Sediment Grain-Size Composition in the Permafrost Region of the Greater Khingan Range and Its Significance as a Material Source
Abstract
:1. Introduction
2. Regional Overview
3. Materials and Methods
3.1. Lithology and Chronology
3.2. Grain-Size Analysis
3.3. Elemental Analysis
4. Results
4.1. AMS Radiocarbon Dating Results
4.2. Composition of Sediment Grain Size
4.3. Results of End-Member Modeling Analysis
4.4. Elemental Determination Results
5. Discussion
5.1. Sediment Source Assessment Using Grain-Size End Members
5.2. Evolutionary History of Winter Monsoon Based on Grain-Size End Members
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- French, H.M. The Periglacial Environment, 3rd ed.; Chichester Wiley: New York, NY, USA, 2007; p. 458. [Google Scholar]
- Zhou, Y.; Guo, D.; Qiu, G.; Cheng, G.; Li, S. Geocryology in China, 3rd ed.; Science Press: Beijing, China, 2000; pp. 171–194. [Google Scholar]
- Jin, H.; Jin, X.; He, R.; Luo, D.; Chang, X.; Wang, S.; Marchenko, S.S.; Yang, S.; Yi, C.; Li, S.; et al. Evolution of permafrost in China during the last 20 ka. Sci. China Earth Sci. 2019, 49, 1197–1212. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, M.; Zhao, C.; Wang, T. A study on the consistency and local characteristics of temperature evolution in Northeast China. J. Meteor. Environ. 2019, 35, 69–76. (In Chinese) [Google Scholar]
- Slater, A.; Lawrence, D. Diagnosing present and Future Permafrost from Climate Models. J. Clim. 2012, 26, 5608–5623. [Google Scholar] [CrossRef]
- Koven, C.; Riley, W.J.; Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Clim. 2013, 26, 1877–1900. [Google Scholar] [CrossRef]
- Lu, G.; Weng, B.; Guo, D. The geographical boundary of permafrost in the Northeast of China. J. Glaciol. Geocryol. 1993, 15, 214–218. [Google Scholar] [CrossRef]
- Dang, X.; Yu, Y.; Gao, Y.; Yuan, L.; Ma, Y.; Gao, J.; Wang, S.; Zhang, X. Analysis on impact of PLA barrier on soil particle sizes of sand dune. Res. Soil Water Conserv. 2014, 21, 16–19+24. [Google Scholar] [CrossRef]
- Dong, Z.; Li, Z. Wind erodibility of aeolian sand as influenced by grain-size parameters. J. Soil Water Conserv. 1998, 4, 2–6+13. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Q. Reasons of degeneration and tendency of variation of everfrost of the Yellow River source. Yellow River 2009, 31, 10–12+124. [Google Scholar] [CrossRef]
- You, D.; Li, H.; Ge, M.; Zang, S. The influence factors of permafrost active layer depth and their annual change in Heilongjiang Province. J. Glaciol. Geocryol. 2018, 40, 480–491. [Google Scholar]
- Zhou, G.; Huang, X.; Wang, Z.; Zhang, J.; Xie, H. Eolian activity history reconstructed by Bosten Lake grain size data over the past 2000 Years. J. Desert. Res. 2019, 39, 86–95. [Google Scholar]
- Wang, K.; Zheng, H.; Maarten, P.; Zheng, Y. High-Resolution paleoenvironmental record of the mud sediments of the east China sea inner shelf. Mar. Geol. Quat. Geol. 2008, 28, 1–10. [Google Scholar]
- Liu, J.; Wang, H.; Wang, F.; Qiu, J.; Saito, Y.; Lu, J.; Zhou, L.; Xu, G.; Du, X.; Chen, Q. Sedimentary evolution during the last~ 1.9 Ma near the western margin of the modern Bohai Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 451, 84–96. [Google Scholar] [CrossRef]
- Li, Y. Vertcle Dirtribution and Significance of Polycyclic Aromatic Hydrocarbons and Particle Size in Permafrost of Da Hinggan Mountains; Harbin Normal University: Harbin, China, 2020. [Google Scholar]
- Weltje, G.J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. Math. Geol. 1997, 29, 503–549. [Google Scholar] [CrossRef]
- Qin, X.; Cai, B.; Liu, T. Loess record of the aerodynamic environment in the east Asia monsoon area since 60,000 years before present. J. Geophys. Res. 2005, 110, B01204. [Google Scholar] [CrossRef]
- Yin, Z.; Qin, X.; Wu, J.; Ning, B. The multimodal grain-size distribution characteristics of loess, desert, lake and river sediments in some areas of northern China. Acta Sedimentol. Sin. 2009, 27, 343–351. [Google Scholar]
- Sun, D. Supper-Fine grain size components in Chinese Loess and their palaeoclimatic implication. Quat. Sci. 2006, 26, 928–936. [Google Scholar] [CrossRef]
- Sun, D. Bimode Grain-size distribution of Chinese Loess and its Paleoclimate implication. Acta Sedimentol. 2000, 18, 327–335. [Google Scholar] [CrossRef]
- Yu, X.; Li, H.; Yang, X.; Liu, Z.; Zhang, D.; Ren, X. Grain size characteristics of sediments in the Hunshandake Sandy Land and its implications. Acta Geogr. Sin. 2023, 78, 1809–1824. [Google Scholar] [CrossRef]
- Paterson, G.A.; Heslop, D. New methods for unmixing sediment grain size data. Geochem. Geophys. Geosyst. 2015, 16, 4494–4506. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Han, Z.; Chen, Y.; Wang, Y.; Yuan, X.; Ren, Y. Parametric end-member analysis of the grain size distribution of the Xiashu loess and its provenance tracing. J. Earth Environ. 2021, 12, 510–525. [Google Scholar] [CrossRef]
- Wang, T.; Zou, C.; Mao, L.; Zhou, Y.; Mo, D. Sediment grain sieze end-member analysis and its response to climate and sea-level changes in CZ01 borehole on west coast of Bohai Bay. J. Palaeogeography (Chin. Ed.) 2022, 24, 1224–1237. [Google Scholar] [CrossRef]
- Sun, D.; Su, R.; Li, Z.; Lu, H. The ultrafine component in Chinese loess and its variation over the past 7.6 Ma: Implications for the history of pedogenesis. Sedimentology 2011, 58, 916–935. [Google Scholar] [CrossRef]
- Zhao, Q.; Zheng, X.; Zhou, L.; Wang, H.; Lv, H.; Chen, Y.; Ren, S. Grain size end member characteristics and paleoclimatic significance of Loess deposit in Shengshan Island during the Last Glacial Period. Acta Sedimentol. Sin. 2022, 1–18. [Google Scholar] [CrossRef]
- Chen, H.; Kong, F.; Xu, S.; Miao, X. Dust accumulation process indicated by grain size end-members of the coastal loess since the Late Pleistocene in Miaodao Islands of Shandong Province. Quat. Sci. 2021, 41, 1306–1316. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Z.; Wang, Y.; Wang, W.; Fu, C.; Wear, C.; Hu, H.; Kong, X. Grain size end-member components and sedimentary mechanism of Eocene lacustrine sediments in Huangyang River section of Wuwei Basin. J. Earth Environ. 2022, 13, 296–307. [Google Scholar] [CrossRef]
- Yu, T.; Li, X.; Yu, R.; Li, Z.; Sun, Y.; Jiang, Z. Zircon U—Pb ages and geochemistry of monzonite from Xiaokelehe Mo-Cu Deposit in the north of Greater Khingan Mountains. Gold 2021, 42, 11–19. [Google Scholar]
- Hu, H.; Wei, S.; Sun, L. Estimation of carbon emissions due to forest fire in Daxing’an Mountains from 1965 to 2010. Chin. J. Plant Ecol. 2012, 36, 629–644. [Google Scholar] [CrossRef]
- Chang, X.; Jin, H.; He, R.; Jing, H.; Li, G.; Wang, Y.; Luo, D.; Yu, S.; Sun, H. Review of Permafrost Monitoring in the Northern Da Hinggan Mountains, Northeast China. J. Glaciol. Geocryol. 2013, 35, 93–100. [Google Scholar]
- Zhang, J.; Wang, W.; Du, H.; Zhong, Z.; Xiao, L.; Zhou, W.; Zhang, B.; Wang, H. The response of vegetation to the change of active layer thickness in permafrost region of the north Greater Khingan Mountains. Acta. Ecol. Sin. 2018, 38, 4684–4693. [Google Scholar]
- Lv, J.; Li, X.; Hu, Y.; Wang, X.; Liu, H.; Bing, L. Factors affecting the thickness of permafrost’s active layer in Huzhong National Nature Reserv. Chin. J. Ecol. 2007, 26, 1369–1374. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Che, J.; Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M.; Jin, H.; Obu, J.; et al. New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth. Syst. Sci Data. 2022, 14, 865–884. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef]
- Stueiver, M.; Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 1993, 35, 215–230. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian. Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Mcmanus, J. Techniques in Sedimentology, 1st ed.; Black-Well: Oxford, UK, 1988; pp. 63–85. [Google Scholar]
- Jia, J.; Gao, S.; Xue, Y. Grain size parameters derived from graphic and moment methods: A comparative study. Oceanol. Limnol. Sin. 2002, 33, 577–582. [Google Scholar]
- Wang, Z.; Yu, D.; Luo, F.; Yang, H. Comparison of grain size parameters from graphical and moment methods for surface sediments in Quanzhou Bay. Mar Geol. Front. 2016, 32, 19–27. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Sun, Y. QGrain: An open-source and easy-to-use software for the comprehensive analysis of grain size distributions. Sediment. Geol. 2021, 423, 105–980. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Dong, Z.; Zhang, Z.; Yang, H.; Wang, X. Numerical methodologies and tools for efficient and flexible unmixing of single-sample grain-size distributions: Application to late Quaternary aeolian sediments from the desert-loess transition zone of the Tengger Desert. Sediment. Geol. 2022, 438, 106–211. [Google Scholar] [CrossRef]
- Boulay, S.; Colin, C.; Trentesaux, A.; Pluquet, F.; Bertaux, J.; Blamart, D.; Buehring, C.; Wang, P. Mineralogy and Sedimentology of Pleistocene Sediment in the South China Sea (ODP Site 1144). Proc. Ocean. Drill. Program Sci. Results 2003, 184, 1–21. [Google Scholar] [CrossRef]
- Wen, X.; Tonya; Huang, C.; Gombo, S. Multi-material Source of Loess Deposits from the Jiuzhaigou National Nature Reserve on the Eastern Margin of the Tibetan Plateau. Mountain Research 2014, 32, 603–614. [Google Scholar] [CrossRef]
- Cao, B. Geomorphology and Quaternary Geology; Geomorphology and Quaternary Geology China University of Geosciences Press: Hubei, China, 1995; pp. 1–288. [Google Scholar]
- Shi, Y. Evolution of the Cryosphere in the Tibetan Plateau‚China‚and its Relationship with the Global Change in the Mid Quaternary. J. Glaciol. Geocryol. 1998, 20, 197–208. [Google Scholar] [CrossRef]
- Pye, K. Aeolian Dust and Dust Deposits; Academic Press: London, UK, 1987; pp. 1–256. [Google Scholar] [CrossRef]
- Bronger, A.; Heinkele, T. Mineralogical and clay mineralogical aspects of loess research. Quatern. Int. 1990, 7, 37–51. [Google Scholar] [CrossRef]
- Wang, C.; Ye, W.; Yang, L. The content of Fe, Mn, Al, Sr in red and white part of vermicular red clay in Xuancheng profile. J. Anhui Norm. Univ. (Nat. Sci.) 2017, 40, 271–274. [Google Scholar] [CrossRef]
- Sun, D.; Su, R.; Bloemendal, J.; Lu, H. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 264, 39–53. [Google Scholar] [CrossRef]
- Meng, Y.; Cao, D.; Wu, Y.; Wang, Z. Comparisons of dynamic dow nscaling of the wind field in forest areas of Da-xiao-Xing’anling Mountains. J. Meteor. Environ. 2019, 35, 8–15. [Google Scholar] [CrossRef]
- Nottebaum, V.; Stauch, G.; Hartmann, K.; Zhang, J.; Lehmkuhl, F. Unmixed loess grain size populations along the northern Qilian Shan (China): Relationships between geomorphologic, sedimentologic and climatic controls. Quatern. Int. 2015, 372, 151–166. [Google Scholar] [CrossRef]
- Sun, D.; Bloemendal, J.; Rea, D.K.; An, Z.; Vandenberghe, J.; Lu, H.; Su, R.; Liu, T. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena 2004, 55, 325–340. [Google Scholar] [CrossRef]
- Xie, Y.; Chi, Y.; Meng, J.; Guo, L.; Wang, Y. Grain-size and Sr–Nd isotopic compositions of dry-and wet-deposited dusts during the same dust-storm event in Harbin, China: Implications for source, transport–deposition modes, dynamic mechanism and formation of eolian loess. Environ. Earth Sci. 2015, 74, 6489–6502. [Google Scholar] [CrossRef]
- Sun, D.; Bloemendal, J.; Rea, D.; Vandenberghe, J.; Jiang, F.; An, Z.; Su, R. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment. Geol. 2002, 152, 263–277. [Google Scholar] [CrossRef]
- Li, X.; Han, Z.; Chen, Y.; Cai, Y.; Yang, D. Characteristics and source of rain dust in Nanjing on 11 March 2006 Quaternary Sciences. Quat. Sci. 2009, 29, 43–54. [Google Scholar] [CrossRef]
- Sun, M.; Yang, S.; Xiao, J.; Wang, Y.; Huang, X.; Zhang, S.; Yang, X.; Jiang, W.; Ding, Z. BrGDGTs-based temperature and hydrological reconstruction from fluvio-lacustrine sediments in the monsoonal North China Plain since 31 kyr BP Quaternary Science Reviews. Quat. Sci. Rev. 2022, 277, 107268. [Google Scholar] [CrossRef]
- Sahu, B.K. Depositional mechanisms from the size analysis of clastic sediments. J. Sediment. Res. 1964, 34, 73–83. [Google Scholar] [CrossRef]
- Pye, K.; Zhou, L.P. Late Pleistocene and Holocene aeolian dust deposition in north China and the northwest Pacific Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1989, 73, 11–23. [Google Scholar] [CrossRef]
- Tsoar, H.; Pye, K. Dust transport and the question of desert loess formation. Sdimentology 1987, 34, 139–153. [Google Scholar] [CrossRef]
- Wang, S.; Wei, D.; Zhang, W. The End-member characteristics of the grain size of the aeolian sand deposits in the Liaodong Peninsula since the last glacial period and the study on paleoclimate evolution. Quat. Sci. 2022, 42, 338–349. [Google Scholar] [CrossRef]
- Prins, M.A.; Vriend, M. Glacial and interglacial eolian dust dispersal patterns across the Chinese Loess Plateau inferred from decomposed loess grain-size records. Geochem. Geophys. Geosyst. 2007, 8, 1–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, C.; Zhang, J.; Huang, X.; Otgonbayar, D. Aeolian activities in the NW Mongolia during the Holocene recorded by grain-size-sensitive partiles in the sediments of Lake Tolbo. J. Lake Sci. 2023, 35, 368–380. [Google Scholar]
- Vandenberghe, J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth-Sci. Rev. 2013, 121, 18–30. [Google Scholar] [CrossRef]
- Li, S. End-Member Analysis of Loess Grain-Size in the Eastern Tibetan Plateau and Its Environmental Implications; Lanzhou University: Lanzhou, China, 2018. [Google Scholar]
- De Moor, J.J.W.; Kasse, C.; Van Balen, R.; Vandenberghe, J.; Wallinga, J. Human and climate impact on catchment development during the Holocene-Geul River, the Netherlands. Geomorphology 2008, 98, 316–339. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Renssen, H.; van Huissteden, K.; Nugteren, G.; Konert, M.; Lu, H.; Andrey, D.; Buylaert, J.P. Penetration of Atlantic westerly winds into Central and East Asia. Quat. Sci. Rev. 2006, 25, 2380–2389. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Z.; Su, X.; Hu, J. Study on residual soil characteristics of Cote D ’Ivoire, Africa. Des. Hydroelectr. Power Stn. 2021, 37, 8–12. [Google Scholar] [CrossRef]
- Gaudin, A. An investigation of crushing phenomena. Trans. Am. Inst. Min. Metall. Pet. Eng. 1926, 73, 253–316. [Google Scholar]
- Tian, Q.; Yin, J.; Hao, X. MIS3 climate change assessed according to loess deposition in the Linfen Basin, China. Arid Zone Res. 2022, 39, 10–20. [Google Scholar] [CrossRef]
- Su, C.; Xu, Z.; Zhang, D.; Liu, Q.; Liu, J. Aeolian dust history since 14. 4 cal ka BP indicated by grain-size end members of Shayan loess in the southern Kazakhstan. Quat. Sci. 2023, 43, 46–56. [Google Scholar] [CrossRef]
- Dansgaard, W.; Johnsen, S.J.; Clausen, H.B.; Dahl-Jensen, D.; Gundestrup, N.S.; Hammer, C.U.; Hvidberg, C.S.; Steffensen, J.P.; Sveinbjörnsdottir, A.; Jouzel, J. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 1993, 364, 218–220. [Google Scholar] [CrossRef]
- Linsley, B.K. Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150,000 years. Nature 1996, 380, 234–237. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, N.; Li, F.; Zhang, D.; Zhang, Y.; Shen, C.; Lu, H. The Holocene temperature conundrum answered by mollusk records from East Asia. Nat. Commun. 2022, 13, 51–53. [Google Scholar] [CrossRef]
- Chen, S.; Zang, S.; Sun, L. Characteristics of permafrost degradation in Northeast China and its ecological effects: A review. Sci. Cold Arid. Reg. 2020, 12, 1–11. [Google Scholar]
- Hovan, S.; Rea, D.K.; Pisias, N.G. Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments. Paleoceanography 1991, 6, 349–370. [Google Scholar] [CrossRef]
- Kang, S.; Du, J.; Wang, N.; Dong, J.; Wang, D.; Wang, X.; Qiang, X.; Song, Y. Early Holocene weakening and mid-to late Holocene strengthening of the East Asian winter monsoon. Geology 2020, 48, 1043–1047. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.-F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317. [Google Scholar] [CrossRef]
Core | Depth/cm | Frozen State | AMS 14C /a B.P. | Error± /a B.P. | Median Calendar Age/cal.a.BP./2σ | 2σ-Corrected Calendar Age Range/cal.a.BP |
---|---|---|---|---|---|---|
BJC-2 | 10 | Active layer | 2410 | 30 | 2433 | 2349~2497 |
105 | Active layer | 7730 | 30 | 8499 | 8424~8554 | |
115 | Active layer | 11,900 | 30 | 13,765 | 13,606~13,717 | |
193 | Frozen layer | 12,060 | 30 | 13,917 | 13,808~13,960 | |
380 | Non-frozen layer | 13,077 | 50 | 15,676 | 15,493~15,852 | |
453 | Non-frozen layer | 13,470 | 40 | 16,236 | 16,064~16,371 | |
640 | Non-frozen layer | 15,480 | 40 | 18,793 | 18,710~18,860 | |
BJC-3 | 15 | Active layer | 1440 | 30 | 1331 | 1297~1373 |
105 | Active layer | 2070 | 30 | 2031 | 1973~2117 | |
195 | Active layer | 3110 | 30 | 3328 | 3234~3391 | |
435 | Frozen layer | 12,831 | 30 | 15,315 | 15,186~15,506 | |
535 | Non-frozen layer | 17,450 | 50 | 21,031 | 20,885~21,295 | |
705 | Non-frozen layer | 24,530 | 100 | 28,778 | 28,642~28,966 |
Core | EM1 | EM2 | EM3 | EM4 | EM5 |
---|---|---|---|---|---|
BJC-1 | 2.40 | 1.83 | 2.04 | 1.99 | - |
BJC-2 | 2.43 | 2.11 | 2.03 | 2.12 | - |
BJC-3 | 2.24 | 1.69 | 1.88 | 6.81 | - |
HZ-1 | 2.08 | 1.74 | 2.13 | 2.91 | 1.89 |
Core | EM1 | EM2 | EM3 | EM4 | EM5 |
---|---|---|---|---|---|
A | 1.66 μm Weathering and pedogenesis | 7.58 μm The strength of the East Asia summer monsoon (wet dust) | 22.91 μm Low-altitude near source | 104.71 μm Local source | - |
B | 1.26 μm Weathering and pedogenesis | 7.58 μm The strength of the East Asia summer monsoon (wet dust) | 26.30 μm Low-altitude near source | 79.43 μm Local source | - |
C | 1.45 μm Weathering and pedogenesis | 4.37 μm Upper westerly transport | 7.58 μm The strength of the East Asia summer monsoon (wet dust) | 79.43 μm Low-altitude near source + local source | - |
D | 1.66 μm Weathering and pedogenesis | 5.01 μm Upper westerly transport | 11.48 μm Dry dust | 45.70 μm Low-altitude near source + local source | 831.76 μm Rock weathering |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zang, S.; Wu, X.; Liu, R.; Li, T.; Zhu, J.; Sun, L.; Wu, S.; Dong, X.; Zhang, Z. Sediment Grain-Size Composition in the Permafrost Region of the Greater Khingan Range and Its Significance as a Material Source. Land 2023, 12, 1728. https://doi.org/10.3390/land12091728
Liu L, Zang S, Wu X, Liu R, Li T, Zhu J, Sun L, Wu S, Dong X, Zhang Z. Sediment Grain-Size Composition in the Permafrost Region of the Greater Khingan Range and Its Significance as a Material Source. Land. 2023; 12(9):1728. https://doi.org/10.3390/land12091728
Chicago/Turabian StyleLiu, Lixin, Shuying Zang, Xiaodong Wu, Rui Liu, Tianrui Li, Jiaju Zhu, Li Sun, Shaoqiang Wu, Xingfeng Dong, and Zihao Zhang. 2023. "Sediment Grain-Size Composition in the Permafrost Region of the Greater Khingan Range and Its Significance as a Material Source" Land 12, no. 9: 1728. https://doi.org/10.3390/land12091728
APA StyleLiu, L., Zang, S., Wu, X., Liu, R., Li, T., Zhu, J., Sun, L., Wu, S., Dong, X., & Zhang, Z. (2023). Sediment Grain-Size Composition in the Permafrost Region of the Greater Khingan Range and Its Significance as a Material Source. Land, 12(9), 1728. https://doi.org/10.3390/land12091728