Exploring the Comprehensive Evaluation of Sustainable Development in Rural Tourism: A Perspective and Method Based on the AVC Theory
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Research Framework
2.3. Model Construction
2.3.1. AVC Rural Landscape Comprehensive Evaluation Index Determination
- Preliminary Construction of Evaluation Factors
- 2.
- Index Selection
- Reliability Test
- Factor Analysis
- 3.
- Establishment of Indicator System
2.3.2. Establishment of Weights for AVC Rural Landscape Indicators
- 1.
- Constructing Judgment Matrix
- 2.
- Calculation of Sub-level Weights
- Calculate the product of each row in the judgment matrix:
- Calculate the nth root of :
- Normalize the vector to obtain the weight vector:
- Consistency Check
- 3.
- Calculation of Weights for the Factor and Indicator Levels
3. Results
3.1. Differential Analysis
3.1.1. Analysis of the Differences in Weighted Values of AVC Forces
3.1.2. Analysis of Weighted Differences in Attractiveness Indicators
3.1.3. Analysis of Weighted Differences in Vitality Indicators
3.1.4. Analysis of Weighted Differences in Carrying Capacity Indicators
3.2. Rural Landscape Evaluation Analysis
3.2.1. Evaluation Data Processing
- 1.
- Reliability and Validity Test
- 2.
- AVC Rural Landscape Comprehensive Evaluation
3.2.2. Comprehensive Evaluation Results
- 1.
- Comprehensive Analysis
- 2.
- Analysis of Three Forces
- Caijiapo Village
- Liyuanpo Village
- Xiazhuang Village
- Liyukou Village
- Laoyukou Village
3.3. Analysis of Comprehensive Evaluation of Rural Landscape in Shijing Area
3.3.1. Comparative Analysis of Comprehensive Rural Landscape in Shijing Area
3.3.2. Comprehensive Analysis of Three Forces in Rural Landscape of Shijing Area
- 1.
- Attraction
- 2.
- Vitality
- 3.
- Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haibo, C.; Ayamba, E.C.; Udimal, T.B.; Agyemang, A.O.; Ruth, A. Tourism and sustainable development in China: A review. Environ. Sci. Pollut. Res. 2020, 27, 39077–39093. [Google Scholar] [CrossRef]
- Liu, Y.; Zang, Y.; Yang, Y. China’s rural revitalization and development: Theory, technology and management. J. Geogr. Sci. 2020, 30, 1923–1942. [Google Scholar] [CrossRef]
- Kapur, R. Significance of Rural Development. Acta Sci. Agric. 2019, 3, 167–173. [Google Scholar] [CrossRef]
- Scoones, I. Livelihoods perspectives and rural development. J. Peasant Stud. 2009, 36, 171–196. [Google Scholar] [CrossRef]
- Cook, P. Infrastructure, rural electrification and development. Energy Sustain. Dev. 2011, 15, 304–313. [Google Scholar] [CrossRef]
- Gansauer, G.; Haggerty, J. Beyond city limits: Infrastructural regionalism in rural Montana, USA. Territ. Politics Gov. 2021, 9, 1–19. [Google Scholar] [CrossRef]
- Gutierrez-Velez, V.H.; Gilbert, M.R.; Kinsey, D.; Behm, J.E. Beyond the ‘urban’ and the ‘rural’: Conceptualizing a new generation of infrastructure systems to enable rural–urban sustainability. Curr. Opin. Environ. Sustain. 2022, 56, 101177. [Google Scholar] [CrossRef]
- Agnoletti, M.; Emanueli, F.; Corrieri, F.; Venturi, M.; Santoro, A. Monitoring Traditional Rural Landscapes. The Case of Italy. Sustainability 2019, 11, 6107. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Ji, X.; Jiang, D.; Liu, P. Importance assessment and conservation strategy for rural landscape patches in Huang-Huai plain based on network robustness analysis. Ecol. Inform. 2022, 69, 101630. [Google Scholar] [CrossRef]
- Palang, H.; Mander, Ü.; Luud, A. Landscape diversity changes in Estonia. Landsc. Urban Plan. 1998, 41, 163–169. [Google Scholar] [CrossRef]
- Wang, X.; Luo, P.; Zheng, Y.; Duan, W.; Wang, S.; Zhu, W.; Zhang, Y.; Nover, D. Drought Disasters in China from 1991 to 2018: Analysis of Spatiotemporal Trends and Characteristics. Remote Sens. 2023, 15, 1708. [Google Scholar] [CrossRef]
- Lipsky, Z. The changing face of the Czech rural landscape. Landsc. Urban Plan. 1995, 31, 39–45. [Google Scholar] [CrossRef]
- Lin, L.; Wei, X.; Luo, P.; Wang, S.; Kong, D.; Yang, J. Ecological Security Patterns at Different Spatial Scales on the Loess Plateau. Remote Sens. 2023, 15, 1011. [Google Scholar] [CrossRef]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Ruda, G. Rural buildings and environment. Landsc. Urban Plan. 1998, 41, 93–97. [Google Scholar] [CrossRef]
- Poudevigne, I.; van Rooij, S.; Morin, P.; Alard, D. Dynamics of rural landscapes and their main driving factors: A case study in the Seine Valley, Normandy, France. Landsc. Urban Plan. 1997, 38, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Wu, H.; Pei, L.; Zhu, X.; Zhang, D.; Wang, Y.; Luo, P. Study on the spatiotemporal dynamic of ground-level ozone concentrations on multiple scales across China during the blue sky protection campaign. Environ. Int. 2022, 170, 107606. [Google Scholar] [CrossRef]
- Cook, E.A.; Van Lier, H.N. Landscape planning and ecological networks. In Landscape Planning and Ecological Networks; Developments in Landscape Management & Urban Planning, 6F; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Yang, Q. Research on the Changes in Cultural Landscape of Tourist-Type Traditional Chinese Villages from the Perspective of Cultural Memory: Taking Anzhen Village in Chongqing as an Example. Land 2023, 12, 816. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; García-Haro, F.J.; Martínez, B.; Izquierdo-Verdiguier, E.; Atzberger, C.; Camps-Valls, G.; Gilabert, M.A. Understanding deep learning in land use classification based on Sentinel-2 time series. Sci. Rep. 2020, 10, 17188. [Google Scholar] [CrossRef] [PubMed]
- Moharram, M.A.; Sundaram, D.M. Land use and land cover classification with hyperspectral data: A comprehensive review of methods, challenges and future directions. Neurocomputing 2023, 536, 90–113. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X. Spatial Pattern Evolution and Driving Mechanism of Rural Settlements in Rapidly Urbanized Areas: A Case Study of Jiangning District in Nanjing City, China. Land 2023, 12, 749. [Google Scholar] [CrossRef]
- Wang, S.; Luo, P.; Xu, C.; Zhu, W.; Cao, Z.; Ly, S. Reconstruction of Historical Land Use and Urban Flood Simulation in Xi‘an, Shannxi, China. Remote Sens. 2022, 14, 6067. [Google Scholar] [CrossRef]
- Forman, R.T.T. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Arriaza, M.; Cañas-Ortega, J.F.; Cañas-Madueño, J.A.; Ruiz-Aviles, P. Assessing the visual quality of rural landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Xie, H.; Zhu, Z.; He, Y.; Zeng, X.; Wen, Y. Integrated framework of rural landscape research: Based on the global perspective. Landsc. Ecol. 2022, 37, 1161–1184. [Google Scholar] [CrossRef]
- Zasada, I.; Häfner, K.; Schaller, L.; van Zanten, B.T.; Lefebvre, M.; Malak-Rawlikowska, A.; Nikolov, D.; Rodríguez-Entrena, M.; Manrique, R.; Ungaro, F.; et al. A conceptual model to integrate the regional context in landscape policy, management and contribution to rural development: Literature review and European case study evidence. Geoforum 2017, 82, 1–12. [Google Scholar] [CrossRef]
- Meeus, S.J.; Gulinck, H. Semi-urban areas in landscape research: A review. Living Rev. Landsc. Res. 2008, 2, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Duan, Y.; Han, Z. Research on Spatial Patterns and Sustainable Development of Rural Tourism Destinations in the Yellow River Basin of China. Land 2021, 10, 849. [Google Scholar] [CrossRef]
- Tian, Q.; Li, B.Y. Study on spatial characteristics and optimization of rural tourism spots in great wuyi tourism circle. J. Fujian Norm. Univ. 2020, 2, 91–99. [Google Scholar]
- Liu, Y.-L.; Chiang, J.-T.; Ko, P.-F. The benefits of tourism for rural community development. Humanit. Soc. Sci. Commun. 2023, 10, 137. [Google Scholar] [CrossRef]
- Rosalina, P.D.; Dupre, K.; Wang, Y. Rural tourism: A systematic literature review on definitions and challenges. J. Hosp. Tour. Manag. 2021, 47, 134–149. [Google Scholar] [CrossRef]
- Gao, J.; Wu, B. Revitalizing traditional villages through rural tourism: A case study of Yuanjia Village, Shaanxi Province, China. Tour. Manag. 2017, 63, 223–233. [Google Scholar] [CrossRef]
- Prabhakaran, S.; Nair, V.; Ramachandran, S. Community Participation in Rural Tourism: Towards a Conceptual Framework. Procedia Soc. Behav. Sci. 2014, 144, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Giliberto, F.; Labadi, S. Harnessing cultural heritage for sustainable development: An analysis of three internationally funded projects in MENA Countries. Int. J. Herit. Stud. 2022, 28, 133–146. [Google Scholar] [CrossRef]
- Sardaro, R.; La Sala, P.; De Pascale, G.; Faccilongo, N. The conservation of cultural heritage in rural areas: Stakeholder preferences regarding historical rural buildings in Apulia, southern Italy. Land Use Policy 2021, 109, 105662. [Google Scholar] [CrossRef]
- Madanaguli, A.; Dhir, A.; Joseph, R.P.; Albishri, N.A.; Srivastava, S. Environmental sustainability practices and strategies in the rural tourism and hospitality sector: A systematic literature review and suggestions for future research. Scand. J. Hosp. Tour. 2023, 23, 1–28. [Google Scholar] [CrossRef]
- Qin, J.; Duan, W.; Chen, Y.; Dukhovny, V.A.; Sorokin, D.; Li, Y.; Wang, X. Comprehensive evaluation and sustainable development of water–energy–food–ecology systems in Central Asia. Renew. Sustain. Energy Rev. 2022, 157, 112061. [Google Scholar] [CrossRef]
- Zhang, P.; Feng, G. Application of fuzzy comprehensive evaluation to evaluate the effect of water flooding development. J. Pet. Explor. Prod. Technol. 2018, 8, 1455–1463. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Gardoni, M. Concept Evaluation Based on Fuzzy Analytic Hierarchy Process. In Proceedings of the 2020 IEEE International Systems Conference (SysCon), Toronto, ON, Canada, 24 August–20 September 2020; pp. 1–5. [Google Scholar]
- Terkenli, T.S. Research Advances in Tourism-Landscape Interrelations: An Editorial. Land 2021, 10, 944. [Google Scholar] [CrossRef]
- Li, W.; Zhou, Y.; Zhang, Z. Strategies of Landscape Planning in Peri-Urban Rural Tourism: A Comparison between Two Villages in China. Land 2021, 10, 277. [Google Scholar] [CrossRef]
- Jiménez-García, M.; Ruiz-Chico, J.; Peña-Sánchez, A.R. Landscape and Tourism: Evolution of Research Topics. Land 2020, 9, 488. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Sedaghat, M.; Maknoon, R.; Zavadskas, E.K. Sustainable tourism: A comprehensive literature review on frameworks and applications. Econ. Res. Ekon. Istraživanja 2015, 28, 1–30. [Google Scholar] [CrossRef]
- López-Sanz, J.M.; Penelas-Leguía, A.; Gutiérrez-Rodríguez, P.; Cuesta-Valiño, P. Rural Tourism and the Sustainable Development Goals. A Study of the Variables That Most Influence the Behavior of the Tourist. Front. Psychol. 2021, 12, 722973. [Google Scholar] [CrossRef]
- Li, W.; Zhou, Y.; Dai, X.; Hu, F. Evaluation of Rural Tourism Landscape Resources in Terms of Carbon Neutrality and Rural Revitalization. Sustainability 2022, 14, 2863. [Google Scholar] [CrossRef]
- Cavagnaro, D.E. Tourism and Water. J. Tour. Futures 2017, 3, 81–82. [Google Scholar] [CrossRef] [Green Version]
- Meo, M.S.; Sabir, S.A.; Arain, H.; Nazar, R. Water resources and tourism development in South Asia: An application of dynamic common correlated effect (DCCE) model. Environ. Sci. Pollut. Res. 2020, 27, 19678–19687. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Luo, M.; Li, F.; Qi, X.; Huo, A.; Wang, Z.; He, B.; Takara, K.; Nover, D.; Wang, Y. Urban flood numerical simulation: Research, methods and future perspectives. Environ. Model. Softw. 2022, 156, 105478. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, P.; Zha, X.; Xu, C.; Kang, S.; Zhou, M.; Nover, D.; Wang, Y. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 379, 134043. [Google Scholar] [CrossRef]
- Buckley, R. Tourism and Environment. Annu. Rev. Environ. Resour. 2011, 36, 397–416. [Google Scholar] [CrossRef]
- Xu, L.; Ao, C.; Liu, B.; Cai, Z. Ecotourism and sustainable development: A scientometric review of global research trends. Environ. Dev. Sustain. 2023, 25, 2977–3003. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Zhen, Z.; Liu, L.; Luo, P. The Construction of Ecological Security Pattern under Rapid Urbanization in the Loess Plateau: A Case Study of Taiyuan City. Remote Sens. 2023, 15, 1523. [Google Scholar] [CrossRef]
- Zhu, W.; Cao, Z.; Luo, P.; Tang, Z.; Zhang, Y.; Hu, M.; He, B. Urban Flood-Related Remote Sensing: Research Trends, Gaps and Opportunities. Remote Sens. 2022, 14, 5505. [Google Scholar] [CrossRef]
- Deng, H.; Pepin, N.C.; Chen, Y.; Guo, B.; Zhang, S.; Zhang, Y.; Chen, X.; Gao, L.; Meibing, L.; Ying, C. Dynamics of Diurnal Precipitation Differences and Their Spatial Variations in China. J. Appl. Meteorol. Climatol. 2022, 61, 1015–1027. [Google Scholar] [CrossRef]
- Duan, W.; Zou, S.; Christidis, N.; Schaller, N.; Chen, Y.; Sahu, N.; Li, Z.; Fang, G.; Zhou, B. Changes in temporal inequality of precipitation extremes over China due to anthropogenic forcings. Npj Clim. Atmos. Sci. 2022, 5, 33. [Google Scholar] [CrossRef]
- Hu, Y.; Duan, W.; Chen, Y.; Zou, S.; Kayumba, P.M.; Qin, J. Exploring the changes and driving forces of water footprint in Central Asia: A global trade assessment. J. Clean. Prod. 2022, 375, 134062. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, K.; Chao, L.; Chen, G.; Xia, Y.; Zhang, C. Investigating the Feasibility of Using Satellite Rainfall for the Integrated Prediction of Flood and Landslide Hazards over Shaanxi Province in Northwest China. Remote Sens. 2023, 15, 2457. [Google Scholar] [CrossRef]
- Kong, W.; Wang, T.; Liu, L.; Luo, P.; Cui, J.; Wang, L.; Hua, X.; Duan, W.; Su, F. A novel design and application of spatial data management platform for natural resources. J. Clean. Prod. 2023, 411, 137183. [Google Scholar] [CrossRef]
- Luo, P.; Zheng, Y.; Wang, Y.; Zhang, S.; Yu, W.; Zhu, X.; Huo, A.; Wang, Z.; He, B.; Nover, D. Comparative Assessment of Sponge City Constructing in Public Awareness, Xi′an, China. Sustainability 2022, 14, 11653. [Google Scholar] [CrossRef]
KMO and Bartlett’s Test | ||
---|---|---|
Adequacy of Sampling for KMO | Measure | 0.850 |
Bartlett’s Test of Sphericity | Approximate Chi-Square | 1958.443 |
Degrees of Freedom | 437 | |
Significance Level | 0.000 |
Objective Hierarchy | Project Hierarchy | Factor Hierarchy | Indicator Hierarchy |
---|---|---|---|
AVC Rural Landscape Comprehensive Evaluation (A) | Attraction (B1) | Natural Landscape (C1) | Terrain and Landform Peculiarity (D1) |
Agricultural Landscape Area Ratio (D2) | |||
Water Landscape Area Ratio (D3) | |||
Biological Resource Richness (D4) | |||
Seasonal Landscape Characteristic (D5) | |||
Cultural Landscape (C2) | Indigenous Architecture Regionality (D6) | ||
Cultural Landscape Uniqueness (D7) | |||
Local Customs and Traditions (D8) | |||
Location Conditions (C3) | Abundance of Surrounding Tourism Resources (D9) | ||
Geographical Advantage (D10) | |||
Geographic Accessibility (D11) | |||
Residential Environment (C4) | Cleanliness of Village Environment (D12) | ||
Adequacy of Infrastructure (D13) | |||
Rationality of Residential Layout (D14) | |||
Validity (B2) | Economic Vitality (C5) | Per Capita Net Income of Villagers (D15) | |
Output Value per Unit Area (D16) | |||
Diversity of Agricultural Products (D17) | |||
Industrial Structure (C6) | Ratio of Secondary and Tertiary Industries to Total Output Value (D18) | ||
Proportion of Agricultural Organizations and Enterprises Driving Farmers (D19) | |||
Tourism Development (C7) | Tourism Industry Development (D20) | ||
Policy Support (D21) | |||
Capacity (B3) | Ecological Environment Capacity (C8) | Forest Coverage Rate (D22) | |
Air Quality (D23) | |||
Water Environment Quality (D24) | |||
Ecological Stability (D25) | |||
Spatial Resource Capacity (C9) | Population Density (D26) | ||
Maximum Tourist Carrying Capacity (D27) | |||
Service Facility Carrying Capacity (D28) | |||
Psychological Carrying Capacity (C10) | Resident Satisfaction (D29) | ||
Tourist Satisfaction (D30) |
AVC Rural Landscape Comprehensive Evaluation (A) | Attraction | Vitality | Capacity |
---|---|---|---|
Attraction | 1 | 2 | 3 |
Vitality | 1/2 | 1 | 2 |
Capacity | 1/3 | 1/2 | 1 |
Matrix Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.52 | 0.89 | 1.12 | 1.26 | 1.32 | 1.41 | 1.45 | 1.49 |
KMO and Bartlett’s Test | |||
---|---|---|---|
Adequacy of Sampling for KMO | Caijiapo Village | Measure | 0.757 |
Liyuanpo Village | 0.769 | ||
Xiazhuang Village | 0.763 | ||
Liyukou Village | 0.739 | ||
Laoyukou Village | 0.769 | ||
Bartlett’s Test of Sphericity | Caijiapo Village | Approximate Chi-Square | 323.842 |
Degrees of Freedom | 65 | ||
Significance Level | 0.000 | ||
Liyuanpo Village | Approximate Chi-Square | 372.154 | |
Degrees of Freedom | 66 | ||
Significance Level | 0.000 | ||
Xiazhuang Village | Approximate Chi-Square | 362.154 | |
Degrees of Freedom | 67 | ||
Significance Level | 0.000 | ||
Liyukou Village | Approximate Chi-Square | 335.713 | |
Degrees of Freedom | 64 | ||
Significance Level | 0.000 | ||
Laoyukou Village | Approximate Chi-Square | 368.154 | |
Degrees of Freedom | 66 | ||
Significance Level | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Wu, R.; Lou, Y.; Luo, P.; Sun, Y.; He, B.; Hu, M.; Herath, S. Exploring the Comprehensive Evaluation of Sustainable Development in Rural Tourism: A Perspective and Method Based on the AVC Theory. Land 2023, 12, 1473. https://doi.org/10.3390/land12071473
Liu L, Wu R, Lou Y, Luo P, Sun Y, He B, Hu M, Herath S. Exploring the Comprehensive Evaluation of Sustainable Development in Rural Tourism: A Perspective and Method Based on the AVC Theory. Land. 2023; 12(7):1473. https://doi.org/10.3390/land12071473
Chicago/Turabian StyleLiu, Lili, Ruonan Wu, Yuanrong Lou, Pingping Luo, Yan Sun, Bin He, Maochuan Hu, and Srikantha Herath. 2023. "Exploring the Comprehensive Evaluation of Sustainable Development in Rural Tourism: A Perspective and Method Based on the AVC Theory" Land 12, no. 7: 1473. https://doi.org/10.3390/land12071473
APA StyleLiu, L., Wu, R., Lou, Y., Luo, P., Sun, Y., He, B., Hu, M., & Herath, S. (2023). Exploring the Comprehensive Evaluation of Sustainable Development in Rural Tourism: A Perspective and Method Based on the AVC Theory. Land, 12(7), 1473. https://doi.org/10.3390/land12071473