the Minimum Cumulative Resistance (MCR) Model. Remote Sens. 2022, 14, 5906. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.J.; Liu, Y.X.; Zhao, H.J.; Wang, Y.L. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Han, Y.; Yu, C.Y.; Feng, Z.; Du, H.C.; Huang, C.S.; Wu, K.N. Construction and Optimization of Ecological Security Pattern Based on Spatial Syntax Classification-Taking Ningbo, China, as an Example. Land 2021, 10, 380. [Google Scholar] [CrossRef]
- Zhang, C.X.; Jia, C.; Gao, H.G.; Shen, S.G. Ecological Security Pattern Construction in Hilly Areas Based on SPCA and MCR: A Case Study of Nanchong City, China. Sustainability 2022, 14, 11368. [Google Scholar] [CrossRef]
- Jin, X.X.; Wei, L.Y.; Wang, Y.; Lu, Y.Q. Construction of ecological security pattern based on the importance of ecosystem service functions and ecological sensitivity assessment: A case study in Fengxian County of Jiangsu Province, China. Environ. Dev. Sustain. 2021, 23, 563–590. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.F.; Liu, Z.S.; Li, S.J.; Gao, Z.J. Integrating the Ecological Security Pattern and the PLUS Model to Assess the Effects of Regional Ecological Restoration: A Case Study of Hefei City, Anhui Province. Int. J. Environ. Res. Public Health 2022, 19, 6640. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Yu, C.Y.; Chen, T.Q.; Feng, Z.; Hu, Y.C.; Wu, K.N. Can the establishment of ecological security patterns improve ecological protection? An example of Nanchang, China. Sci. Total Environ. 2020, 740, 15. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.X.; Wang, H.J.; Shan, L.Y.; Xiao, F.T. Constructing and optimizing urban ecological network in the context of rapid urbanization for improving landscape connectivity. Ecol. Indic. 2021, 132, 17. [Google Scholar] [CrossRef]
- Elbakidze, M.; Angelstam, P.; Yamelynets, T.; Dawson, L.; Gebrehiwot, M.; Stryamets, N.; Johansson, K.E.; Garrido, P.; Naumov, V.; Manton, M. A bottom-up approach to map land covers as potential green infrastructure hubs for human well-being in rural settings: A case study from Sweden. Landsc. Urban Plan. 2017, 168, 72–83. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.X.; Hu, Y.N.; Du, Y.Y.; Meersmans, J.; Qiu, S.J. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.Q.; Halike, A.; Yao, K.X.; Chen, L.M.; Balati, M. Construction and optimization of ecological security pattern in Ebinur Lake Basin based on MSPA-MCR models. Ecol. Indic. 2022, 138, 1–13. [Google Scholar] [CrossRef]
- Hu, C.G.; Wang, Z.Y.; Wang, Y.; Sun, D.Q.; Zhang, J.X. Combining MSPA-MCR Model to Evaluate the Ecological Network in Wuhan, China. Land 2022, 11, 213. [Google Scholar] [CrossRef]
- An, Y.; Liu, S.L.; Sun, Y.X.; Shi, F.N.; Beazley, R. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc. Ecol. 2021, 36, 2059–2076. [Google Scholar] [CrossRef]
- Wang, Q.B.; Liu, S.L.; Liu, Y.X.; Wang, F.F.; Liu, H.; Yu, L. Effects of urban agglomeration and expansion on landscape connectivity in the river valley region, Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2022, 34, 14. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.Q.; Hu, M.M.; Fan, C.; Wang, T.; Xia, B.C. Promoting landscape connectivity of highly urbanized area: An ecological network approach. Ecol. Indic. 2021, 125, 12. [Google Scholar] [CrossRef]
- Huang, K.X.; Peng, L.; Wang, X.H.; Chen, T.T. Integrating Landscape Connectivity and Natural-Anthropogenic Interaction to Understand Karst Vegetation Restoration: A Case Study of Guizhou Province, China. Front. Ecol. Evol. 2022, 10, 13. [Google Scholar] [CrossRef]
- Tang, Y.H.; Gao, C.; Wu, X.F. Urban Ecological Corridor Network Construction: An Integration of the Least Cost Path Model and the InVEST Model. ISPRS Int. Geo-Inf. 2020, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Ureta, J.C.; Clay, L.; Motallebi, M.; Ureta, J. Quantifying the Landscape’s Ecological Benefits-An Analysis of the Effect of Land Cover Change on Ecosystem Services. Land 2021, 10, 21. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Xiao, Y.; Ou-Yang, Z.Y. Assessment of ecological importance of the Qinghai-Tibet Plateau based on ecosystem service flows. J. Mt. Sci. 2021, 18, 1725–1736. [Google Scholar] [CrossRef]
- Cui, H.L.; Liu, M.; Chen, C. Ecological Restoration Strategies for the Topography of Loess Plateau Based on Adaptive Ecological Sensitivity Evaluation: A Case Study in Lanzhou, China. Sustainability 2022, 14, 2858. [Google Scholar] [CrossRef]
- Xiao, S.C.; Wu, W.J.; Guo, J.; Ou, M.H.; Pueppke, S.G.; Ou, W.X.; Tao, Y. An evaluation framework for designing ecological security patterns and prioritizing ecological corridors: Application in Jiangsu Province, China. Landsc. Ecol. 2020, 35, 2517–2534. [Google Scholar] [CrossRef]
- Huang, L.Y.; Wang, J.; Fang, Y.; Zhai, T.L.; Cheng, H. An integrated approach towards spatial identification of restored and conserved priority areas of ecological network for implementation planning in metropolitan region. Sust. Cities Soc. 2021, 69, 15. [Google Scholar] [CrossRef]
- Chen, X.W.; Li, X.M.; Eladawy, A.; Yu, T.; Sha, J.M. A multi-dimensional vulnerability assessment of Pingtan Island (China) and Nile Delta (Egypt) using ecological Sensitivity-Resilience-Pressure (SRP) model. Hum. Ecol. Risk Assess. 2021, 27, 1860–1882. [Google Scholar] [CrossRef]
- Wu, Y.D.; Han, Z.Y.; Meng, J.J.; Zhu, L.K. Circuit theory-based ecological security pattern could promote ecological protection in the Heihe River Basin of China. Environ. Sci. Pollut. Res. 2022, 30, 27340–27356. [Google Scholar] [CrossRef]
- Wei, S.M.; Pan, J.H.; Liu, X. Landscape ecological safety assessment and landscape pattern optimization in arid inland river basin: Take Ganzhou District as an example. Hum. Ecol. Risk Assess. 2020, 26, 782–806. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.B.; Luo, X.Y. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 15. [Google Scholar] [CrossRef]
- Wei, W.; Liu, C.Y.; Ma, L.B.; Zhang, X.Y.; Xie, B.B. Ecological Land Suitability for Arid Region at River Basin Scale: Framework and Application Based on Minmum Cumulative Resistance (MCR) Model. Chin. Geogr. Sci. 2022, 32, 312–323. [Google Scholar] [CrossRef]
- Yu, Q.; Yue, D.P.; Wang, J.P.; Zhang, Q.B.; Li, Y.T.; Yu, Y.; Chen, J.X.; Li, N. The optimization of urban ecological infrastructure network based on the changes of county landscape patterns: A typical case study of ecological fragile zone located at Deng Kou (Inner Mongolia). J. Clean. Prod. 2017, 163, S54–S67. [Google Scholar] [CrossRef]
- Balbi, M.; Croci, S.; Petit, E.J.; Butet, A.; Georges, R.; Madec, L.; Caudal, J.P.; Ernoult, A. Least-cost path analysis for urban greenways planning: A test with moths and birds across two habitats and two cities. J. Appl. Ecol. 2021, 58, 632–643. [Google Scholar] [CrossRef]
- Hou, W.; Zhai, L.; Walz, U. Identification of spatial conservation and restoration priorities for ecological networks planning in a highly urbanized region: A case study in Beijing-Tianjin-Hebei, China. Ecol. Eng. 2023, 187, 11. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yang, K.C.; Bridgman, C.L.; Lin, L.K. Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc. Ecol. 2008, 23, 989–1000. [Google Scholar] [CrossRef]
- Effat, H.A.; Hassan, O.A. Designing and evaluation of three alternatives highway routes using the Analytical Hierarchy Process and the least-cost path analysis, application in Sinai Peninsula, Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Bai, Y.J. Simulation of an Urban-Rural Spatial Structure on the Basis of Green Infrastructure Assessment: The Case of Harbin, China. Land 2019, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Zhai, T.L.; Huang, L.Y. Linking MSPA and Circuit Theory to Identify the Spatial Range of Ecological Networks and Its Priority Areas for Conservation and Restoration in Urban Agglomeration. Front. Ecol. Evol. 2022, 10, 16. [Google Scholar] [CrossRef]
- Zhao, S.M.; Ma, Y.F.; Wang, J.L.; You, X.Y. Landscape pattern analysis and ecological network planning of Tianjin City. Urban For. Urban Green. 2019, 46, 12. [Google Scholar] [CrossRef]
- Yang, H.O.; Chen, W.B.; Chen, X.P. Regional Ecological Network Planning for Biodiversity Conservation: A Case Study of China’s Poyang Lake Eco-Economic Region. Pol. J. Environ. Stud. 2017, 26, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Cong, P.F.; Chen, K.X.; Qu, L.M.; Han, J.B.; Yang, Z.X. Determination of Landscape Ecological Network of Wetlands in the Yellow River Delta. Wetlands 2020, 40, 2729–2739. [Google Scholar] [CrossRef]
- Gao, J.B.; Du, F.J.; Zuo, L.Y.; Jiang, Y. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landsc. Ecol. 2021, 36, 2113–2133. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS. Remote Sens. Appl.-Soc. Environ. 2021, 23, 19. [Google Scholar] [CrossRef]
- Wang, Y.T.; Wang, Y.S.; Wu, M.L.; Sun, C.C.; Gu, J.D. Assessing ecological health of mangrove ecosystems along South China Coast by the pressure-state-response (PSR) model. Ecotoxicology 2021, 30, 622–631. [Google Scholar] [CrossRef]
- Alexakis, D.E. Linking DPSIR Model and Water Quality Indices to Achieve Sustainable Development Goals in Groundwater Resources. Hydrology 2021, 8, 90. [Google Scholar] [CrossRef]
- Mandal, T.; Saha, S.; Das, J.; Sarkar, A. Groundwater depletion susceptibility zonation using TOPSIS model in Bhagirathi river basin, India. Model. Earth Syst. Environ. 2022, 8, 1711–1731. [Google Scholar] [CrossRef]
- Galli, A. On the rationale and policy usefulness of Ecological Footprint Accounting: The case of Morocco. Environ. Sci. Policy 2015, 48, 210–224. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.H.; Sha, J.M.; Eladawy, A.; Li, X.M.; Wang, J.L.; Kurbanov, E.; Lin, Z.J.; Wu, L.B.; Han, R.; Su, Y.C. Evaluation of ecological security and ecological maintenance based on pressure-state-response (PSR) model, case study: Fuzhou city, China. Hum. Ecol. Risk Assess. 2022, 28, 734–761. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Li, P.H.; Xu, L.P. Evaluation and analysis of ecological security based on the improved three-dimensional ecological footprint in Shaanxi Province, China. Ecol. Indic. 2022, 144, 15. [Google Scholar] [CrossRef]
- Yang, Y.P.; Chen, J.J.; Huang, R.J.; Feng, Z.H.; Zhou, G.Q.; You, H.T.; Han, X.W. Construction of Ecological Security Pattern Based on the Importance of Ecological Protection-A Case Study of Guangxi, a Karst Region in China. Int. J. Environ. Res. Public Health 2022, 19, 5699. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.L.; Shi, P.J. Using ecosystem service supply and ecosystem sensitivity to identify landscape ecology security patterns in the Lanzhou-Xining urban agglomeration, China. J. Mt. Sci. 2020, 17, 2758–2773. [Google Scholar] [CrossRef]
- Tao, Q.; Gao, G.H.; Xi, H.H.; Wang, F.; Cheng, X.B.; Ou, W.X.; Tao, Y. An integrated evaluation framework for multiscale ecological protection and restoration based on multi-scenario trade-offs of ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2022, 140, 12. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.B.; Wang, K.; Cao, W.Y.; Gong, J.R.; Wang, H.; Lou, A.R. Linking regional sustainable development goals with ecosystem services to identify ecological security patterns. Land Degrad. Dev. 2022, 33, 3841–3854. [Google Scholar] [CrossRef]
- Xue, J.; Li, Z.X.; Feng, Q.; Li, Z.J.; Gui, J.; Li, Y.C. Ecological conservation pattern based on ecosystem services in the Qilian Mountains, northwest China. Environ. Dev. 2023, 46, 15. [Google Scholar] [CrossRef]
- Pan, N.H.; Du, Q.Q.; Guan, Q.Y.; Tan, Z.; Sun, Y.F.; Wang, Q.Z. Ecological security assessment and pattern construction in arid and semi-arid areas: A case study of the Hexi Region, NW China. Ecol. Indic. 2022, 138, 13. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhao, Z.Y.; Yang, Y.Y.; Fu, B.J.; Ma, R.M.; Lue, Y.H.; Wu, X. Identifying ecological security patterns based on the supply, demand and sensitivity of ecosystem service: A case study in the Yellow River Basin, China. J. Environ. Manag. 2022, 315, 11. [Google Scholar] [CrossRef]
- Zhai, T.L.; Zhang, D.; Zhao, C.C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow. Sust. Cities Soc. 2021, 75, 13. [Google Scholar] [CrossRef]
- Ma, L.B.; Bo, J.; Li, X.Y.; Fang, F.; Cheng, W.J. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef]
- Li, S.N.; Zhao, X.Q.; Pu, J.W.; Miao, P.P.; Wang, Q.; Tan, K. Optimize and control territorial spatial functional areas to improve the ecological stability and total environment in karst areas of Southwest China. Land Use Pol. 2021, 100, 16. [Google Scholar] [CrossRef]
- Guo, M.; Cong, X.; Zheng, H.; Zhang, M.J.; Wang, L.J.; Gong, J.W.; Ma, S. Integrating the ordered weighted averaging method to establish an ecological security pattern for the Jianghuai ecological economic zone in China: Synergistic intraregional development. Ecol. Indic. 2022, 135, 10. [Google Scholar] [CrossRef]
- Wen, J.F.; Hou, K. Research on the progress of regional ecological security evaluation and optimization of its common limitations. Ecol. Indic. 2021, 127, 10. [Google Scholar] [CrossRef]
- Smith, P.; Ashmore, M.R.; Black, H.I.J.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G. The role of ecosystems and their management in regulating climate, and soil, water and air quality. J. Appl. Ecol. 2013, 50, 812–829. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.S.; Zou, Y.T. Construction of an ecological security pattern based on ecosystem sensitivity and the importance of ecological services: A case study of the Guanzhong Plain urban agglomeration, China. Ecol. Indic. 2022, 136, 12. [Google Scholar] [CrossRef]
- Liu, B.Y.; Xie, Y.; Li, Z.G.; Liang, Y.; Zhang, W.B.; Fu, S.H.; Yin, S.Q.; Wei, X.; Zhang, K.L.; Wang, Z.Q.; et al. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res. 2020, 8, 430–439. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. J. Clean. Prod. 2021, 329, 12. [Google Scholar] [CrossRef]
- Liang, C.; Li, X.W. The Ecological Sensitivity Evaluation in Yellow River Delta National Natural Reserve. Clean-Soil Air Water 2012, 40, 1197–1207. [Google Scholar] [CrossRef]
- Ye, H.; Yang, Z.P.; Xu, X.L. Ecological Corridors Analysis Based on MSPA and MCR Model-A Case Study of the Tomur World Natural Heritage Region. Sustainability 2020, 12, 959. [Google Scholar] [CrossRef] [Green Version]
- Sahraoui, Y.; Leski, C.D.; Benot, M.L.; Revers, F.; Salles, D.; van Halder, I.; Barneix, M.; Carassou, L. Integrating ecological networks modelling in a participatory approach for assessing impacts of planning scenarios on landscape connectivity. Landsc. Urban Plan. 2021, 209, 14. [Google Scholar] [CrossRef]
- Li, Y.M.; Zhao, J.Z.; Yuan, J.; Ji, P.K.; Deng, X.L.; Yang, Y.M. Constructing the Ecological Security Pattern of Nujiang Prefecture Based on the Framework of “Importance-Sensitivity-Connectivity”. Int. J. Environ. Res. Public Health 2022, 19, 10869. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Z.J. Construction and optimization strategy of ecological security pattern based on ecosystem services and landscape connectivity: A case study of Guizhou Province, China. Environ. Sci. Pollut. Res. 2019, 7, e7306. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.C.; Chen, J.H.; Zhang, L.H.; Sun, Z.C.; Wang, X.; Zhang, X.; Zhang, W. Establishing an ecological security pattern for urban agglomeration, taking ecosystem services and human interference factors into consideration. PeerJ 2019, 7, 28. [Google Scholar] [CrossRef]
- Wu, X.T.; Wang, S.; Fu, B.J.; Liu, Y.; Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the Yanhe watershed. Land Use Pol. 2018, 72, 303–312. [Google Scholar] [CrossRef]
- Arunyawat, S.; Shrestha, R.P. Simulating future land use and ecosystem services in Northern Thailand. J. Land Use Sci. 2018, 13, 146–165. [Google Scholar] [CrossRef]
- Li, Y.G.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.S.; Zhang, J.T.; Yin, X.W. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 2023, 855, 19. [Google Scholar] [CrossRef]
Data | Subdata | Year | Spatial Resolution | Sources |
---|---|---|---|---|
Land use data | Land use | 2022 | 30 m | https://earthexplorer.usgs.gov/ |
Climate and environmental data | DEM | 2022 | 30 m | http://www.gscloud.cn/ |
Average annual precipitation, average annual temperature | 2021 | 1 km | http://www.worldclim.org/ | |
Normalized difference vegetation index (NDVI) | 2021 | 250 m | https://lpdaac.usgs.gov/ | |
Net primary productivity (NPP) | 2020 | 500 m | https://www.nasa.gov/ | |
Soil Information | - | 1 km | http://westdc.westgis.ac.cn/ | |
Meteorological data | 2021 | Station | http://data.cma.cn/ | |
Socioeconomic data | Roads, water systems | 2022 | Shapefile | https://www.openstreetmap.org/ |
Target Layer | Rule Layer | Weight | Index Layer | Weight |
---|---|---|---|---|
Ecological security value | Ecosystem service importance | 0.49 | Wind and sand control importance | 0.16 |
Water conservation importance | 0.10 | |||
Soil and water conservation importance | 0.15 | |||
Habitat quality importance | 0.08 | |||
Ecological sensitivity | 0.31 | Land desertification sensitivity | 0.09 | |
Soil erosion sensitivity | 0.17 | |||
Soil rocky desertification sensitivity | 0.05 | |||
Landscape connectivity | 0.20 | Landscape connectivity | 0.20 |
Land Use Category | Land Use Type | Habitat Suitability | Arable Land | Rural Settlement | Other Construction Land | Sandy Land |
---|---|---|---|---|---|---|
12 | Arable land | 0.3 | 0.3 | 0.6 | 0.4 | 0.6 |
21 | Woodland | 1 | 0.7 | 0.8 | 0.65 | 0.65 |
22 | Shrub woodland | 1 | 0.6 | 0.65 | 0.6 | 0.7 |
23 | Open woodland | 0.8 | 0.6 | 0.6 | 0.5 | 0.7 |
24 | Other woodland | 1 | 0.8 | 0.85 | 0.7 | 0.65 |
31 | High-cover grassland | 0.8 | 0.5 | 0.55 | 0.35 | 0.8 |
32 | Mid-cover grassland | 0.7 | 0.55 | 0.6 | 0.4 | 0.8 |
33 | Low-cover grassland | 0.6 | 0.5 | 0.5 | 0.3 | 0.6 |
4 | Water body | 0.9 | 0.65 | 0.65 | 0.6 | 0.65 |
52 | Rural settlement | 0 | 0 | 0 | 0 | 0 |
53 | Other construction land | 0 | 0 | 0 | 0 | 0 |
61 | Sandy land | 0.1 | 0.1 | 0.3 | 0.5 | 0.1 |
63 | Saline land | 0.1 | 0.1 | 0.3 | 0.4 | 0.6 |
64 | Marshland | 0.5 | 0.4 | 0.4 | 0.3 | 0.3 |
65 | Bare land | 0 | 0 | 0 | 0 | 0 |
Indicator | Definition | Formula | Specific Parameters and Description |
---|---|---|---|
Land desertification sensitivity | Land desertification sensitivity refers to the gradual decline in soil productivity caused by human activities [64]. | (9) | is the vegetation coverage. |
Soil erosion sensitivity | Soil erosion is mainly influenced by topography, precipitation, soil properties, and vegetation, resulting in simultaneous losses of water and soil [65]. | (10) | is the vegetation cover factor. |
Soil rocky desertification sensitivity | Soil rocky desertification refers to the loss of surface soil and land agricultural value due to soil erosion and other problems [65]. | (11) | is the vegetation cover factor. |
Resistance Indicator | Resistance Value | Weight | ||||
---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | ||
Land use type | Woodland, Grassland | Water body | Arable land | Unused land | Construction land | 0.62 |
Elevation (m) | <1100 | 1100–1200 | 1200–1300 | 1300–1400 | >1400 | 0.19 |
Slope (°) | <2 | 2–4 | 4–6 | 6–10 | >10 | 0.12 |
Distance from rivers (m) | <1000 | 1000–200 | 2000–3000 | 3000–5000 | >5000 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Wang, S.; Yan, G.; He, X. Ecological Security Assessment Based on the “Importance–Sensitivity–Connectivity” Index and Pattern Construction: A Case Study of Xiliu Ditch in the Yellow River Basin, China. Land 2023, 12, 1296. https://doi.org/10.3390/land12071296
Xu X, Wang S, Yan G, He X. Ecological Security Assessment Based on the “Importance–Sensitivity–Connectivity” Index and Pattern Construction: A Case Study of Xiliu Ditch in the Yellow River Basin, China. Land. 2023; 12(7):1296. https://doi.org/10.3390/land12071296
Chicago/Turabian StyleXu, Xinlei, Siyuan Wang, Gege Yan, and Xinyi He. 2023. "Ecological Security Assessment Based on the “Importance–Sensitivity–Connectivity” Index and Pattern Construction: A Case Study of Xiliu Ditch in the Yellow River Basin, China" Land 12, no. 7: 1296. https://doi.org/10.3390/land12071296
APA StyleXu, X., Wang, S., Yan, G., & He, X. (2023). Ecological Security Assessment Based on the “Importance–Sensitivity–Connectivity” Index and Pattern Construction: A Case Study of Xiliu Ditch in the Yellow River Basin, China. Land, 12(7), 1296. https://doi.org/10.3390/land12071296