Land System Simulation of Ruoergai Plateau by Integrating MaxEnt and Boltzmann Entropy into CLUMondo
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Land Use/Cover Type Data
2.2.2. Land Use/Cover Intensity Data
2.2.3. Driving Factors
3. New Method, Evaluation, and Application
3.1. Improved CLUMondo with MaxEnt and Boltzmann Entropy
3.1.1. Overall Framework
- (1)
- For the regression’s accuracy, we use the MaxEnt model to replace the logistic regression built into the CLUMondo model to improve the regression’s accuracy.
- (2)
- For spatial heterogeneity, we computed Boltzmann entropy based on DEM data as an additional driver factor of spatial heterogeneity.
3.1.2. CLUMondo Model
3.1.3. MaxEnt Model
3.1.4. Boltzmann Entropy
- Step 1: Splitting the Raster
- Step 2: Cyclic Calculation
3.2. Evaluation
3.3. Application
3.3.1. Benefit Coefficients Calculation
- Ecological efficiency coefficient (E)
- Economic Benefit Coefficient (D)
- Calculation results in the economic benefit coefficient and ecological benefit coefficient
- Ecological benefit and economic benefit coefficients that take into account land use intensity
3.3.2. Future Scenarios Settings
3.3.3. Other Parameter Settings
- Conversion Resistance
- Transfer Matrix
4. Results
4.1. Land System Maps for Different Scenarios
4.2. Analysis of Land System Type Transitions
5. Discussion
- (1)
- To meet economic development needs, the amount of land used for construction needs to be increased substantially.
- (2)
- Optimizing the development structure for construction land and cropland.
- (3)
- The central plain of Aba County and the northwest of Ruoergai County are suitable for town selection and urban construction.
6. Conclusions
- (1)
- With increasing ecological benefit demands, the water area significantly increases, and the intensity of forest and grassland utilization shows an increasing trend. With 0.25% GDP growth, the water area is about 178 km2. With 2.5% GEP growth, the water area is about 202 km2. The latter is 24 km2 more than the former, which is about 13.6% greater. Low-density forest decreased by 82.2%, High-density forest increased by 6.0%, Low-density grassland decreased by 62.2%, and High-density grassland increased by 0.7%.
- (2)
- With increasing economic benefit demands, construction land and grassland utilization intensities increase. The plain area in the central part of Ruoergai County expands outward for construction land, and new clusters of construction land appear in the eastern region. With 12.6% GDP growth, the High-density construction area is about 399 km2. With 126.1% GEP growth, the water area is about 761 km2. High-density construction land increased by 90.7% (about 362 km2) and High-density grassland increased by 0.6% (about 30 km2).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turner, B.L.; Lambin, E.F.; Verburg, P.H. From land-use/land-cover to land system science. Ambio 2021, 50, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Zhang, J.; Liu, Z.; Huang, Q. Characteristics and progress of land use/cover change research during 1990–2018. J. Geogr. Sci. 2022, 32, 537–559. [Google Scholar] [CrossRef]
- Li, D.; Wang, L. Sensitivity of surface temperature to land use and land cover change-induced biophysical changes: The scale issue. Geophys. Res. Lett. 2019, 46, 9678–9689. [Google Scholar] [CrossRef]
- Heilmayr, R.; Echeverría, C.; Lambin, E.F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 2020, 3, 701–709. [Google Scholar] [CrossRef]
- Dimyati, M.U.H.; Mizuno, K.E.I.; Kobayashi, S.; Kitamura, T. An analysis of land use/cover change in Indonesia. Int. J. Remote Sens. 1996, 17, 931–944. [Google Scholar] [CrossRef]
- Thiery, W.; Davin, E.L.; Seneviratne, S.I. Land Use, Land Cover and Land Management Change: Definitions, Scenarios, and Role in the Climate System. In Oxford Bibliographies in Environmental Science; Oxford University Pres: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Kaul, H.A.; Sopan, I. Land use land cover classification and change detection using high resolution temporal satellite data. J. Environ. 2012, 1, 146–152. [Google Scholar]
- Comber, A.; Fisher, P.; Wadsworth, R. What is land cover? Environ. Plan. B Plan. Des. 2005, 32, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Hajima, T. Biogeophysical and biogeochemical impacts of land-use change simulated by MIROC-ES2L. Prog. Earth Planet. Sci. 2020, 7, 54. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Sohl, T.L.; Sleeter, B.M.; Zhu, Z.; Sayler, K.L.; Bennett, S.; Bouchard, M.; Reker, R.; Hawbaker, T.; Wein, A.; Liu, S.; et al. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes. Appl. Geogr. 2012, 34, 111–124. [Google Scholar] [CrossRef]
- Gao, P.; Gao, Y.; Ou, Y.; McJeon, H.; Zhang, X.; Ye, S.; Wang, Y.; Song, C. Fulfilling global climate pledges can lead to major increase in forest land on Tibetan Plateau. iScience 2023, 26, 106364. [Google Scholar] [CrossRef] [PubMed]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Meiyappan, P.; Song, Y.; House, J.I. CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data. Glob. Chang. Biol. 2013, 19, 2893–2906. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Sharma, R.; Nehren, U.; Rahman, S.A.; Meyer, M.; Rimal, B.; Aria Seta, G.; Baral, H. Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Reg. Environ. Chang. 2017, 17, 285–297. [Google Scholar] [CrossRef]
- Patz, J.A.; Daszak, P.; Tabor, G.M.; Aguirre, A.A.; Pearl, M.; Epstein, J.; Wolfe, N.D.; Kilpatrick, A.M.; Foufopoulos, J.; Molyneux, D. Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect. 2004, 112, 1092–1098. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Sun, Z.; Yao, Y.; Liu, Y. Trends of Grassland Resilience under Climate Change and Human Activities on the Mongolian Plateau. Remote Sens. 2023, 15, 2984. [Google Scholar] [CrossRef]
- Yang, H.; Mu, S.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. CATENA 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, B.R.; Reedy, R.C.; Stonestrom, D.A.; Prudic, D.E.; Dennehy, K.F. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob. Chang. Biol. 2005, 11, 1577–1593. [Google Scholar] [CrossRef]
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110, 3665–3672. [Google Scholar] [CrossRef]
- Eitelberg, D.A.; van Vliet, J.; Doelman, J.C.; Stehfest, E.; Verburg, P.H. Demand for biodiversity protection and carbon storage as drivers of global land change scenarios. Glob. Environ. Chang. 2016, 40, 101–111. [Google Scholar] [CrossRef]
- Song, C.; Cheng, C.; Shi, P. Geography complexity: New connotations of geography in the new era. Acta Geogr. Sin. 2018, 73, 1204–1213. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Huajun, T.; Wenbin, W.U.; Peng, Y.; Youqi, C.; Peter, H.V. Recent Progresses of Land Use and Land Cover Change (LUCC) Models. Acta Geogr. Sin. 2009, 64, 456–468. [Google Scholar]
- Muller, M.R.; Middleton, J. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc. Ecol. 1994, 9, 151–157. [Google Scholar] [CrossRef]
- Portela, R.; Rademacher, I. A dynamic model of patterns of deforestation and their effect on the ability of the Brazilian Amazonia to provide ecosystem services. Ecol. Model. 2001, 143, 115–146. [Google Scholar] [CrossRef]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef] [Green Version]
- Valbuena, D.; Verburg, P.H.; Bregt, A.K.; Ligtenberg, A. An agent-based approach to model land-use change at a regional scale. Landsc. Ecol. 2010, 25, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yeh, A.G.-O. Cellular automata for simulating complex land use systems using neural networks. Geogr. Res. 2005, 24, 19–27. [Google Scholar] [CrossRef]
- Boissau, S.; Castella, J.-C. Constructing a common representation of local institutions and land use systems through simulation-gaming and multiagent modeling in rural areas of Northern Vietnam: The SAMBA-Week methodology. Simul. Gaming 2003, 34, 342–357. [Google Scholar] [CrossRef] [Green Version]
- Veldkamp, A.; Fresco, L.O. CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecol. Model. 1996, 91, 231–248. [Google Scholar] [CrossRef]
- Verburg, P.H.; de Koning, G.H.J.; Kok, K.; Veldkamp, A.; Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model. 1999, 116, 45–61. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Chang. Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef]
- Gao, P.; Gao, Y.; Zhang, X.; Ye, S.; Song, C. CLUMondo-BNU for simulating land system changes based on many-to-many demand–supply relationships with adaptive conversion orders. Sci. Rep. 2023, 13, 5559. [Google Scholar] [CrossRef]
- Kakouei, K.; Kraemer, B.M.; Anneville, O.; Carvalho, L.; Feuchtmayr, H.; Graham, J.L.; Higgins, S.; Pomati, F.; Rudstam, L.G.; Stockwell, J.D.; et al. Phytoplankton and cyanobacteria abundances in mid-21st century lakes depend strongly on future land use and climate projections. Glob. Chang. Biol. 2021, 27, 6409–6422. [Google Scholar] [CrossRef]
- Malek, Z.; Verburg, P.H.; Geijzendorffer, I.R.; Bondeau, A.; Cramer, W. Global change effects on land management in the Mediterranean region. Glob. Environ. Chang.-Hum. Policy Dimens. 2018, 50, 238–254. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Xie, Y.; Song, C.; Cheng, C.; Ye, S. Exploring detailed urban-rural development under intersecting population growth and food production scenarios: Trajectories for China’s most populous agricultural province to 2030. J. Geogr. Sci. 2023, 33, 222–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Chen, G.; Hu, G. Simulation of urban expansion based on cellular automata and maximum entropy model. Sci. China Earth Sci. 2020, 50, 339–352. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Yang, X.; Qiao, W.; Wang, D. The Demarcation of Urban Development Boundary Based on the Maxent-CA Model: A Case Study of Wuxi in China. Sustainability 2022, 14, 11426. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, H.; Jia, D.; Song, C.; Cheng, C.; Shen, S. Efficient Approach for Computing the Discrimination Ratio-Based Variant of Information Entropy for Image Processing. IEEE Access 2020, 8, 92552–92564. [Google Scholar] [CrossRef]
- Gao, P.; Li, Z. Computation of the Boltzmann entropy of a landscape: A review and a generalization. Landsc. Ecol. 2019, 34, 2183–2196. [Google Scholar] [CrossRef]
- Sichuan Provincial Finance Department. Some Protection and Restoration of Ecological Management Budget (Provincial) Notify the Financial Department of Sichuan Province Natural Resources in Sichuan Province about Released in 2023, 2. Available online: http://czt.sc.gov.cn/scczt/c102423/2023/1/28/4a3004667e504d8eaea17c349d610170.shtml (accessed on 24 May 2023).
- The People’s Government of Aba Tibetan Qiang Autonomous Prefecture. Aba Tibetan and Qiang Autonomous Prefecture, Aba Prefecture People’s Government about Print and Distribute the Fourteenth National Economic and Social Development Five-Year Plan and 2035 Vision Compendium of Notice. Available online: https://www.abazhou.gov.cn/abazhou/c102077/202103/598d763b5bab4cfa98cbdb86acdfd778.shtml (accessed on 24 May 2023).
- The People’s Government of Ganzi Tibetan Autonomous Prefecture. The 14th Five-Year Plan for National Economic and Social Development of Garze Tibetan Autonomous Prefecture and the Outline of the Long-Range Goals to 2035. Available online: http://www.gzz.gov.cn/ghxxfzgh/article/63726 (accessed on 24 May 2023).
- Xiang, S.; Guo, R.; Wu, N.; Sun, S. Current status and future prospects of Zoige Marsh in Eastern Qinghai-Tibet Plateau. Ecol. Eng. 2009, 35, 553–562. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. Remote Sensing Data Set of Multi-Period Land Use Monitoring in China; Resource and Environmental Science Data Center: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Xu, X.; Liu, L. Dataset of Cropland Production Potential in China; Resource and Environmental Science Data Center: Beijing, China, 2017. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Mao, K.; Meng, F.; Shi, J.; Zeng, J.; Shen, X.; Cui, Y.; Jiang, L.; Guo, Z. A fine-resolution soil moisture dataset for China in 2002–2018. Earth Syst. Sci. Data 2021, 13, 3239–3261. [Google Scholar] [CrossRef]
- Yiru, X.; Peichao, G.; Sijing, Y.; Shi, S.; Xiaodan, Z. Review and Prospect of Land Change Simulation Model CLUMondo. Geomat. World 2022, 29, 7–12. [Google Scholar]
- Jaynes, E.T. On the rationale of maximum-entropy methods. Proc. IEEE 1982, 70, 939–952. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, H.; Li, Z. A hierarchy-based solution to calculate the configurational entropy of landscape gradients. Landsc. Ecol. 2017, 32, 1133–1146. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zhang, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar] [CrossRef]
- Liu, D.Y.; Ding, W.X.; Jia, Z.J.; Cai, Z.C. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China. Biogeosciences 2011, 8, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Gai, N.; Pan, J.; Tang, H.; Chen, S.; Chen, D.Z.; Zhu, X.H.; Lu, G.H.; Yang, Y.L. Organochlorine pesticides and polychlorinated biphenyls in surface soils from Ruoergai high altitude prairie, east edge of Qinghai-Tibet Plateau. Sci. Total Environ. 2014, 478, 90–97. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J.; Luo, Y.M.; Duan, D.P.; Zhang, Z.H.; Wen, X.H.; Min, X.Y.; Guo, X.Y.; Boman, B.J. An overview on the organic pollution around the Qinghai-Tibet plateau: The thought-provoking situation. Environ. Int. 2016, 97, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Huo, L.L.; Chen, Z.K.; Zou, Y.C.; Lu, X.G.; Guo, J.W.; Tang, X.G. Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecol. Eng. 2013, 51, 287–295. [Google Scholar] [CrossRef]
- Jia, S.X.; Zhang, X.K. Study on the crust phases of deep seismic sounding experiments and fine crust structures in the northeast margin of Tibetan plateau. Chin. J. Geophys. Chin. Ed. 2008, 51, 1431–1443. [Google Scholar]
- Li, J.; Wang, W.; Hu, G.; Wei, Z. Changes in ecosystem service values in Zoige Plateau, China. Agric. Ecosyst. Environ. 2010, 139, 766–770. [Google Scholar] [CrossRef]
- Wang, Y.; Song, C.; Cheng, C.; Wang, H.; Wang, X.; Gao, P. Modelling and evaluating the economy-resource-ecological environment system of a third-polar city using system dynamics and ranked weights-based coupling coordination degree model. Cities 2023, 133, 104151. [Google Scholar] [CrossRef]
Category | Name | Abbreviations | Data Sources/Links |
---|---|---|---|
Socio-economic driving factors | Distance from traffic roads | traffic | Calculated using Open Street Map (https://www.openstreetmap.org (accessed on 24 May 2023)) |
Gross Domestic Product | gdp | Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data [53] | |
Nightlight data | nightlight | EOG Nighttime Light (Index of/nighttime_light/annual/v20 (mines.edu)) | |
Population density data | pop | Google Earth Engine Datasets (https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop (accessed on 24 May 2023)) | |
Natural-environmental driving factors | Digital Elevation Model | dem | Resource and Environmental Science and Data Center (https://www.resdc.cn/DOI/DOI.aspx?DOIID=123 (accessed on 24 May 2023)) |
Slope | slope | Calculated based on the DEM | |
Slope aspect | aspect | ||
Normalized Difference Vegetation Index | ndvi | Resource and Environmental Science and Data Center (https://www.resdc.cn/data.aspx?DATAID=257 (accessed on 24 May 2023)) | |
Net primary productivity | npp | GLASS product (Index of/NPP/AVHRR/GLASS_NPP_005D_YEAR/2015 (umd.edu)) | |
The proportion of silt in soil | soilsilt | Resource and Environmental Science and Data Center (https://www.resdc.cn/data.aspx?DATAID=260 (accessed on 24 May 2023)) | |
The proportion of clay in soil | soilclay | ||
The proportion of sand in soil | soilsand | ||
Cropland production potential | pcrop | Dataset of cropland production potential in China, Resource and Environmental Science Data Center (http://www.resdc.cn/DOI (accessed on 24 May 2023)) [54] | |
Average annual precipitation | Pre | 1 km monthly temperature and precipitation dataset for China from 1901 to 2017 [55] | |
Average annual temperature | tmp | ||
Soil organic matter content | organic | SoilGrids250m 2.0 (https://soilgrids.org/ (accessed on 24 May 2023)) | |
Soil moisture | soilmoisture | A fine-resolution soil moisture dataset for China in 2002~2018 [56] |
Experimental Setup | Kappa | Fraction Correct | KLocation | KHistogram |
---|---|---|---|---|
MaxEnt and Boltzmann entropy | 0.773 | 0.952 | 0.814 | 0.950 |
Only Boltzmann entropy | 0.580 | 0.929 | 0.888 | 0.654 |
Only MaxEnt | 0.766 | 0.951 | 0.816 | 0.938 |
Original model | 0.627 | 0.937 | 0.989 | 0.634 |
Ecological Services | Forest | Grassland | Cropland | Wetland | Water | Desert |
---|---|---|---|---|---|---|
Gas Regulation | 3.50 | 0.80 | 0.50 | 1.80 | 0.00 | 0.00 |
Climate Regulation | 2.70 | 0.90 | 0.89 | 17.10 | 0.46 | 0.00 |
Water Harvesting | 3.20 | 0.80 | 0.60 | 15.50 | 20.38 | 0.03 |
Soil Formation and Protection | 3.90 | 1.95 | 1.46 | 1.71 | 0.01 | 0.02 |
Waste Treatment | 1.31 | 1.31 | 1.64 | 18.18 | 18.18 | 0.01 |
Biodiversity Conservation | 3.26 | 1.09 | 0.71 | 2.50 | 2.49 | 0.34 |
Food Production | 0.10 | 0.30 | 1.00 | 0.30 | 0.10 | 0.01 |
Raw Materials | 2.60 | 0.05 | 0.10 | 0.07 | 0.01 | 0.00 |
Recreation and Culture | 1.28 | 0.04 | 0.01 | 5.55 | 4.34 | 0.01 |
Total | 21.85 | 7.24 | 6.91 | 62.71 | 45.97 | 0.42 |
County | Grain Production (t) | Grain Area (km2) |
---|---|---|
Ruoergai | 5987.56 | 22.45 |
Hongyuan | 205.26 | 1.30 |
Aba | 6388.10 | 40.46 |
Magu | 12,488.19 | 79.09 |
Luqu | 3070.00 | 15.12 |
Total Area | 28,139.12 | 158.42 |
Land Use Type | Cropland | Forest | Grassland | Water | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|
Economic benefit coefficient (RMB/km2) | 1,814,700 | 9900 | 91,300 | 6900 | 24,061,600 | 0 |
Ecological efficiency coefficient (RMB/km2) | 391,288 | 1,237,286 | 409,975 | 3,077,028 | 0 | 0 |
Land Use Type | Cropland | Forest | Grassland | Water | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|
Corresponding Industries | Agriculture | Forestry | Animal Husbandry | Fishery | Other Industries | None |
Ruoergai | 3674.00 | 358.00 | 119,483.00 | 180.00 | 63,850.00 | 0.00 |
Hongyuan | 3371.14 | 815.64 | 85,137.74 | 0.00 | 41,301.48 | 0.00 |
Aba | 6337.00 | 259.00 | 46,993.00 | 0.00 | 59,665.00 | 0.00 |
Magu | 12,388.30 | 506.32 | 61,495.78 | 0.00 | 147,009.60 | 0.00 |
Luqu | 8352.52 | 341.38 | 45,696.42 | 0.00 | 94,883.43 | 0.00 |
Entire study area | 34,122.96 | 2280.34 | 358,805.94 | 180.00 | 406,709.51 | 0.00 |
Area | 188 | 2314 | 39,287 | 262 | 169 | 530 |
Economic Benefit coefficient | 181.47 | 0.99 | 9.13 | 0.69 | 2406.16 | 0.00 |
Land Type | Economic Benefit Coefficient | Ecological Efficiency Coefficient | Area in 2021 |
---|---|---|---|
Low-density Cropland | 326,700 | 70,429 | 58 |
High-density Cropland | 1,270,300 | 273,900 | 139 |
Low-density Forest | 1300 | 160,843 | 462 |
High-density Forest | 6100 | 767,100 | 1851 |
Low-density Grassland | 33,800 | 151,686 | 1571 |
High-density Grassland | 81,300 | 364,871 | 37,716 |
Low-density Water | 700 | 307,700 | 94 |
High-density Water | 3800 | 1,723,129 | 166 |
Low-density Construction Land | 2,646,800 | 0 | 54 |
High-density Construction Land | 12,993,300 | 0 | 115 |
Scenarios | GEP Growth (%) | GDP Growth (%) |
---|---|---|
Scenario 1 | 0.25% | 12.60% |
Scenario 2 | 1.25% | 12.60% |
Scenario 3 | 2.50% | 12.60% |
Scenario 4 | 0.25% | 63.00% |
Scenario 5 | 1.25% | 63.00% |
Scenario 6 | 2.50% | 63.00% |
Scenario 7 | 0.25% | 126.10% |
Scenario 8 | 1.25% | 126.10% |
Scenario 9 | 2.50% | 126.10% |
Map 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Sum Map 1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Map 2 | ||||||||||||||
0 | 11 | 4 | 0 | 0 | 7 | 15 | 1 | 0 | 0 | 1 | 2 | 0 | 41 | |
1 | 6 | 84 | 0 | 0 | 14 | 7 | 0 | 0 | 1 | 3 | 1 | 0 | 116 | |
2 | 0 | 0 | 346 | 62 | 16 | 102 | 0 | 0 | 1 | 0 | 1 | 2 | 530 | |
3 | 0 | 0 | 41 | 1670 | 65 | 14 | 1 | 0 | 2 | 0 | 0 | 0 | 1793 | |
4 | 10 | 15 | 15 | 104 | 1188 | 257 | 3 | 10 | 8 | 9 | 7 | 66 | 1692 | |
5 | 30 | 35 | 60 | 15 | 225 | 37,060 | 19 | 17 | 10 | 12 | 86 | 63 | 37,632 | |
6 | 0 | 0 | 0 | 0 | 2 | 11 | 67 | 17 | 0 | 0 | 0 | 2 | 99 | |
7 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 113 | 0 | 0 | 9 | 5 | 132 | |
8 | 0 | 0 | 0 | 0 | 1 | 6 | 0 | 0 | 31 | 9 | 0 | 0 | 47 | |
9 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 80 | 0 | 0 | 310 | |
10 | 1 | 0 | 0 | 0 | 7 | 153 | 1 | 8 | 1 | 1 | 53 | 19 | 123 | |
11 | 0 | 0 | 0 | 0 | 45 | 88 | 0 | 1 | 0 | 0 | 14 | 194 | 640 | |
Sum Map 2 | 58 | 139 | 462 | 1851 | 1571 | 37,716 | 94 | 166 | 54 | 115 | 173 | 351 | 44,634 |
Land Type Codes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Conversion resistance | 0.27 | 0.72 | 0.65 | 0.93 | 0.70 | 0.99 | 0.68 | 0.86 | 0.66 | 0.98 | 0.22 | 0.57 |
Land Type Codes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
2 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
3 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
4 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
5 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
6 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
7 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
10 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
11 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
Scenarios | Origin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Land Types | |||||||||||
0 | 58 | 43 | 19 | 12 | 20 | 3 | 0 | 0 | 0 | 0 | |
1 | 139 | 129 | 163 | 174 | 80 | 95 | 103 | 101 | 101 | 101 | |
2 | 462 | 369 | 244 | 66 | 1 | 0 | 0 | 0 | 0 | 0 | |
3 | 1851 | 1781 | 1827 | 1900 | 1591 | 1732 | 1790 | 1671 | 1667 | 1657 | |
4 | 1571 | 1265 | 972 | 584 | 350 | 42 | 18 | 15 | 14 | 14 | |
5 | 37,716 | 38,188 | 38,546 | 39,021 | 39,199 | 39,370 | 39,259 | 38,861 | 38,841 | 38,804 | |
6 | 94 | 72 | 58 | 40 | 18 | 13 | 9 | 9 | 9 | 9 | |
7 | 166 | 145 | 153 | 185 | 127 | 139 | 183 | 163 | 169 | 181 | |
8 | 54 | 163 | 181 | 188 | 688 | 679 | 718 | 1231 | 1245 | 1279 | |
9 | 115 | 139 | 132 | 128 | 227 | 228 | 220 | 250 | 255 | 256 | |
10 | 173 | 130 | 129 | 126 | 123 | 123 | 124 | 123 | 123 | 123 | |
11 | 351 | 326 | 326 | 326 | 326 | 326 | 326 | 326 | 326 | 326 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Wang, Y.; Lin, J.; Gao, P. Land System Simulation of Ruoergai Plateau by Integrating MaxEnt and Boltzmann Entropy into CLUMondo. Land 2023, 12, 1450. https://doi.org/10.3390/land12071450
Sun Z, Wang Y, Lin J, Gao P. Land System Simulation of Ruoergai Plateau by Integrating MaxEnt and Boltzmann Entropy into CLUMondo. Land. 2023; 12(7):1450. https://doi.org/10.3390/land12071450
Chicago/Turabian StyleSun, Ziyun, Yuqi Wang, Juru Lin, and Peichao Gao. 2023. "Land System Simulation of Ruoergai Plateau by Integrating MaxEnt and Boltzmann Entropy into CLUMondo" Land 12, no. 7: 1450. https://doi.org/10.3390/land12071450
APA StyleSun, Z., Wang, Y., Lin, J., & Gao, P. (2023). Land System Simulation of Ruoergai Plateau by Integrating MaxEnt and Boltzmann Entropy into CLUMondo. Land, 12(7), 1450. https://doi.org/10.3390/land12071450