Identifying Visual Quality of Rural Road Landscape Character by Using Public Preference and Heatmap Analysis in Sabak Bernam, Malaysia
Abstract
:1. Introduction
Literature Review
- To classify and identify types of rural road LCs in Sabak Bernam in Malaysia;
- To identify public preferences towards the visual quality based on rural road LCs in Sabak Bernam in Malaysia;
- To identify preferred rural road landscape elements and socio-demographic factors that affect the preferences of rural road landscapes in Sabak Bernam, Malaysia.
2. Materials and Methods
2.1. Study Area
2.2. Methods of the Study
2.3. The First Phase
- Collection of Photos
- Landscape Character Identification
2.4. The Second Phase
- Survey
3. Results
3.1. Demographic Statistics Description
- Statistics Description of Landscape Experience in Demographic Survey
3.2. Photo Survey
- Rating of Each Photo Survey
3.3. Heatmap and Landscape Characters Effect on Visual Quality Assessment
3.4. Factors Affecting Visual Quality on Rural Road Landscape
4. Discussion
4.1. The Impact of Landscape Elements on Visual Quality
4.2. The Impact of Visual Character on Visual Quality
4.3. Respondent Background and Its Influence on Preference
5. Limitations and Future Studies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zakariya, K.; Ibrahim, P.H.; Abdul Wahab, N.A. Conceptual Framework of Rural Landscape Character Assessment to Guide Tourism Development in Rural Areas. J. Constr. Dev. Ctries. 2019, 24, 85–99. [Google Scholar] [CrossRef]
- Sandker, M.; Campbell, B.C.; Ruiz-Pérez, M.; Sayer, J.; Cowling, R.M.; Kassa, H.; Knight, A.T. The Role of Participatory Modeling in Landscape Approaches to Reconcile Conservation and Development. Ecol. Soc. 2010, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- De Aranzabal, I.; Schmitz, M.F.; Pineda, F.D. Integrating Landscape Analysis and Planning: A Multi-Scale Approach for Oriented Management of Tourist Recreation. Environ. Manag. 2009, 44, 938–951. [Google Scholar] [CrossRef] [PubMed]
- Lokocz, E.; Ryan, R.L.; Sadler, A.J. Motivations for land protection and stewardship: Exploring place attachment and rural landscape character in Massachusetts. Landsc. Urban Plan. 2011, 99, 65–76. [Google Scholar] [CrossRef]
- Liu, Y. The Exploration of Diversity of Rural Road Landscape Forms. Acad. J. Humanit. Soc. Sci. 2018, 3, 117–123. [Google Scholar]
- Walker, A.J.; Ryan, R.L. Place attachment and landscape preservation in rural New England: A Maine case study. Landsc. Urban Plan. 2008, 86, 141–152. [Google Scholar] [CrossRef]
- Gordon, J.R. Geoheritage, Geotourism and the Cultural Landscape: Enhancing the Visitor Experience and Promoting Geoconservation. Geosci. J. 2018, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.M.; Fang, M.Q.; Zhang, Y. Exploration about the Ecological Model of Road Landscape in the Construction of New Rural Landscape. Appl. Mech. Mater. 2012, 193, 235–238. [Google Scholar]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Long, H.; Zou, J.; Liu, Y. Differentiation of rural development driven by industrialization and urbanization in eastern coastal China. Habitat Int. 2009, 33, 454–462. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.; Cao, Y.; Wang, J.; Fang, X.; Zhou, L.; Liu, Y. Distinct types of restructuring scenarios for rural settlements in a heterogeneous rural landscape: Application of a clustering approach and ecological niche modeling. Habitat Int. 2020, 104, 102248. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, X.; Ma, Z. Collective Action in maintaining rural infrastructures: Cadre-farmer relationship, institution rules and their interaction terms. Land Use Policy 2020, 99, 105043. [Google Scholar] [CrossRef]
- Primdahl, J.; Andersen, E.; Swaffield, S.; Kristensen, L. Intersecting Dynamics of Agricultural Structural Change and Urbanisation within European Rural Landscapes: Change Patterns and Policy Implications. Landsc. Res. 2013, 38, 799–817. [Google Scholar] [CrossRef]
- Arriaza, M.; Cañas-Ortega, J.; Cañas-Madueño, J.; Ruiz-Aviles, P. Assessing the visual quality of rural landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Lu, Y.; De Vries, W.T. A Bibliometric and Visual Analysis of Rural Development Research. Sustainability 2021, 13, 6136. [Google Scholar] [CrossRef]
- Wang, D.; Ji, X.; Jiang, D.; Liu, P. Importance assessment and conservation strategy for rural landscape patches in Huang-Huai plain based on network robustness analysis. Ecol. Inform. 2022, 69, 101630. [Google Scholar] [CrossRef]
- Cheng, L. China’s rural transformation under the Link Policy: A case study from Ezhou. Land Use Policy 2021, 103, 105319. [Google Scholar] [CrossRef]
- Trop, T. From knowledge to action: Bridging the gaps toward effective incorporation of Landscape Character Assessment approach in land-use planning and management in Israel. Land Use Policy 2017, 61, 220–230. [Google Scholar] [CrossRef]
- Van Eetvelde, V.; Antrop, M. A stepwise multi-scaled landscape typology and characterization for trans-regional integration, applied on the federal state of Belgium. Landsc. Urban. Plan. 2009, 91, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Swanwick, C. Landscape character assessment. In Guidance for England and Scotland; Countryside Agency, Scottish Natural Heritage: Edinburgh, UK, 2002. [Google Scholar]
- Mundher, R.; Bakar, S.A.; Al-Helli, M.; Gao, H.; Al-Sharaa, A.; Yusof, M.T.; Maulan, S.; Aziz, A. Visual Aesthetic Quality Assessment of Urban Forests: A Conceptual Framework. Urban Sci. 2022, 6, 79. [Google Scholar] [CrossRef]
- Koç, A.; Yilmaz, S. Landscape character analysis and assessment at the lower basin-scale. Appl. Geogr. 2020, 125, 102359. [Google Scholar] [CrossRef]
- Mundher, R.; Bakar, S.A.; Maulan, S.; Yusof, M.T.; Al-Sharaa, A.; Aziz, A.; Gao, H. Aesthetic Quality Assessment of Landscapes as a Model for Urban Forest Areas: A Systematic Literature Review. Forests 2022, 13, 991. [Google Scholar] [CrossRef]
- Simensen, T.; Halvorsen, R.; Erikstad, L. Methods for landscape characterization and mapping: A systematic review. Land Use Policy 2018, 75, 557–569. [Google Scholar] [CrossRef]
- Vogiatzakis, I.N. Mediterranean experience and practice in Landscape Character Assessment. Ecol. Mediterr. 2011, 37, 17–31. [Google Scholar] [CrossRef]
- Terkenli, T.; Gkoltsiou, A.; Kavroudakis, D. The Interplay of Objectivity and Subjectivity in Landscape Character Assessment: Qualitative and Quantitative Approaches and Challenges. Land 2021, 10, 53. [Google Scholar] [CrossRef]
- Sun, D.; Li, Q.; Gao, W.; Huang, G.; Tang, N.; Lyu, M.; Yu, Y. On the relation between visual quality and landscape characteristics: A case study application to the waterfront linear parks in Shenyang, China. Environ. Res. Commun. 2021, 3, 115013. [Google Scholar] [CrossRef]
- Chen, B.; Adimo, O.; Bao, Z. Assessment of aesthetic quality and multiple functions of urban green space from the users’ perspective: The case of Hangzhou Flower Garden, China. Landsc. Urban Plan. 2009, 93, 76–82. [Google Scholar] [CrossRef]
- Sahraoui, Y.; Clauzel, C.; Foltête, J. Spatial modeling of landscape aesthetic potential in urban-rural fringes. J. Environ. Manag. 2016, 181, 623–636. [Google Scholar] [CrossRef]
- Dronova, I. Environmental heterogeneity as a bridge between ecosystem service and visual quality objectives in management, planning and design. Landsc. Urban Plan. 2017, 163, 90–106. [Google Scholar] [CrossRef]
- Daniel, T.C.; Boster, R.S. Measuring Landscape Aesthetics: The Scenic Beauty Estimation Method; USDA Forest Service: Washington, DC, USA, 1976. [Google Scholar]
- Coeterier, J. Dominant attributes in the perception and evaluation of the Dutch landscape. Landsc. Urban Plan. 1996, 34, 27–44. [Google Scholar] [CrossRef]
- Ramírez, Á.; Ayuga-Téllez, E.; Gallego, E.; Fuentes, J.M.; García, A.M. A simplified model to assess landscape quality from rural roads in Spain. Agric. Ecosyst. Environ. 2011, 142, 205–212. [Google Scholar] [CrossRef]
- Lothian, A. Landscape and the philosophy of aesthetics: Is landscape quality inherent in the landscape or in the eye of the beholder? Landsc. Urban Plan. 1999, 44, 177–198. [Google Scholar] [CrossRef]
- Pérez, J.G. Perceptions and Preferences with Pair-wise Photographs: Planning rural tourism in Extremadura, Spain. Landsc. Res. 2002, 27, 297–308. [Google Scholar] [CrossRef]
- Russell, J.A.; Pratt, G. A description of the affective quality attributed to environments. J. Pers. Soc. Psychol. 1980, 38, 311–322. [Google Scholar] [CrossRef]
- Cañas, I.; Ayuga, E.; Ayuga, F. A contribution to the assessment of scenic quality of landscapes based on preferences expressed by the public. Land Use Policy 2009, 26, 1173–1181. [Google Scholar] [CrossRef]
- Real, E.; Arce, C.; Sabucedo, J.M. Classification of landscapes using quantitative and categorical data, and prediction of their scenic beauty in North-Western Spain. J. Environ. Psychol. 2000, 20, 355–373. [Google Scholar] [CrossRef]
- Wherrett, J.R. Creating Landscape Preference Models Using Internet Survey Techniques. Landsc. Res. 2000, 25, 79–96. [Google Scholar] [CrossRef]
- Daniel, T.C. Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landsc. Urban Plan. 2001, 54, 267–281. [Google Scholar] [CrossRef]
- Mundher, R.; Bakar, S.a.A.; Aziz, A.; Maulan, S.; Yusof, M.J.M.; Al-Sharaa, A.; Gao, H. Determining the Weightage of Visual Aesthetic Variables for Permanent Urban Forest Reserves Based on the Converging Approach. Forests 2023, 14, 669. [Google Scholar] [CrossRef]
- Hussain, N.; Byrd, H. Towards a Compatible Landscape in Malaysia: An Idea, Challenge and Imperatives. Procedia Soc. Behav. Sci. 2012, 35, 275–283. [Google Scholar] [CrossRef]
- Ibrahim, I.; Zakariya, K.; Wahab, N.H.A. Satellite Image Analysis along the Kuala Selangor to Sabak Bernam Rural Tourism Routes. IOP Conf. Ser. 2018, 117, 012013. [Google Scholar] [CrossRef]
- Zakariya, K.; Haron, R.C.; Tukiman, I.; Rahman, S.a.A.; Harun, N.Z. Landscape characters for tourism routes: Criteria to attract special interest tourists to the Kuala Selangor—Sabak Bernam route. Plan. Malays. 2020, 4, 430–441. [Google Scholar] [CrossRef]
- Harris, V.; Kendal, D.; Hahs, A.K.; Threlfall, C.G. Green space context and vegetation complexity shape people’s preferences for urban public parks and residential gardens. Landsc. Res. 2018, 43, 150–162. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, S.; Wei, X.; Jiang, H.; Liu, Z.; Yuan, M. Evaluation on functional Importance of Regional Landscape Elements of Highway. IOP Conf. Ser. Earth Environ. Sci. 2019, 358, 042058. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D. Likert Scale: Explored and Explained. Br. J. Appl. Sci. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- Willits, F.K.; Theodori, G.L.; Luloff, A.E. Another Look at Likert Scales. J. Rural Soc. Sci. 2016, 31, 126. [Google Scholar]
- Kelly, C.; Wilson, J.R.; Baker, E.A.; Miller, D.C.; Schootman, M. Using Google Street View to Audit the Built Environment: Inter-rater Reliability Results. Ann. Behav. Med. 2013, 45, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, J.N. A Postgenomic Visual Icon. Science 2008, 319, 1772–1773. [Google Scholar] [CrossRef]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.H.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef]
- Wilkinson, L.; Friendly, M. The History of the Cluster Heat Map. Am. Stat. 2009, 63, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Wartmann, F.M.; Frick, J.; Kienast, F.; Hunziker, M. Factors influencing visual landscape quality perceived by the public. Results from a national survey. Landsc. Urban Plan. 2021, 208, 104024. [Google Scholar] [CrossRef]
- Mundher, R.; Al-Sharaa, A.; Al-Helli, M.; Gao, H.; Bakar, S.a.A. Visual Quality Assessment of Historical Street Scenes: A Case Study of the First “Real” Street Established in Baghdad. Heritage 2022, 5, 3680–3704. [Google Scholar] [CrossRef]
- Bixia, C.; Zhenmian, Q.; Koji, N. Tourist preferences for agricultural landscapes: A case study of terraced paddy fields in Noto Peninsula, Japan. J. Mt. Sci. 2016, 13, 1880–1892. [Google Scholar]
- Jaal, Z.; Abdullah, J.; Ismail, H. Malaysian North South Expressway landscape character: Analysis of users’ preference of highway landscape elements. WIT Trans. Ecol. Environ. 2013, 179, 365–376. [Google Scholar]
- White, M.P.; Smith, A.; Humphryes, K.; Pahl, S.; Snelling, D.; Depledge, M.H. Blue space: The importance of water for preference, affect, and restorativeness ratings of natural and built scenes. J. Environ. Psychol. 2010, 30, 482–493. [Google Scholar] [CrossRef]
- Howley, P. Landscape aesthetics: Assessing the general publics’ preferences towards rural landscapes. Ecol. Econ. 2011, 72, 161–169. [Google Scholar] [CrossRef]
- Syahadat, R.M.; Putra, P.T.; Saleh, I.; Patih, T.; Sagala, A.R.; Thoifur, D.M. Visual Quality Protection of Ciboer Rice Fields to Maintain the Attraction of Bantar Agung Tourism Village. J. Agribus. Rural Dev. Res. 2021, 7, 64–77. [Google Scholar] [CrossRef]
- Akbar, K.F.; Hale, W.W.; Headley, A.D. Assessment of scenic beauty of the roadside vegetation in northern England. Landsc. Urban Plan. 2003, 63, 139–144. [Google Scholar] [CrossRef]
- Barroga, S.D.; Navarra, N.L.; Palarca, H.T. Methodologies in Identification, Analysis, and Measurement of Visual Pollution: The Case Study of Intramuros. J. Agron. Indones. 2021, 13, 19–26. [Google Scholar] [CrossRef]
- Fathi, M.; Masnavi, M.R. Assessing Environmental Aesthetics of Roadside Vegetation and Scenic Beauty of Highway Landscape: Preferences and Perception of Motorists. Int. J. Environ. Res. 2014, 8, 941–952. [Google Scholar]
- Tveit, M.; Ode, Å.; Fry, G. Key concepts in a framework for analyzing visual landscape character. Landsc. Res. 2006, 31, 229–255. [Google Scholar] [CrossRef]
- Ode, Å.; Tveit, M.S.; Fry, G. Capturing Landscape Visual Character Using Indicators: Touching Base with Landscape Aesthetic Theory. Landsc. Res. 2008, 33, 89–117. [Google Scholar] [CrossRef]
- Stamps, A.E. Mystery, complexity, legibility and coherence: A meta-analysis. J. Environ. Psychol. 2004, 24, 1–16. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S.; Ryan, R.L. With People in Mind: Design and Management of Everyday Nature; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Robinson, N. The Planting Design Handbook; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Pals, R.; Steg, L.; Dontje, J.; Siero, F.W.; Van Der Zee, K. Physical features, coherence and positive outcomes of person–environment interactions: A virtual reality study. J. Environ. Psychol. 2014, 40, 108–116. [Google Scholar] [CrossRef]
- Lückmann, K.; Lagemann, V.; Menzel, S. Landscape Assessment and Evaluation of Young People: Comparing nature-orientated habitat and engineered habitat preferences. Environ. Behav. 2011, 45, 86–112. [Google Scholar] [CrossRef]
- Clay, G.R.; Smidt, R.K. Assessing the validity and reliability of descriptor variables used in scenic highway analysis. Landsc. Urban Plan. 2004, 66, 239–255. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, J.; Wu, G.; Hu, X. Exploring the interactive influence on landscape preference from multiple visual attributes: Openness, richness, order, and depth. Urban For. Urban Green. 2021, 65, 127363. [Google Scholar] [CrossRef]
- Fry, G.; Tveit, M.; Ode, Å.; Velarde, M. The ecology of visual landscapes: Exploring the conceptual common ground of visual and ecological landscape indicators. Ecol. Indic. 2009, 9, 933–947. [Google Scholar] [CrossRef]
- Hanyu, K. Visual properties and affective appraisals in residential areas in daylight. J. Environ. Psychol. 2000, 20, 273–284. [Google Scholar] [CrossRef]
- Sklenicka, P.; Molnarova, K. Visual Perception of Habitats Adopted for Post-Mining Landscape Rehabilitation. Environ. Manag. 2010, 46, 424–435. [Google Scholar] [CrossRef]
- Dearden, P. Factors influencing landscape preferences: An empirical investigation. Landsc. Plan. 1984, 11, 293–306. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Balling, J.D.; Falk, J.H. Development of Visual Preference for Natural Environments. Environ. Behav. 1982, 14, 5–28. [Google Scholar] [CrossRef]
- Zube, E.H.; Pitt, D.; Evans, G.W. A lifespan developmental study of landscape assessment. J. Environ. Psychol. 1983, 3, 115–128. [Google Scholar] [CrossRef]
Group | Landscape Character | Code | Photo Example |
---|---|---|---|
A | Barren paddy fields with roadside vegetation | A1 | |
B | Semi-barren paddy fields with irrigation canals | B1 | |
C | Roadside oil palm vegetation | C1 | |
D | Semi-barren paddy fields with open horizon view | D1 | |
E | Roadside banana tree vegetation | E1 | |
F | A dense mix of roadside vegetation | F1 | |
G | Mix vegetation with settlements | G1 | |
H | Partial oil palm roadside vegetation | H1 | |
I | Green paddy fields with irrigation canals | I1 | |
J | Partially grown paddy fields with roadside vegetation | J1 | |
K | Partially grown paddy fields and roadside vegetation with irrigation canals | K1 | |
L | Roadside settlements and commercial structures | L1 |
Variable | Category | Frequency N | Valid Percent % |
---|---|---|---|
Gender | Male | 95 | 49.6 |
Female | 126 | 50.4 | |
Age | 18 to 25 | 105 | 42.0 |
26 to 35 | 114 | 45.6 | |
36 to 45 | 29 | 11.6 | |
46 to 55 | 2 | 0.8 | |
Above 55 | 0 | 0 | |
Malaysian citizen | Yes | 142 | 56.8 |
No | 108 | 43.2 | |
Ethnicity | Malay | 65 | 26.0 |
Chinese | 164 | 65.6 | |
Indian | 10 | 4.0 | |
Others | 11 | 4.4 | |
Monthly income | Below RM 2500 | 120 | 48.0 |
RM 2500 to 5000 | 66 | 26.4 | |
RM 5000 to 7500 | 38 | 15.2 | |
Above RM 7500 | 26 | 10.4 | |
Type of work | Student | 131 | 52.4 |
Self-employed | 24 | 9.6 | |
Private | 73 | 29.2 | |
Government | 22 | 8.8 | |
Educational level | High school | 28 | 11.2 |
Diploma or bachelor’s degree | 114 | 45.6 | |
Master’s degree | 70 | 28.0 | |
Ph.D. or higher | 38 | 15.2 | |
Hometown | Urban area | 160 | 64.0 |
Suburban area | 53 | 21.2 | |
Rural area | 37 | 14.8 | |
Frequency of visits to the rural area | Less than one a year | 88 | 35.2 |
2 to 4 times a year | 95 | 38 | |
5 to 8 times a year | 23 | 9.2 | |
More than 8 times a year | 44 | 17.6 | |
Type of transportation for the rural area | Train | 18 | 7.2 |
Bus | 12 | 4.8 | |
Car | 216 | 86.4 | |
Motorcycle | 4 | 1.6 | |
Visiting Sungai Besar or not | Yes | 47 | 18.8 |
No | 203 | 81.2 |
Variable/Landscape Experience | Landscape Character | Individual Mean Value | Average Mean Value |
---|---|---|---|
Culture | Paddy field | 3.12 | 3.288 |
Mix agricultural crops | 3.15 | ||
Traditional houses | 3.67 | ||
Oil palm plantations | 2.94 | ||
Orchard | 3.56 | ||
Nature | River | 3.78 | 3.75 |
Hill/Mountain | 3.83 | ||
Forest | 3.63 |
Positive Visual Quality | Negative Visual Quality | ||||
---|---|---|---|---|---|
No. | Photos Codes | Mean Value | No. | Photos Codes | Mean Value |
1 | I3 | +0.74 | 1 | L3 | −0.53 |
2 | K2 | +0.64 | 2 | F4 | −0.35 |
3 | I1 | +0.62 | 3 | G2 | −0.24 |
4 | I4 | +0.59 | 4 | E2 | −0.14 |
5 | I2 | +0.54 | 5 | H3 | −0.13 |
6 | K4 | +0.51 | 6 | F2 | −0.12 |
7 | K3 | +0.37 | 7 | F3 | −0.12 |
8 | B4 | +0.35 | 8 | H1 | −0.12 |
9 | B1 | +0.33 | 9 | J4 | −0.12 |
10 | D3 | +0.31 | 10 | L1 | −0.12 |
11 | B3 | +0.28 | 11 | F1 | −0.11 |
12 | A4 | +0.26 | 12 | E1 | −0.10 |
13 | B2 | +0.24 | 13 | G3 | −0.10 |
14 | J3 | +0.17 | 14 | L2 | −0.07 |
15 | D4 | +0.14 | 15 | E3 | −0.06 |
16 | A1 | +0.14 | 16 | A3 | −0.05 |
17 | J1 | +0.08 | 17 | H4 | −0.05 |
18 | H2 | +0.07 | 18 | C3 | −0.04 |
19 | J2 | +0.06 | 19 | C4 | −0.04 |
20 | K1 | +0.05 | 20 | L4 | −0.04 |
21 | D1 | +0.01 | 21 | C2 | −0.02 |
22 | G1 | −0.02 | |||
23 | A2 | −0.01 | |||
24 | C1 | −0.01 | |||
25 | D2 | −0.01 | |||
26 | E4 | −0.01 | |||
27 | G4 | −0.01 |
Photos | ||
---|---|---|
Positive Visual Quality Photos | ||
1. Mean = +0.74 (I3) | 2. Mean = +0.64 (K2) | |
3. Mean = +0.62 (I1) | 4. Mean = +0.59 (I4) | |
5. Mean = +0.54 (I2) | 6. Mean = +0.51 (K4) | |
Negative Visual Quality Photos | ||
1. Mean = −0.53 (L3) | 2. Mean = −0.35 (F4) | |
3. Mean = −0.24 (G2) | 4. Mean = −0.14 (E2) | |
5. Mean = −0.13(H3) | 6. Mean = −0.12 (F2) |
Group | Landscape Character | Code | Individual Mean Value | Average Value | |
---|---|---|---|---|---|
Positive Visual Quality | I | Green paddy fields with irrigation canals | I1 | +0.62 | +0.6225 |
I2 | +0.54 | ||||
I3 | +0.74 | ||||
I4 | +0.59 | ||||
K | Partially grown paddy fields and roadside vegetation with irrigation canals | K1 | +0.05 | +0.3925 | |
K2 | +0.64 | ||||
K3 | +0.37 | ||||
K4 | +0.51 | ||||
B | Semi-barren paddy fields with irrigation canals | B1 | +0.33 | +0.3 | |
B2 | +0.24 | ||||
B3 | +0.28 | ||||
B4 | +0.35 | ||||
D | Semi-barren paddy fields with open horizon view | D1 | +0.01 | +0.1125 | |
D2 | −0.01 | ||||
D3 | +0.31 | ||||
D4 | +0.14 | ||||
A | Barren paddy fields with roadside vegetation | A1 | +0.14 | +0.085 | |
A2 | −0.01 | ||||
A3 | −0.05 | ||||
A4 | +0.26 | ||||
J | Partially grown paddy fields with roadside vegetation | J1 | +0.08 | +0.045 | |
J2 | +0.06 | ||||
J3 | +0.16 | ||||
J4 | −0.12 | ||||
Moderate Visual Quality (M = 0) | |||||
Negative Visual Quality | C | Roadside oil palm vegetation | C1 | −0.01 | −0.0275 |
C2 | −0.02 | ||||
C3 | −0.04 | ||||
C4 | −0.04 | ||||
H | Partial oil palm roadside vegetation | H1 | −0.12 | −0.0575 | |
H2 | +0.07 | ||||
H3 | −0.13 | ||||
H4 | −0.05 | ||||
E | Roadside banana tree vegetation | E1 | −0.1 | −0.0775 | |
E2 | −0.14 | ||||
E3 | −0.06 | ||||
E4 | −0.01 | ||||
G | Mix vegetation with settlements | G1 | −0.02 | −0.0925 | |
G2 | −0.24 | ||||
G3 | −0.10 | ||||
G4 | −0.01 | ||||
F | A dense mix of roadside vegetation | F1 | −0.11 | −0.175 | |
F2 | −0.12 | ||||
F3 | −0.12 | ||||
F4 | −0.35 | ||||
L | Roadside settlements and commercial structures | L1 | −0.12 | −0.19 | |
L2 | −0.07 | ||||
L3 | −0.53 | ||||
L4 | −0.04 |
Before Heatmap Analysis | After Heatmap Analysis | |
---|---|---|
Positive Visual Quality | ||
1. Group (Mean) | I (I3, M = +0.74) | |
Landscape Character | Green paddy fields with irrigation canals | |
2. Group (Mean) | K (K2, M = +0.64) | |
Landscape Character | Partially grown paddy fields and roadside vegetation with irrigation canals | |
3. Group (Mean) | B (B4, M = +0.35) | |
Landscape Character | Semi-barren paddy fields with irrigation canals | |
4. Group (Mean) | D (D3, M = +0.31) | |
Landscape Character | Semi-barren paddy fields with open horizon view | |
5. Group (Mean) | A (A4, M = +0.26) | |
Landscape Character | Barren paddy fields with roadside vegetation | |
6. Group (Mean) | J (J2, M = +0.16) | |
Landscape Character | Partially grown paddy fields with roadside vegetation | |
Moderate Visual Quality (M = 0) | ||
Negative Visual Quality | ||
1. Group (Mean) | C (C3, M = −0.04) | |
Landscape Character | Roadside oil palm vegetation | |
2. Group (Mean) | H (H3, M = −0.13) | |
Landscape Character | Partial oil palm roadside vegetation | |
3. Group (Mean) | E (E2, M = −0.14) | |
Landscape Character | Roadside banana tree vegetation | |
4. Group (Mean) | G (G2, M = −0.24) | |
Landscape Character | Mix vegetation with settlements | |
5. Group (Mean) | F (F4, M = −0.35) | |
Landscape Character | A dense mix of roadside vegetation | |
6. Group (Mean) | L (L3, M = −0.53) | |
Landscape Character | Roadside settlements and commercial structures |
Visual Quality | Valid (N) | N of Items | Reliability Cronbach’s Alpha |
---|---|---|---|
Positive visual quality (PVQ) | 250 | 24 | 0.969 |
Negative visual quality (NVQ) | 250 | 24 | 0.961 |
Total reliability (Cronbach’s Alpha) for 48 photos | 0.976 |
Visual Quality | Kolmogorov–Smirnov a | Shapiro–Wilk | ||||
---|---|---|---|---|---|---|
Statistic | df | Sig. | Statistic | df | Sig. | |
Positive | 0.44 | 250 | 0.200 * | 0.992 | 250 | 0.158 |
Negative | 0.55 | 250 | 0.069 | 0.991 | 250 | 0.128 |
Visual Quality | Variable | Group | N | Mean | F | Sig. | t | Sig. (2-Tailed) | |
---|---|---|---|---|---|---|---|---|---|
Positive Visual Quality | Local or Foreigner | D | Yes | 142 | 3.2535 | 1.037 | 0.309 | 2.819 | 0.005 |
No | 108 | 2.9190 | |||||||
A | Yes | 142 | 3.2183 | 0.884 | 0.348 | 2.697 | 0.007 | ||
No | 108 | 2.9097 | |||||||
J | Yes | 142 | 3.1373 | 3.529 | 0.061 | 2.031 | 0.043 | ||
No | 108 | 2.9168 | |||||||
With or Without Experience | B | Yes | 47 | 3.6277 | 1.217 | 0.271 | 2.626 | 0.009 | |
No | 203 | 3.226 | |||||||
D | Yes | 47 | 3.3670 | 0.753 | 0.386 | 2.097 | 0.037 | ||
No | 203 | 3.0493 | |||||||
A | Yes | 47 | 3.3404 | 0.023 | 0.879 | 2.157 | 0.032 | ||
No | 203 | 3.0259 | |||||||
Negative Visual Quality | Local or Foreigner | L | Yes | 142 | 2.9595 | 3.848 | 0.051 | 3.256 | 0.001 |
No | 108 | 2.6134 |
Positive Group | (18–25, 26–35, Above 36) Group | F | Sig. |
---|---|---|---|
B | Between Groups Within Groups Total | 3.259 | 0.040 |
D | Between Groups Within Groups Total | 3.902 | 0.021 |
A | Between Groups Within Groups Total | 3.612 | 0.028 |
J | Between Groups Within Groups Total | 3.621 | 0.028 |
Positive Group | (I) Age | (J) Age | Mean Difference (I-J) | Sig. |
---|---|---|---|---|
B | 18–25 | 26–35 | 0.32669 * | 0.040 |
D | 18–25 | 26–35 | 0.33528 * | 0.030 |
A | 18–25 | 26–35 | 0.31253 * | 0.038 |
J | 18–25 | 26–35 | 0.30382 * | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Abu Bakar, S.; Maulan, S.; Mohd Yusof, M.J.; Mundher, R.; Zakariya, K. Identifying Visual Quality of Rural Road Landscape Character by Using Public Preference and Heatmap Analysis in Sabak Bernam, Malaysia. Land 2023, 12, 1440. https://doi.org/10.3390/land12071440
Gao H, Abu Bakar S, Maulan S, Mohd Yusof MJ, Mundher R, Zakariya K. Identifying Visual Quality of Rural Road Landscape Character by Using Public Preference and Heatmap Analysis in Sabak Bernam, Malaysia. Land. 2023; 12(7):1440. https://doi.org/10.3390/land12071440
Chicago/Turabian StyleGao, Hangyu, Shamsul Abu Bakar, Suhardi Maulan, Mohd Johari Mohd Yusof, Riyadh Mundher, and Khalilah Zakariya. 2023. "Identifying Visual Quality of Rural Road Landscape Character by Using Public Preference and Heatmap Analysis in Sabak Bernam, Malaysia" Land 12, no. 7: 1440. https://doi.org/10.3390/land12071440
APA StyleGao, H., Abu Bakar, S., Maulan, S., Mohd Yusof, M. J., Mundher, R., & Zakariya, K. (2023). Identifying Visual Quality of Rural Road Landscape Character by Using Public Preference and Heatmap Analysis in Sabak Bernam, Malaysia. Land, 12(7), 1440. https://doi.org/10.3390/land12071440