Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Research Framework
2.3.2. Feature Set Construction
2.3.3. Feature Optimization
2.3.4. Random Forest Algorithm
2.3.5. Landscape Pattern Analysis
2.3.6. Accuracy Assessment
3. Results
3.1. Classification Results Using Different Feature Combination Schemes
3.2. Feature Importance Determined by Using Feature Optimization Approach
3.3. Spatial Patterns of NGPCL in Anhui Province
3.3.1. Spatial Distribution Characteristics
3.3.2. Landscape Patterns of NGPCL for Different Terrain Zones
3.3.3. Landscape Patterns of NGPCL for Regions under Different Economic Development Levels
4. Discussion
4.1. Factors Influencing Classification Accuracy
4.2. Potential Policy Implications for Land Resources Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ran, D.; Zhang, Z.; Jing, Y. A Study on the Spatial–Temporal Evolution and Driving Factors of Non-Grain Production in China’s Major Grain-Producing Provinces. Int. J. Environ. Res. Public Health 2022, 19, 16630. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated Land Protection and Rational Use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021; FAO: Rome, Italy, 2021; ISBN 978-92-5-134325-8. [Google Scholar]
- Sadigov, R. Rapid Growth of the World Population and Its Socioeconomic Results. Sci. World J. 2022, 2022, 8110229. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, W.; Kang, D.; Zhang, H. Spatial-Temporal Characteristics and Policy Implication for Non-Grain Production of Cultivated Land in Guanzhong Region. Land Use Policy 2023, 125, 106466. [Google Scholar] [CrossRef]
- Su, Y.; He, S.; Wang, K.; Shahtahmassebi, A.R.; Zhang, L.; Zhang, J.; Zhang, M.; Gan, M. Quantifying the Sustainability of Three Types of Agricultural Production in China: An Emergy Analysis with the Integration of Environmental Pollution. J. Clean. Prod. 2020, 252, 119650. [Google Scholar] [CrossRef]
- Cheng, X.; Tao, Y.; Huang, C.; Yi, J.; Yi, D.; Wang, F.; Tao, Q.; Xi, H.; Ou, W. Unraveling the Causal Mechanisms for Non-Grain Production of Cultivated Land: An Analysis Framework Applied in Liyang, China. Land 2022, 11, 1888. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J. Identifying the Determinants of Nongrain Farming in China and Its Implications for Agricultural Development. Land 2021, 10, 902. [Google Scholar] [CrossRef]
- Lark, T.J.; Schelly, I.H.; Gibbs, H.K. Accuracy, Bias, and Improvements in Mapping Crops and Cropland across the United States Using the USDA Cropland Data Layer. Remote Sens. 2021, 13, 968. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, W.; Song, Q.; Yu, Q.; Yang, P.; Tang, H. Recent Progresses in Research of Crop Patterns Mapping by Using Remote Sensing. Sci. Agric. Sin. 2015, 48, 1900–1914. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Liu, J.; Yin, Y.; Gu, Z.; Zhang, J.; Zhou, Y. Formation Mechanism and Sustainable Productivity Impacts of Non-grain Croplands: Evidence from Sichuan Province, China. Land Degrad. Dev. 2023, 34, 1120–1132. [Google Scholar] [CrossRef]
- Li, J.; Zhou, K.; Dong, H.; Xie, B. Cultivated Land Change, Driving Forces and Its Impact on Landscape Pattern Changes in the Dongting Lake Basin. Int. J. Environ. Res. Public Health 2020, 17, 7988. [Google Scholar] [CrossRef]
- Portalés-Julià, E.; Campos-Taberner, M.; García-Haro, F.J.; Gilabert, M.A. Assessing the Sentinel-2 Capabilities to Identify Abandoned Crops Using Deep Learning. Agronomy 2021, 11, 654. [Google Scholar] [CrossRef]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M. Identifying the Driving Forces of Non-Grain Production Expansion in Rural China and Its Implications for Policies on Cultivated Land Protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, L.; Chen, H.; Zhou, Y.; Lin, H.; Wang, C.; Huang, H.; Li, X.; Yuan, Z. Does Farmland Transfer Lead to Non-Grain Production in Agriculture?—An Empirical Analysis Based on the Differentiation of Farmland Renting-In Objects. Sustainability 2022, 15, 379. [Google Scholar] [CrossRef]
- Yin, H.; Brandão, A.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N.; et al. Monitoring Cropland Abandonment with Landsat Time Series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Qiu, T.; Boris Choy, S.T.; Li, S.; He, Q.; Luo, B. Does Land Renting-in Reduce Grain Production? Evidence from Rural China. Land Use Policy 2020, 90, 104311. [Google Scholar] [CrossRef]
- Yi, F.; Sun, D.; Zhou, Y. Grain Subsidy, Liquidity Constraints and Food Security—Impact of the Grain Subsidy Program on the Grain-Sown Areas in China. Food Policy 2015, 50, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhao, B.; Huang, A.; Xiong, B.; Song, C. Characteristics and Driving Forces of Non-Grain Production of Cultivated Land from the Perspective of Food Security. Sustainability 2021, 13, 14047. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s Food Security and Land Use Policy under Rapid Urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Song, W. Review of the Evolution of Cultivated Land Protection Policies in the Period Following China’s Reform and Liberalization. Land Use Policy 2017, 67, 660–669. [Google Scholar] [CrossRef]
- Yang, H. Land Conservation Campaign in China: Integrated Management, Local Participation and Food Supply Option. Geoforum 2004, 35, 507–518. [Google Scholar] [CrossRef]
- Li, W.; Feng, T.; Hao, J. The Evolving Concepts of Land Administration in China: Cultivated Land Protection Perspective. Land Use Policy 2009, 26, 262–272. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of Urbanization on Cultivated Land Changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining Earliest Identifiable Timing of Crops Using All Available Sentinel 1/2 Imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- Su, Y.; Li, C.; Wang, K.; Deng, J.; Shahtahmassebi, A.R.; Zhang, L.; Ao, W.; Guan, T.; Pan, Y.; Gan, M. Quantifying the Spatiotemporal Dynamics and Multi-Aspect Performance of Non-Grain Production during 2000–2015 at a Fine Scale. Ecol. Indic. 2019, 101, 410–419. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial Shifts in Grain Production Increases in China and Implications for Food Security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- He, Y.; Dong, J.; Liao, X.; Sun, L.; Wang, Z.; You, N.; Li, Z.; Fu, P. Examining Rice Distribution and Cropping Intensity in a Mixed Single- and Double-Cropping Region in South China Using All Available Sentinel 1/2 Images. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102351. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Li, C.; Fan, Y.; Wu, Y.; Lin, Y.; Gan, M.; Wang, K.; Malik, A.; Blackburn, G.A. Remote Sensing of Urban Green Spaces: A Review. Urban For. Urban Green. 2021, 57, 126946. [Google Scholar] [CrossRef]
- Shojanoori, R.; Shafri, H.Z.M.; Mansor, S.; Ismail, M.H. Generic Rule-Sets for Automated Detection of Urban Tree Species from Very High-Resolution Satellite Data. Geocarto Int. 2018, 33, 357–374. [Google Scholar] [CrossRef]
- Phalke, A.R.; Özdoğan, M.; Thenkabail, P.S.; Erickson, T.; Gorelick, N.; Yadav, K.; Congalton, R.G. Mapping Croplands of Europe, Middle East, Russia, and Central Asia Using Landsat, Random Forest, and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 167, 104–122. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Murakami, K.; Nagai, S. Evaluation of Sub-Pixel Cloud Noises on MODIS Daily Spectral Indices Based on in Situ Measurements. Remote Sens. 2011, 3, 1644–1662. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Odeh, I.O.A.; Han, C. Bi-Temporal Characterization of Land Surface Temperature in Relation to Impervious Surface Area, NDVI and NDBI, Using a Sub-Pixel Image Analysis. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- Faridatul, M.I.; Wu, B. Automatic Classification of Major Urban Land Covers Based on Novel Spectral Indices. ISPRS Int. J. Geo-Inf. 2018, 7, 453. [Google Scholar] [CrossRef] [Green Version]
- Wei, P.; Zhu, W.; Zhao, Y.; Fang, P.; Zhang, X.; Yan, N.; Zhao, H. Extraction of Kenyan Grassland Information Using PROBA-V Based on RFE-RF Algorithm. Remote Sens. 2021, 13, 4762. [Google Scholar] [CrossRef]
- Xu, L.Y.; Xie, X.D.; Li, S. Correlation Analysis of the Urban Heat Island Effect and the Spatial and Temporal Distribution of Atmospheric Particulates Using TM Images in Beijing. Environ. Pollut. 2013, 178, 102–114. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, F.; Li, W.; Wu, A.J. Saturation Correction for Nighttime Lights Data Based on the Relative NDVI. Remote Sens. 2017, 9, 759. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, X.; Liang, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat. Sensors 2019, 19, 1108. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Li, Q.Z.; Du, X.; Wang, H.Y.; Zhang, Y. Indicative Features for Identifying Corn and Soybean Using Remote Sensing Imagery at Middle and Later Growth Season. Natl. Remote Sens. Bull. 2022, 26, 1410–1422. [Google Scholar] [CrossRef]
- Ning, X.G.; Chang, W.T.; Wang, H.; Zhang, H.C.; Zhu, Q.D. Extraction of Marsh Wetland in Heilongjiang Basin Based on GEE and Multi-Source Remote Sensing Data. Natl. Remote Sens. Bull. 2022, 26, 386–396. [Google Scholar] [CrossRef]
- Tiwari, A.; Suozzi, E.; Silva, C.; De Maio, M.; Zanetti, M. Role of Integrated Approaches in Water Resources Management: Antofagasta Region, Chile. Sustainability 2021, 13, 1297. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, B.; Mouche, A.A.; Perrie, W.; Zhang, J.A.; Zhang, G. Estimation of Wind Direction in Tropical Cyclones Using C-Band Dual-Polarization Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1450–1462. [Google Scholar] [CrossRef] [Green Version]
- Al-Janobi, A. Performance Evaluation of Cross-Diagonal Texture Matrix Method of Texture Analysis. Pattern Recognit. 2001, 34, 171–180. [Google Scholar] [CrossRef]
- Khojastehnazhand, M.; Roostaei, M. Classification of Seven Iranian Wheat Varieties Using Texture Features. Expert Syst. Appl. 2022, 199, 117014. [Google Scholar] [CrossRef]
- Sun, J.; Zhong, G.; Huang, K.; Dong, J. Banzhaf Random Forests: Cooperative Game Theory Based Random Forests with Consistency. Neural Netw. 2018, 106, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Sudiana, D.; Lestari, A.I.; Riyanto, I.; Rizkinia, M.; Arief, R.; Prabuwono, A.S.; Sri Sumantyo, J.T. A Hybrid Convolutional Neural Network and Random Forest for Burned Area Identification with Optical and Synthetic Aperture Radar (SAR) Data. Remote Sens. 2023, 15, 728. [Google Scholar] [CrossRef]
- Pan, T.; Zuo, R.; Wang, Z. Geological Mapping via Convolutional Neural Network Based on Remote Sensing and Geochemical Survey Data in Vegetation Coverage Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3485–3494. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of Green Space Spatial Pattern on Land Surface Temperature: Implications for Sustainable Urban Planning and Climate Change Adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Inkoom, J.N.; Frank, S.; Greve, K.; Walz, U.; Fürst, C. Suitability of Different Landscape Metrics for the Assessments of Patchy Landscapes in West Africa. Ecol. Indic. 2018, 85, 117–127. [Google Scholar] [CrossRef]
- Chen, W.B.; Xiao, D.N.; Li, X.Z. Classification, Application, and Creation of Landscape Indices. Chin. J. Appl. Ecol. 2002, 13, 121–125. [Google Scholar]
- Yeh, C.-T.; Huang, S.-L. Investigating Spatiotemporal Patterns of Landscape Diversity in Response to Urbanization. Landsc. Urban Plan. 2009, 93, 151–162. [Google Scholar] [CrossRef]
- Huang, D.; Xu, S.; Sun, J.; Liang, S.; Song, W.; Wang, Z. Accuracy Assessment Model for Classification Result of Remote Sensing Image Based on Spatial Sampling. J. Appl. Remote Sens 2017, 11, 046023. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Sun, G.; Li, Y.; Ma, P.; Li, G.; Zhang, Y. Comprehensively Analyzing Optical and Polarimetric SAR Features for Land-Use/Land-Cover Classification and Urban Vegetation Extraction in Highly-Dense Urban Area. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102496. [Google Scholar] [CrossRef]
- Dobrinić, D.; Gašparović, M.; Medak, D. Sentinel-1 and 2 Time-Series for Vegetation Mapping Using Random Forest Classification: A Case Study of Northern Croatia. Remote Sens. 2021, 13, 2321. [Google Scholar] [CrossRef]
- Kong, X. The Problem, Causes and Countermeasures of “Non Grain Conversion” of Cultivated Land. China Land 2020, 418, 17–19. [Google Scholar] [CrossRef]
- Wu, S.C.; Yu, H.L.; Chu, Y.F. Limitations and Breakthroughs in the Study of “Non Grain” in Cultivated Land Under Agricultural Scale Management. J. Northwest A&F Univ. (Soc. Sci. Ed.) 2019, 19, 142–151. [Google Scholar] [CrossRef]
- Liang, X.Y.; Jin, X.B.; Sun, R.; Han, B.; Ren, J.; Zhou, Y.K. China’s Resilience-Space for Cultivated Land Protection under the Restraint of Multi-Scenario Food Security Bottom Line. Acta Geogr. Sin. 2022, 77, 697–713. [Google Scholar]
- Han, X.; Xue, P.; Zhang, N. Impact of Grain Subsidy Reform on the Land Use of Smallholder Farms: Evidence from Huang-Huai-Hai Plain in China. Land 2021, 10, 929. [Google Scholar] [CrossRef]
- Su, M.; Guo, R.; Hong, W. Institutional Transition and Implementation Path for Cultivated Land Protection in Highly Urbanized Regions: A Case Study of Shenzhen, China. Land Use Policy 2019, 81, 493–501. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Lu, X.H. The Impact of Differentiated Policy Tools on the Cultivated Land Protection Effects. Resour. Sci. 2022, 44, 660–673. [Google Scholar]
Data Type | Data Name | Scale | Application | Source |
---|---|---|---|---|
Radar data Optical remote sensing image data | Sentinel-1 Radar Data (GRD products) | 10 m | Improve the classification accuracy of crops | https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (accessed on 7 May 2022). |
Sentinel-2 MSI | 10 m | Identify NGPCL and other land use types | https://developers.google.com/earth-engine/datasets/catalog/sentinel-2 (accessed on 5 July 2021). | |
Terrain data | SRTM V3 | 30 m | Extract terrain features | NASA SRTM1 v3.0 |
Statistical data | 2019 per capita GDP data of each city in Anhui province | / | Economic zoning | http://tjj.ah.gov.cn/oldfiles/tjj/tjjweb/tjnj/2019/cn.html (accessed on 1 June 2022). |
Vector data | Administrative boundary | / | Zonal statistics | https://www.webmap.cn/main.do?method=index (accessed on 10 July 2021). |
Field survey data | Sample point | / | Create training samples and validation samples | / |
Variable | Abbreviation | Feature Description | Citation |
---|---|---|---|
Spectral features | B | B1–B4, B8, B8a, B9–B12 | [13] |
Spectral index feature without red-edged band | NDVI | (B8-B4)/(B8 + B4) | [13] |
NDWI | (B3-B8)/(B3 + B8) | [32] | |
MNDWI | (B3-B11)/(B11 + B3) | [33] | |
NDBI | (B11-B8)/(B11 + B8) | [34] | |
MNDBI | (B12-B8)/(B12 + B8) | [35] | |
RVI | B8/B4 | [36] | |
DVI | B8-B4 | [37] | |
EVI | 2.5 × (B8-B4)/(B8 + 6 × B4-7.5 × B2 + 1) | [32] | |
LSWI | (B8-B11)/(B8 + B11) | [36] | |
BSI | [(B12 + B4)-(B8-B2)]/[(B12 + B4) + (B8-B2)] | [13] | |
SAVI | (B8-B4) × (1 + 0.5)/(B8 + B4 + 0.5) | [13] | |
Spectral index features with red-edged band | RNDVI | (B8-B5)/(B8 + B5) | [38] |
RRVI | B8/B5 | [39] | |
RDVI | B8-B5 | [40] | |
MCARI | ((B5-B4)-0.2× (B5-B3)) × (B5-B4) | ||
NDVIre1 | (B8A-B5)/(B8A + B5) | [41] | |
NDVIre2 | (B8A-B6)/(B8A + B6) | ||
NDVIre3 | (B8A-B7)/(B8A + B7) | ||
NDre1 | (B6-B5)/(B6 + B5) | ||
NDre2 | (B7-B5)/(B7 + B5) | ||
CIre | B7/B5-1 | ||
NBR | (B8-B12)/(B8 + B12) | [13] | |
Terrain features | Elevation | / | [42] |
Slope | / | ||
Aspect | / | ||
Hillshade | / | ||
Radar signature | VV | / | [43] |
VH | / | ||
Texture features | “CORR”, “ASM”, “ENT”, “IDM”, “SHADE”, “SAVG”, “IMCORR1”, “SENT”, “DENT”, “VAR1”, “SVAR”, “DVAR”, “MAXCORR”, “DISS”, “INERTIA”, “PROM”, “IMCORR2” | / | [44,45] |
Index | Calculation Formula | Meaning | Citation |
---|---|---|---|
CA | / | The area of a single class | / |
PLAND | The relative proportion of a certain patch type in the landscape to the entire landscape area, which is used to measure the type composition and relative size of the landscape | [50] | |
LPI | Used to determine the dominant patch types in the landscape, which indirectly reflects the direction and size of human disturbance | [51] | |
NP | / | Number of patches | / |
PD | Expressing the density of a certain patch in the landscape, reflecting the overall heterogeneity and fragmentation of the landscape | [51] | |
AREA_MN | Average area of patches or types in the landscape | [51] | |
COHESION | Measure the degree of natural connectivity of the corresponding type, reflecting patch connectivity | [51] | |
PROX_MN | Describe the spatial relationship between a habitat patch and its neighbors | [52] | |
FRAC_AM | / | Reflect the overall characteristics of the landscape pattern, also reflect the impacts of human activities | [53] |
Type | Grassland | Water | Abandoned Cultivated Land | Garden Land | Forest | GPCL | NGPCL | Built-Up Land | OA (%) | Kappa | |
---|---|---|---|---|---|---|---|---|---|---|---|
PA/% | 87.9 | 96.6 | 62.9 | 76.0 | 82.6 | 85.8 | 69.5 | 95.4 | |||
Scheme1 | 82.1 | 0.80 | |||||||||
UA/% | 75.2 | 96.9 | 75 | 74.7 | 85.8 | 85.0 | 71.4 | 92.2 | |||
PA/% | 89.4 | 96.4 | 62.7 | 76.7 | 82.5 | 86.0 | 68.9 | 95.8 | |||
Scheme2 | 82.3 | 0.80 | |||||||||
UA/% | 74.9 | 96.9 | 76.5 | 73.8 | 86.0 | 86.4 | 70.9 | 93.1 | |||
PA/% | 89.4 | 96.8 | 64.8 | 75.8 | 84.5 | 86.0 | 71.6 | 95.8 | |||
Scheme3 | 83.1 | 0.81 | |||||||||
UA/% | 80.1 | 97.6 | 78.3 | 73.0 | 88.7 | 84.5 | 70.5 | 92.2 | |||
PA/% | 89.6 | 96.6 | 66.3 | 77.7 | 85.1 | 86.7 | 71.4 | 95.4 | |||
Scheme4 | 83.6 | 0.81 | |||||||||
UA/% | 80.4 | 97.1 | 77.5 | 74.5 | 89.0 | 86.1 | 70.8 | 93.7 | |||
PA/% | 90.8 | 96.0 | 65.9 | 77.7 | 84.5 | 87.7 | 69.6 | 96.3 | |||
Scheme5 | 83.6 | 0.81 | |||||||||
UA/% | 79.2 | 96.9 | 77.7 | 72.7 | 87.5 | 87.6 | 73.7 | 92.8 | |||
PA/% | 90.8 | 96.8 | 66.5 | 77.9 | 85.1 | 88.1 | 71.9 | 96.2 | |||
Scheme6 | 84.2 | 0.82 | |||||||||
UA/% | 80.2 | 97.1 | 78.7 | 76.0 | 87.9 | 87.6 | 72.7 | 92.4 |
Grassland | Water | Abandoned Cultivated Land | Garden Land | Forest | GPCL | NGPCL | Built-Up Land | |
---|---|---|---|---|---|---|---|---|
Grassland | 481 | 1 | 6 | 8 | 0 | 1 | 20 | 13 |
Water | 0 | 538 | 3 | 3 | 0 | 1 | 3 | 8 |
Abandoned cultivated land | 45 | 3 | 355 | 34 | 19 | 10 | 53 | 15 |
Garden land | 11 | 0 | 27 | 408 | 31 | 15 | 31 | 1 |
Forest | 10 | 1 | 9 | 35 | 451 | 8 | 15 | 1 |
GPCL | 4 | 5 | 10 | 15 | 5 | 496 | 28 | 0 |
NGPCL | 37 | 6 | 37 | 34 | 6 | 35 | 410 | 5 |
Built-up land | 12 | 0 | 4 | 0 | 1 | 0 | 4 | 525 |
Type | Grassland | Water | Abandoned Cultivated Land | Garden Land | Forest | GPCL | NGPCL | Built-Up Land | Total |
---|---|---|---|---|---|---|---|---|---|
Area (km2) | 7170.7 | 10,515.5 | 6058.85 | 20,040.1 | 33,318 | 41,337.6 | 15,967.2 | 5670.21 | 140,078.16 |
Proportion (%) | 5.12% | 7.51% | 4.33% | 14.31% | 23.79% | 29.51% | 11.40% | 4.05% | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, J.; Cao, X.; Liu, W.; Sun, Y.; Xu, D.; Da, C.; Jin, L.; Wang, J.; Zheng, Z.; Lai, S.; et al. Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China. Land 2023, 12, 1497. https://doi.org/10.3390/land12081497
Zhi J, Cao X, Liu W, Sun Y, Xu D, Da C, Jin L, Wang J, Zheng Z, Lai S, et al. Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China. Land. 2023; 12(8):1497. https://doi.org/10.3390/land12081497
Chicago/Turabian StyleZhi, Junjun, Xinyue Cao, Wangbing Liu, Yang Sun, Da Xu, Caiwei Da, Lei Jin, Jin Wang, Zihao Zheng, Shuyuan Lai, and et al. 2023. "Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China" Land 12, no. 8: 1497. https://doi.org/10.3390/land12081497
APA StyleZhi, J., Cao, X., Liu, W., Sun, Y., Xu, D., Da, C., Jin, L., Wang, J., Zheng, Z., Lai, S., Liu, Y., & Zhu, G. (2023). Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China. Land, 12(8), 1497. https://doi.org/10.3390/land12081497