Impact of Land Cover on Wind Erosion in Arid Regions: A Case Study in Southern Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Description of the Measurement Sites
2.2.1. Rangeland on Sand
2.2.2. Rangeland on a Flatbed
2.2.3. Chott El Jerid
2.2.4. Olive Grove
2.2.5. Cereal Field
2.2.6. Oasis
2.3. Characterization of Superficial Soil Properties
2.4. Measurement of the Sediment Horizontal Mass Flux
2.5. Procedure of the Statistical Analysis of the Horizontal Fluxes of Aeolian Sediments
2.6. Meteorological Measurements
2.7. Computation of the Dust Uplift Potential
3. Results and Discussion
3.1. Soil Surface Properties
3.2. Meteorological Parameters
3.3. Statistical Analysis of the Horizontal Fluxes of Aeolian Sediments
3.4. Annual Horizontal Fluxes of Aeolian Sediments
3.5. Seasonal Variations in Wind Erosion
4. Conclusions
- In olive groves and oases, the ever-present vegetation (composed of trees) protected the soil from wind erosion by minimizing the shear stress acting on the surface. Thus, fluxes of wind-eroded sediments were low to nil, respectively;
- Wind erosion was the highest in the rangelands because the Steppic vegetation encountered in these south Tunisian landscapes is sparse and the density of the small bushes of Rhanterium suaveolens and Anabasis articulata was too low to offer effective protection from the wind. Consequently, the seasonality of wind erosion in the rangelands is mainly driven by the seasonality of the wind speed;
- In the Chott El Jerid, wind erosion was intermittent and occurred during late spring/early summer at the beginning of the dry period;
- In the barley field, the date of sowing was shown to be a crucial parameter to control the seasonality of wind erosion.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notations and Abbreviations
2D | 2 dimensional |
AGL | above ground level |
ANOVA | Analysis of variance |
B | a positive empirical constant in Equation 1 |
BSNE | Big Spring Number Eight |
CRDA | Commissariat Régional au Développement Agricole (regional commissions for agricultural development) |
DUP | Dust Uplift Potential |
Fh | horizontal mass flux of aeolian sediments |
IRA | Institut des Régions Arides (Arid Regions Institute) |
IRD | Institut de Recherche pour le Développement (French National Research Institute for Sustainable Development) |
LTER | Long Term Ecological Research |
M(z) | collected mass of sediment at height z |
OSS | Observatoire du Sahara et du Sahel (Sahara and Sahel Observatory) |
q(z) | mass flux density at height z |
q0 | the value of q at z = 0 m |
ROSELT | Réseau d’Observatoires de Surveillance Ecologique à Long-Terme (Long Term Ecological Surveillance Observatories Network) |
s(z) | surface of the opening at height z |
U(z) | wind speed at height z |
Ut(z) | minimum threshold wind speed at height z above which wind erosion can occur |
Z | measurement height |
z0 | aerodynamic roughness length |
Σ | standard deviation |
Appendix A
Month | Menzel Habib | Sidi Toui |
June 2014 | 22% | - |
July 2014 | 91% | - |
August 2014 | 100% | - |
September 2014 | 100% | - |
October 2014 | 100% | 56% |
November 2014 | 100% | 100% |
December 2014 | 100% | 100% |
January 2015 | 100% | 100% |
February 2015 | 100% | 100% |
March 2015 | 100% | 100% |
April 2015 | 100% | 100% |
May 2015 | 100% | 100% |
June 2015 | 100% | 98% |
July 2015 | 97% | 77% |
August 2015 | 100% | 33% |
September 2015 | 90% | 42% |
October 2015 | 40% | 100% |
November 2015 | - | 100% |
December 2015 | - | 69% |
Appendix B
References
- Fécan, F.; Marticorena, B.; Bergametti, G. Parametrization of the Increase of the Aeolian Erosion Threshold Wind Friction Velocity due to Soil Moisture for Arid and Semi-Arid Areas. Ann. Geophys. 1999, 17, 149–157. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product. Rev. Geophys. 2002, 40, 2-1–2-31. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Methuen: London, UK, 1941. [Google Scholar]
- Parolari, A.J.; Li, D.; Bou-Zeid, E.; Katul, G.G.; Assouline, S. Climate, Not Conflict, Explains Extreme Middle East Dust Storm. Environ. Res. Lett. 2016, 11, 114013. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, J.; Cao, W.; Harris, W.; Li, Y.; Chi, W.; Wang, S. Response of Wind Erosion Dynamics to Climate Change and Human Activity in Inner Mongolia, China during 1990 to 2015. Sci. Total Environ. 2018, 639, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Chi, W.; Zhao, Y.; Kuang, W.; He, H. Impacts of Anthropogenic Land Use/Cover Changes on Soil Wind Erosion in China. Sci. Total Environ. 2019, 668, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Mirzabaev, A.; Wu, J.; Evans, J.; García-Oliva, F.; Hussein, I.A.G.; Iqbal, M.H.; Kimutai, J.; Knowles, T.; Meza, F.; Nedjraoui, D.; et al. Desertification. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Gholizadeh, H.; Zoghipour, M.H.; Torshizi, M.; Nazari, M.R.; Moradkhani, N. Gone with the Wind: Impact of Soil-Dust Storms on Farm Income. Ecol. Econ. 2021, 188, 107133. [Google Scholar] [CrossRef]
- Rajot, J.L. Wind Blown Sediment Mass Budget of Sahelian Village Land Units in Niger. Bull. Société Géologique Fr. 2001, 172, 523–531. [Google Scholar] [CrossRef]
- Abdourhamane Touré, A.; Tidjani, A.D.; Rajot, J.-L.; Bouet, C.; Garba, Z.; Marticorena, B.; Ambouta, K.J.-M. Impacts de la variabilité spatiale de l’occupation des sols sur l’érosion éolienne et les transports de nutriments dans le terroir de Banizoumbou (sud-ouest du Niger). Alger. J. Arid. Environ. 2017, 7, 78–89. [Google Scholar] [CrossRef]
- Abdourhamane Touré, A.; Tidjani, A.D.; Rajot, J.L.; Marticorena, B.; Bergametti, G.; Bouet, C.; Ambouta, K.J.M.; Garba, Z. Dynamics of Wind Erosion and Impact of Vegetation Cover and Land Use in the Sahel: A Case Study on Sandy Dunes in Southeastern Niger. Catena 2019, 177, 272–285. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z. Characteristics of Aeolian Sediment Transport over Different Land Surfaces in Northern China. Soil Till. Res. 2014, 143, 106–115. [Google Scholar] [CrossRef]
- Khatelli, H.; Gabriels, D. Effect of Wind Direction on Aeolian Sand Transport in Southern Tunisia. Int. Agrophys. 2000, 14, 291–296. [Google Scholar]
- Labiadh, M.; Bergametti, G.; Attoui, B.; Sekrafi, S. Particle Size Distributions of South Tunisian Soils Erodible by Wind. Geodin. Acta 2011, 24, 39–49. [Google Scholar] [CrossRef]
- Bouajila, A.; Omar, Z.; Ajjari, A.; Bol, R.; Brahim, N. Improved Estimation and Prediction of the Wind-Erodible Fraction for Aridisols in Arid Southeast Tunisia. Catena 2022, 211, 106001. [Google Scholar] [CrossRef]
- Hanafi, A.; Jauffret, S. Are Long-Term Vegetation Dynamics Useful in Monitoring and Assessing Desertification Processes in the Arid Steppe, Southern Tunisia. J. Arid Environ. 2008, 72, 557–572. [Google Scholar] [CrossRef]
- Gueddari, M. Géochimie et Thermodynamique des Evaporites Continentales: Etude du lac Natron (Tanzanie) et du Chott el Jerid (Tunisie). Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France, 1984. [Google Scholar]
- Millington, A.C.; Drake, N.A.; Townshend, J.R.G.; Quarmby, N.A.; Settle, J.J.; Reading, A.J. Monitoring Salt Playa Dynamics Using Thematic Mapper Data. IEEE Trans. Geosci. Remote Sens. 1989, 27, 754–761. [Google Scholar] [CrossRef]
- Abbas, K.; Deroin, J.-P.; Bouaziz, S. Monitoring of Playa Evaporites as Seen with Optical Remote Sensing Sensors: Case of Chott El Jerid, Tunisia, from 2003 to Present. Arab. J. Geosci. 2018, 11, 92. [Google Scholar] [CrossRef]
- Labiadh, M.; Bergametti, G.; Kardous, M.; Perrier, S.; Grand, N.; Attoui, B.; Sekrafi, S.; Marticorena, B. Soil Erosion by Wind over Tilled Surfaces in South Tunisia. Geoderma 2013, 202–203, 8–17. [Google Scholar] [CrossRef]
- Thameur, A.; Lachiheb, B.; Ferchichi, A. Drought Effect on Growth, Gas Exchange and Yield, in Two Strains of Local Barley Ardhaoui, under Water Deficit Conditions in Southern Tunisia. J. Environ. Manag. 2012, 113, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Bouet, C.; Labiadh, M.T.; Pierre, C.; Sekrafi, S.; Henry des Tureaux, T.; Ltifi, M.; Bergametti, G.; Marticorena, B.; Abdourhamane Touré, A.; Rajot, J.L. What Drives Wind Erosion in Cropped Areas? A Case Study in Southern Tunisia. Catena 2023, 223, 106964. [Google Scholar] [CrossRef]
- Slimani, M.S.; Zayani, K. Apport d’eau, développement et rendement de jeunes palmiers Deglet Nour dans la parcelle expérimentale d’Atilet-Nefzaoua (Tunisie). Medit 1998, 9, 58–62. [Google Scholar]
- Robinson, G.W. Note on the Mechanical Analysis of Humic Soils. J. Agric. Sci. 1922, 12, 287–291. [Google Scholar] [CrossRef]
- Chatenet, B.; Marticorena, B.; Gomes, L.; Bergametti, G. Assessing the Microped Size Distributions of Desert Soils Erodible by Wind. Sedimentology 1996, 43, 901–911. [Google Scholar] [CrossRef]
- Ellis, J.T.; Li, B.; Farrell, E.J.; Sherman, D.J. Protocols for Characterizing Aeolian Mass-Flux Profiles. Aeolian Res. 2009, 1, 19–26. [Google Scholar] [CrossRef]
- Namikas, S.L. Field Measurement and Numerical Modelling of Aeolian Mass Flux Distributions on a Sandy Beach. Sedimentology 2003, 50, 303–326. [Google Scholar] [CrossRef]
- Panebianco, J.E.; Buschiazzo, D.E.; Zobeck, T.M. Comparison of Different Mass Transport Calculation Methods for Wind Erosion Quantification Purposes. Earth Surf. Proc. Land. 2010, 35, 1548–1555. [Google Scholar] [CrossRef]
- Williams, G. Some Aspects of the Eolian Saltation Load. Sedimentology 1964, 3, 257–287. [Google Scholar] [CrossRef]
- Gillette, D.A.; Fryrear, D.W.; Xiao, J.B.; Stockton, P.; Ono, D.; Helm, P.J.; Gill, T.E.; Ley, T. Large-Scale Variability of Wind Erosion Mass Flux Rates at Owens Lake 1. Vertical Profiles of Horizontal Mass Fluxes of Wind-Eroded Particles with Diameter Greater than 50 Μm. J. Geophys. Res. 1997, 102, 25977–25987. [Google Scholar] [CrossRef]
- Fryrear, D.W. A Field Dust Sampler. J. Soil Water Conserv. 1986, 41, 117–120. [Google Scholar]
- Gillette, D.A.; Herbert, G.; Stockton, P.H.; Owen, P.R. Causes of the Fetch Effect in Wind Erosion. Earth Surf. Proc. Land. 1996, 21, 641–659. [Google Scholar] [CrossRef]
- Goossens, D.; Offer, Z.; London, G. Wind Tunnel and Field Calibration of Five Aeolian Sand Traps. Geomorphology 2000, 35, 233–252. [Google Scholar] [CrossRef]
- Goossens, D.; Buck, B.J. Can BSNE (Big Spring Number Eight) Samplers Be Used to Measure PM10, Respirable Dust, PM2.5 and PM1.0? Aeolian Res. 2012, 5, 43–49. [Google Scholar] [CrossRef]
- Mendez, M.J.; Funk, R.; Buschiazzo, D.E. Field Wind Erosion Measurements with Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) Samplers. Geomorphology 2011, 129, 43–48. [Google Scholar] [CrossRef]
- Shao, Y.; McTainsh, G.H.; Leys, J.F.; Raupach, M.R. Efficiencies of Sediment Samplers for Wind Erosion Measurement. Aust. J. Soil Res. 1993, 31, 519–532. [Google Scholar] [CrossRef]
- Miller, I.; Freund, J.E. Probability and Statistics for Engineers; Prentice-Hall: Englewood Cliffs, NJ, USA, 1977. [Google Scholar]
- Ghasemi, A.; Zahediasl, S. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.B.; Forsythe, A.B. Robust Tests for the Equality of Variances. J. Am. Stat. Assoc. 1974, 69, 364–367. [Google Scholar] [CrossRef]
- Kawamura, R. Study of Sand Movement by Wind; Hydraulic Engineering Laboratory; University of California: Berkeley, CA, USA, 1964; pp. 99–108. [Google Scholar]
- White, B.R. Soil Transport by Winds on Mars. J. Geophys. Res. 1979, 84, 4643–4651. [Google Scholar] [CrossRef]
- Marsham, J.H.; Knippertz, P.; Dixon, N.S.; Parker, D.J.; Lister, G.M.S. The Importance of the Representation of Deep Convection for Modeled Dust-Generating Winds over West Africa during Summer. Geophys. Res. Lett. 2011, 38, L16803. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the Atmospheric Dust Cycle: 1. Design of a Soil-Derived Dust Emission Scheme. J. Geophys. Res. 1995, 100, 16415–16430. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G.; Aumont, B.; Callot, Y.; N’Doumé, C.; Legrand, M. Modeling the Atmospheric Dust Cycle 2. Simulation of Saharan Dust Sources. J. Geophys. Res. 1997, 102, 4387–4404. [Google Scholar] [CrossRef]
- Priestley, C.H.B. Turbulent Transfer in the Lower Atmosphere; University of Chicago Press: Chicago, IL, USA, 1959. [Google Scholar]
- Marticorena, B.; Kardous, M.; Bergametti, G.; Callot, Y.; Chazette, P.; Khatteli, H.; Le Hégarat-Mascle, S.; Maillé, M.; Rajot, J.-L.; Vidal-Madjar, D.; et al. Surface and Aerodynamic Roughness in Arid and Semiarid Areas and Their Relation to Radar Backscatter Coefficient. J. Geophys. Res. 2006, 111, F03017. [Google Scholar] [CrossRef]
- Iversen, J.D.; Pollack, J.B.; Greeley, R.; White, B.R. Saltation Threshold on Mars: The Effect of Interparticle Force, Surface Roughness, and Low Atmospheric Density. Icarus 1976, 29, 381–393. [Google Scholar] [CrossRef]
- Bergametti, G.; Gillette, D.A. Aeolian Sediment Fluxes Measured over Various Plant/Soil Complexes in the Chihuahuan Desert. J. Geophys. Res. 2010, 115, F03044. [Google Scholar] [CrossRef]
- Abdourhamane Touré, A.; Rajot, J.L.; Garba, Z.; Marticorena, B.; Petit, C.; Sebag, D. Impact of Very Low Crop Residues Cover on Wind Erosion in the Sahel. Catena 2011, 85, 205–214. [Google Scholar] [CrossRef]
- Dupont, S.; Bergametti, G.; Simoëns, S. Modeling Aeolian Erosion in Presence of Vegetation. J. Geophys. Res. Earth Surf. 2014, 119, 168–187. [Google Scholar] [CrossRef]
- Pierre, C.; Kergoat, L.; Hiernaux, P.; Baron, C.; Bergametti, G.; Rajot, J.-L.; Abdourhamane Toure, A.; Okin, G.S.; Marticorena, B. Impact of Agropastoral Management on Wind Erosion in Sahelian Croplands. Land Degrad. Develop. 2018, 29, 800–811. [Google Scholar] [CrossRef]
- Bergametti, G.; Rajot, J.-L.; Marticorena, B.; Féron, A.; Gaimoz, C.; Chatenet, B.; Coulibaly, M.; Koné, I.; Maman, A.; Zakou, A. Rain, Wind, and Dust Connections in the Sahel. J. Geophys. Res. Atmos. 2022, 127, e2021JD035802. [Google Scholar] [CrossRef]
- Pi, H.; Webb, N.P.; Huggins, D.R.; Sharratt, B. Critical Standing Crop Residue Amounts for Wind Erosion Control in the Inland Pacific Northwest, USA. Catena 2020, 195, 104742. [Google Scholar] [CrossRef]
- Vos, H.C.; Karst, I.G.; Eckardt, F.D.; Fister, W.; Kuhn, N.J. Influence of Crop and Land Management on Wind Erosion from Sandy Soils in Dryland Agriculture. Agronomy 2022, 12, 457. [Google Scholar] [CrossRef]
- Larney, F.J.; Bullock, M.S.; Janzen, H.H.; Ellert, B.H.; Oslon, E.C.S. Wind Erosion Effects on Nutrient Redistribution and Soil Productivity. J. Soil Water Conserv. 1998, 53, 133–140. [Google Scholar]
- Labiadh, M.T.; Bouet, C.; Sekrafi, S.; Ltifi, M.; Attoui, B.; Tlili, A.; Hlel, M.; Rajot, J.L.; Henry des Tureaux, T. Wind Erosion Flux Measured Over Various Land Cover Types in the Arid Region of Southern Tunisia During 2012—2016. DataSuds 2023, V1 [Data set]. [Google Scholar] [CrossRef]
Land Use | Occupation (%) |
---|---|
Cereal field | 0.77 |
Olive grove | 3.73 |
Tree growing | 0.36 |
Market gardening | 0.15 |
Oasis | 0.39 |
Forest | 0.03 |
Rangeland on sand | 36.22 |
Rangeland on flat bed | 24.73 |
Rangeland on slope | 8.27 |
Rangeland on rocky outcrop | 11.49 |
Rangeland on salty depression | 5.68 |
Steppic vegetation close to oued (i.e., ephemeral river) | 1.07 |
Mosaic of steppe and cultivated land | 0.01 |
Sebkha/chott | 6.83 |
Urban | 0.27 |
Land Use | Geographical Coordinates | Site Name |
---|---|---|
Rangeland on sand | 32°51.330′ N–11°20.114′ E | Nadhour Rwag |
Rangeland on flat bed | 34°12.096′ N–9°33.851′ E | Menzel El Habib |
Chott | 33°54.991′ N–8°31.274′ E | Chott El Jerid |
Olive grove | 33°35.885′ N–10°59.786′ E | Chammakh |
Cereal field | 33°07.924′ N–11°05.712′ E | Oued Fessi |
Oasis | 33°34.928′ N–9°03.694′ E | Atilet |
National Park | 32°43.873’ N–11°13.425’ E | Sidi Toui * |
Site | Clay (<2 µm) | Silt (2–50 µm) | Sand (50–2000 µm) |
---|---|---|---|
Nadhour Rwag | 3.3 | 1.6 | 95.1 |
Menzel El Habib—crust | 8.3 | 11.2 | 80.5 |
Menzel El Habib—aeolian deposits | 4.4 | 1.4 | 94.2 |
Chott El Jerid * | 10.0 | 4.7 | 85.3 |
Chammakh | 6.2 | 4.7 | 89.1 |
Oued Fessi | 3.6 | 1.9 | 94.5 |
Atilet | 0.5 | 0 | 99.5 |
Site | Population 1 | Population 2 | ||||
---|---|---|---|---|---|---|
Dmed | Σ | % | Dmed | σ | % | |
Nadhour Rwag | 87.0 (0.3) | 1.28 (0.00) | 84.2 (0.3) | 751.4 (17.1) | 1.35 (0.02) | 15.8 (0.3) |
Menzel El Habib—aeolian deposits | 89.9 (1.3) | 1.29 (0.01) | 100 | - | - | - |
Chott El Jerid * | 130 | 1.85 | 100 | - | - | - |
Chammakh | 89.7 (0.7) | 1.19 (0.00) | 68.3 (0.3) | 135.1 (2.2) | 2.17 (0.03) | 31.7 (0.3) |
Oued Fessi | 85.8 (2.0) | 1.31 (0.02) | 100 | - | - | - |
Atilet | 109.4 (5.1) | 1.49 (0.10) | 81.0 (1.9) | 450.3 (23.1) | 1.45 (0.04) | 19.0 (1.9) |
Site Name | p-Value |
---|---|
Nadhour Rwag | 0.577 |
Menzel El Habib | 0.660 |
Chott El Jerid | 0.958 |
Chammakh | 0.038 |
Oued Fessi | 0.777 |
Site 1 | Site 2 | n1 | n2 | p-Value | Level of Significance |
---|---|---|---|---|---|
Chammakh | Chott El Jerid | 39 | 12 | 3.00 × 10−2 | * |
Chammakh | Menzel Habib | 39 | 44 | 2.59 × 10−24 | **** |
Chammakh | Nadhour Rwag | 39 | 19 | 3.76 × 10−8 | **** |
Chammakh | Oued Fessi | 39 | 16 | 1.08 × 10−8 | **** |
Chott El Jerid | Menzel Habib | 12 | 44 | 1.57 × 10−9 | **** |
Chott El Jerid | Nadhour Rwag | 12 | 19 | 1.60 × 10−2 | * |
Chott El Jerid | Oued Fessi | 12 | 16 | 7.00 × 10−3 | * |
Menzel Habib | Nadhour Rwag | 44 | 19 | 7.00 × 10−3 | * |
Menzel Habib | Oued Fessi | 44 | 16 | 2.00 × 10−3 | * |
Nadhour Rwag | Oued Fessi | 19 | 16 | 9.81 × 10−1 | ns |
Site | Land Use | Period | Annual Sediment Flux (in kg m−1) |
---|---|---|---|
Menzel Habib | Rangeland on flat bed | 5 December 2012–8 January 2014 | 2658 |
8 January 2014–7 January 2015 | 3088 | ||
Nadhour Rwag | Rangeland on sand | 4 June 2014–30 June 2015 | 2591 |
Oued Fessi | Cereal field | 31 December 2013–5 January 2015 | 1109 |
Chott El Jerid | Chott | 18 September 2013–17 September 2014 | 333 |
17 September 2014–1 September 2015 | 5 | ||
Chammakh | Olive grove | 7 March 2013–14 April 2014 | 120 |
5 June 2014–4 June 2015 | 29 | ||
4 June 2015–22 June 2016 | 42 | ||
Atilet | Oasis | 7 November 2012–26 December 2013 | 0 |
Land Use | Annual Sediment Flux (in kg m−1 yr−1) |
---|---|
Rangeland in flat bed | 710 |
Rangeland on sand | 938 |
Cereal field | 9 |
Chott | 12 |
Olive grove | 2 |
Oasis | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labiadh, M.T.; Rajot, J.L.; Sekrafi, S.; Ltifi, M.; Attoui, B.; Tlili, A.; Hlel, M.; Bergametti, G.; des Tureaux, T.H.; Bouet, C. Impact of Land Cover on Wind Erosion in Arid Regions: A Case Study in Southern Tunisia. Land 2023, 12, 1648. https://doi.org/10.3390/land12091648
Labiadh MT, Rajot JL, Sekrafi S, Ltifi M, Attoui B, Tlili A, Hlel M, Bergametti G, des Tureaux TH, Bouet C. Impact of Land Cover on Wind Erosion in Arid Regions: A Case Study in Southern Tunisia. Land. 2023; 12(9):1648. https://doi.org/10.3390/land12091648
Chicago/Turabian StyleLabiadh, Mohamed Taieb, Jean Louis Rajot, Saâd Sekrafi, Mohsen Ltifi, Badie Attoui, Abderrazak Tlili, Moustapha Hlel, Gilles Bergametti, Thierry Henry des Tureaux, and Christel Bouet. 2023. "Impact of Land Cover on Wind Erosion in Arid Regions: A Case Study in Southern Tunisia" Land 12, no. 9: 1648. https://doi.org/10.3390/land12091648
APA StyleLabiadh, M. T., Rajot, J. L., Sekrafi, S., Ltifi, M., Attoui, B., Tlili, A., Hlel, M., Bergametti, G., des Tureaux, T. H., & Bouet, C. (2023). Impact of Land Cover on Wind Erosion in Arid Regions: A Case Study in Southern Tunisia. Land, 12(9), 1648. https://doi.org/10.3390/land12091648