Quantitative Assessment of the Contribution of Climate and Underlying Surface Change to Multiscale Runoff Variation in the Jinsha River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Mann–Kendall Trend Analysis Method
2.3.2. Concentration and Concentration Period
2.3.3. ABCD Water Balance Model
2.3.4. Budyko Model
3. Results
3.1. Mann–Kendall Trend Test
3.2. Changes in Characteristics during the Year
3.3. Mutation Analysis
3.4. ABCD Hydrological Simulation
3.5. Attribution Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, G.Q.; Zhang, J.Y.; Guan, X.X.; Bao, Z.X.; Liu, Y.L.; He, R.M.; Jin, J.L.; Liu, C.S. Quantifying attribution of runoff change for major riversin China. Adv. Water Sci. 2020, 31, 313–323. [Google Scholar]
- Zhang, J.Y.; Wang, G.Q.; Jin, J.L.; He, R.M.; Liu, C.S. Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956–2018. Adv. Water Sci. 2020, 31, 153–161. [Google Scholar]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 7066. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D. Climate Change 2014 Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- He, Y.f.; Yang, H.B.; Tang, L.H.; Lei, H.M.; Yang, D.W. Attribution analysis of runoff change in Beidasha River Basin. Water Resour. Prot. 2022, 38, 95–101. [Google Scholar]
- Kang, M.; Xiao, W.; Lu, F.; Wang, Y.; Hou, B.; Zhang, X. Analysis of Multitemporal Scale Runoff Evolution Regularity at Huayuankou Hydrological Station on the Yellow River. People’s Yellow River 2022, 44, 25–29. [Google Scholar]
- Su, X.; Li, X.; Wang, Y.; Lu, C.; Wang, N. Research on the Characteristics of Runoff Complexity Changes in the Upper Yellow River at Multiple Time Scales. J. Water Resour. Water Eng. 2021, 32, 1–10. [Google Scholar]
- Wu, Y.; Guo, L.; Zeng, T.; Li, Q.; Jing, P. Study on the Characteristics of Multitemporal Scale Variations of Mekong River Runoff. China Rural. Water Resour. Hydropower 2021, 468, 42–49. [Google Scholar]
- Ye, J.; Liu, Z.; Ouyang, L.; Sheng, F.; Liu, S. Analysis of runoff changes and their attribution in small watersheds at different time scales. J. Ecol. 2019, 39, 4478–4487. [Google Scholar]
- Ji, G.; Lai, Z.; Xia, H.; Liu, H.; Wang, Z. Future Runoff Variation and Flood Disaster Prediction of the Yellow River Basin Based on CA-Markov and SWAT. Land 2021, 10, 421. [Google Scholar] [CrossRef]
- Ji, G.; Lai, Z.; Yan, D.; Wu, L.; Wang, Z. Spatiotemporal patterns of future meteorological drought in the Yellow River Basin based on SPEI under RCP scenarios. Int. J. Clim. Chang. Strateg. Manag. 2022, 14, 39–53. [Google Scholar] [CrossRef]
- Ji, G.; Song, H.; Wei, H.; Wu, L. Attribution Analysis of Climate and Anthropic Factors on Runoff and Vegetation Changes in the Source Area of the Yangtze River from 1982 to 2016. Land 2021, 10, 612. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Qian, B.; He, Z.; Ji, G. Quantitatively Computing the Influence of Vegetation Changes on Surface Discharge in the Middle-Upper Reaches of the Huaihe River, China. Forests 2022, 13, 2000. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Li, L.; Huang, J.; Wang, X.; Guo, Y.; Ji, G. Assessing the contribution of vegetation variation to streamflow variation in the Lancang River Basin, China. Front. Ecol. Evol. 2023, 10, 1058055. [Google Scholar] [CrossRef]
- Yan, D.; Lai, Z.; Ji, G. Using Budyko-Type Equations for Separating the Impacts of Climate and Vegetation Change on Runoff in the Source Area of the Yellow River. Water 2020, 12, 3418. [Google Scholar] [CrossRef]
- Ji, G.; Huang, J.; Guo, Y.; Yan, D. Quantitatively Calculating the Contribution of Vegetation Variation to Runoff in the Middle Reaches of Yellow River Using an Adjusted Budyko Formula. Land 2022, 11, 535. [Google Scholar] [CrossRef]
- Ji, G.; Yue, S.; Zhang, J.; Huang, J.; Guo, Y.; Chen, W. Assessing the Impact of Vegetation Variation, Climate and Human Factors on the Streamflow Variation of Yarlung Zangbo River with the Corrected Budyko Equation. Forests 2023, 14, 1312. [Google Scholar] [CrossRef]
- Ji, G.; Wu, L.; Wang, L.; Yan, D.; Lai, Z. Attribution Analysis of Seasonal Runoff in the Source Region of the Yellow River Using Seasonal Budyko Hypothesis. Land 2021, 10, 542. [Google Scholar] [CrossRef]
- Yang, X.; Wu, W.; Zheng, C.; Wang, Q. Identification of attribution of runoff changes in the Yi River Basin based on the Budyko hypothesis. Res. Soil Water Conserv. 2023, 30, 100–106. [Google Scholar]
- Li, M.; Zou, L.; Xia, J.; Wang, F.; Wang, Z. Analysis of the Evolution and Attribution of Runoff in the Baihe River Basin under the Budyko Framework. Resour. Environ. Yangtze River Basin 2023, 32, 774–782. [Google Scholar]
- Liang, P.; Xin, H.; Li, Z.; Nan, F.; Tang, B.; Zhang, W. Attribution of runoff changes in Danghe River based on the Budyko hypothesis. Desert China 2023, 43, 210–219. [Google Scholar]
- Thomas, H.A., Jr. Improved Methods for National Water Assessment, Water Resources Contract: WR15249270; Center for Integrated Data Analytics Wisconsin Science Center: Madison, WI, USA, 1981. [Google Scholar]
- Zhao, S.T. Characteristics of Runoff Variation and Quantitative Separation in Karst Area; Guangxi University: Nanning, China, 2022. [Google Scholar]
- Bai, P.; Liu, X.; Liang, K.; Liu, C. Comparison of performance of twelve monthly water balance models in different climatic catchments of China. J. Hydrol. 2015, 529, 1030–1040. [Google Scholar] [CrossRef]
- Wu, G.; Xu, J.; Hoshin, G.; Zhang, X. The abcd water balance model and parameter sensitivity analysis in the Xin’an River Basin. J. Yangtze River Acad. Sci. 2019, 36, 23–27+40. [Google Scholar]
- Li, S.; Du, T. Design and application of annual runoff simulation method based on monthly water balance model. J. Yangtze River Acad. Sci. 2022, 39, 21–26. [Google Scholar]
- Li, B.M.; Zhang, J.Z.; Wu, X.; Li, S. Research on variation characteristics of runoff based on mann-kendall and orderly clustering method. Haihe Water Resour. 2012, 02, 37–38. [Google Scholar]
- Cao, M.L.; Zhang, C.; Zhou, H.C.; Li, H.Y. Change trend of rainfall and runoff in upstream of Fengman basin under influence of human activities. Hydrology 2008, 28, 86–89. [Google Scholar]
- Mu, X.M.; Zhang, X.Q.; Gao, P.; Wang, F. Theory of double mass curves and its application in hydrology and meteorology. J. China Hydrol. 2010, 30, 47–51. [Google Scholar]
- Zhang, M.; Huang, X.R.; Wang, Y.J. Evolution process and influencing factors of runoff in Jinsha River Basin. Water Resour. Sci. 2022, 40, 27–31. [Google Scholar]
- Zhang, X.F.; Yan, H.C.; Yue, Y.; Lu, Y.T. Changes and analysis of annual runoff in various sections of Jinsha River in the past 50 years. Resour. Environ. Yangtze Basin 2018, 27, 2283–2292. [Google Scholar]
- Wei, X.Y.; Huang, X.R.; Pan, X.; Zhang, L. Response of runoff changes in the upper reaches of Jinsha River to climate in the past 60 years. Hydroelectr. Power 2019, 45, 12–17. [Google Scholar]
- Song, M.B.; Li, T.X.; Chen, J.Q. Preliminary Analysis of Precipitation Runoff Features in the Jinsha River Basin. Procedia Eng. 2012, 28, 688–695. [Google Scholar]
- Zhang, K.Y.; Yuan, X.; Lu, Y.; Guo, Z.P.; Wang, J.H.; Luo, H.M. Quantifying the Impact of Cascade Reservoirs on Streamflow, Drought, and Flood in the Jinsha River Basin. Sustainability 2023, 15, 4989. [Google Scholar] [CrossRef]
- Wang, L.; Cao, H.; Li, Y.R.; Feng, B.F.; Qiu, H.; Zhang, H.R. Attribution Analysis of Runoff in the Upper Reaches of Jinsha River, China. Water 2022, 14, 2768. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, W.S.; Yu, S.Y.; Liang, S.Q.; Hu, Q.F. Assessment of the Contributions of Climate Change and Human Activities to Runoff Variation: Case Study in Four Subregions of the Jinsha River Basin, China. J. Hydrol. Eng. 2021, 26, 05021024. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, D.; Chen, Q.H.; Chen, J.H.; Guo, S.L. Simulation study on runoff of Jinsha River considering reservoir transfer and storage. Geomat. Wuhan Univ. (Eng. Sci.) 2022, 55, 13–21. [Google Scholar]
- Zhang, X.F.; Yan, H.C.; Yue, Y.; Xu, Q.X. Quantifying natural and anthropogenic impacts on runoff and sediment load: An investigation on the middle and lower reaches of the Jinsha River Basin. J. Hydrol. Reg. Stud. 2019, 25, 100617. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Fang, H.W.; Huang, L.; Ouyang, W. Changing runoff due to temperature and precipitation variations in the dammed Jinsha River. J. Hydrol. 2020, 582, 124500. [Google Scholar] [CrossRef]
- Jia, W.H.; Wu, Y.W.; Wang, S.; Chen, M.F.; Liu, X. Combined Impacts of ENSO and IOD on Streamflow: A Case Study of the Jinsha River Basin, China. Water 2022, 15, 45. [Google Scholar] [CrossRef]
- Wu, G.Y.; Chen, J.; Chen, Q.H.; Gu, L.; Wang, H.M. Spatiotemporal variation of hydro-meteorological drought in Jinsha River Basin in recent 50 years. Yangtze River 2019, 50, 84–90. [Google Scholar]
- Shen, J.H.; Yang, H.B.; Liu, Z.W.; Yang, D.W. Sensitivity analysis of annual runoff to annual variation of meteorological elements in upper reaches of the Yangtze River. Water Resour. Prot. 2023, 39, 119–126. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 246–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Br. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Shi, H.L.; Hu, C.H.; Wang, Y.G.; Tian, Q.Q. Water and sediment change trend and its genesis analysis in Huaihe River Basin. J. Hydraul. Eng. 2012, 43, 9. [Google Scholar]
- Liu, X.Z.; Li, J.Z.; Su, Q.; Wang, C.Z.; Li, X.G. Research on intra-annual distribution of runoff based on concentration degree and concentration period. Sci. Geogr. 2007, 06, 791–795. [Google Scholar]
- Han, P.F. Application and Parameter Characteristics of ABCD of Climate and Hydrological Model; China University of Geosciences (Beijing): Beijing, China, 2016. [Google Scholar]
- Chen, X.; Negin, A.; Wang, D. Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resour. Res. 2013, 49, 6067–6078. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Alimohammadi, N. Responses of annual runoff, evaporation, and storage change to climate variability at the watershed scale. Water Resour. Res. 2012, 48, W05546. [Google Scholar] [CrossRef] [Green Version]
- Bian, W.; Zhang, X. Analysis of flood encounter in Jinsha River and the middle and lower reaches of the Yangtze River. Water Resour. Hydropower Bull. 2002, 23, 8–10. [Google Scholar]
- Huang, X.R.; Gao, L.Y.; Yang, P.P.; Xi, Y.Y. Cumulative impact of dam constructions on streamflow and sediment regime in lower reaches of the Jinsha River, China. J. Mt. Sci. 2018, 15, 2752–2765. [Google Scholar] [CrossRef]
- Chen, Q.H.; Chen, H.; Zhang, J.; Hou, Y.K.; Shen, M.X.; Chen, J.; Xu, C.Y. Impacts of climate change and LULC change on runoff in the Jinsha River Basin. J. Geogr. Sci. 2020, 30, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Wang, Q.; Wang, G.; Liu, Y.; Liu, C. Climate change trend and runoff response relationship of Jinsha River basin in recent 60 years. J. N. China Univ. Water Resour. Electr. Power 2016, 37, 16–21. [Google Scholar]
Month | β (mm/a) | Z Statistic | Significant Level |
---|---|---|---|
January | 0.08 | 4.35 | 0.01 |
February | 0.06 | 4.04 | 0.01 |
March | 0.08 | 4.87 | 0.01 |
April | 0.05 | 3.24 | 0.01 |
May | 0.00 | 0.00 | - |
June | −0.10 | −1.22 | - |
July | 0.01 | 0.04 | - |
August | −0.07 | −0.47 | - |
September | 0.05 | 0.25 | - |
October | −0.05 | −0.40 | - |
November | −0.01 | −0.28 | - |
December | 0.01 | 0.24 | - |
spring | 0.14 | 2.98 | 0.01 |
summer | 0.01 | 0.08 | - |
autumn | −0.10 | −0.36 | - |
winter | 0.14 | 3.60 | 0.01 |
year | 0.45 | 0.83 | - |
RCD/% | RCP/(°) | Time of RCP Maximum Runoff | |
---|---|---|---|
1970s | 48.14 | 233.62 | August |
1980s | 49.45 | 229.93 | August |
1990s | 49.96 | 234.12 | August |
2000s | 46.19 | 233.48 | August |
2010s | 41.30 | 233.59 | August |
NSE | a | b | c | d | |
---|---|---|---|---|---|
Value ranges | −∞~1 | 0~1 | 0~1000 | 0~1 | 0~1 |
Base period | 0.85 | 0.89 | 449.78 | 0.10 | 0.70 |
Mutation period | 0.86 | 0.89 | 449.99 | 0.10 | 0.69 |
Timescale | Parameter | |
---|---|---|
ω | ϕ | |
spring | 0.9225 | −0.4295 |
summer | 1.1608 | 0.0880 |
autumn | 1.1730 | 0.1811 |
winter | 0.7789 | −0.5840 |
5 | 0.8215 | −1.4782 |
6 | 1.1642 | 0.1469 |
7 | 1.2253 | 0.1108 |
year | 1.0418 | 0.1907 |
Time Scale | Base Period P/mm | Mutation Period P/mm | Change Value P/mm | Base Period Ep/mm | Mutation Period Ep/mm | Change Value Ep/mm | Base Period △S/mm | Mutation Period △S/mm | Change Value △S/mm |
---|---|---|---|---|---|---|---|---|---|
Spring | 109.30 | 112.82 | 3.52 | 79.74 | 80.86 | 1.12 | 17.56 | 23.18 | 5.62 |
Summer | 292.76 | 297.04 | 4.28 | 158.95 | 161.68 | 2.73 | −84.07 | −108.65 | −24.58 |
Autumn | 193.06 | 207.14 | 14.08 | 93.64 | 95.51 | 1.87 | 48.51 | 60.26 | 11.76 |
Winter | 73.25 | 75.94 | 2.69 | 45.18 | 44.57 | −0.61 | 57.53 | 58.41 | 0.88 |
May | 46.56 | 46.67 | 0.10 | 32.59 | 33.18 | 0.59 | −10.53 | −6.53 | 4.00 |
June | 72.69 | 70.42 | −2.27 | 43.81 | 44.82 | 1.01 | −38.02 | −47.99 | −9.97 |
July | 107.55 | 112.93 | 5.38 | 57.50 | 58.37 | 0.87 | −41.59 | −40.57 | 1.02 |
Year | 668.37 | 692.95 | 24.57 | 377.50 | 382.62 | 5.12 | 39.53 | 33.20 | −6.32 |
Runoff(mm) | Contribute | |||
---|---|---|---|---|
Climate | Human | Climate | Human | |
Spring | 2.20 | 0.20 | 91.68% | 8.32% |
Summer | 1.15 | 0.40 | 74.08% | 25.92% |
Autumn | 11.63 | 0.57 | 95.30% | 4.70% |
Winter | 3.18 | 0.13 | 96.15% | 3.85% |
May | −0.46 | −0.02 | 95.14% | 4.86% |
June | −3.36 | 0.07 | 102.15% | −2.15% |
July | 3.96 | 0.55 | 87.79% | 12.21% |
Year | 19.19 | 0.27 | 98.62% | 1.38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, S.; Ji, G.; Huang, J.; Cheng, M.; Guo, Y.; Chen, W. Quantitative Assessment of the Contribution of Climate and Underlying Surface Change to Multiscale Runoff Variation in the Jinsha River Basin, China. Land 2023, 12, 1564. https://doi.org/10.3390/land12081564
Yue S, Ji G, Huang J, Cheng M, Guo Y, Chen W. Quantitative Assessment of the Contribution of Climate and Underlying Surface Change to Multiscale Runoff Variation in the Jinsha River Basin, China. Land. 2023; 12(8):1564. https://doi.org/10.3390/land12081564
Chicago/Turabian StyleYue, Shuaijun, Guangxing Ji, Junchang Huang, Mingyue Cheng, Yulong Guo, and Weiqiang Chen. 2023. "Quantitative Assessment of the Contribution of Climate and Underlying Surface Change to Multiscale Runoff Variation in the Jinsha River Basin, China" Land 12, no. 8: 1564. https://doi.org/10.3390/land12081564
APA StyleYue, S., Ji, G., Huang, J., Cheng, M., Guo, Y., & Chen, W. (2023). Quantitative Assessment of the Contribution of Climate and Underlying Surface Change to Multiscale Runoff Variation in the Jinsha River Basin, China. Land, 12(8), 1564. https://doi.org/10.3390/land12081564