Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
- Site (S). This includes the RFPCs that were carried out in open fields or under tunnels;
- Treatment duration (TD). This classifies the crops according to their lasting time, namely 1, 2, or 3 trimesters;
- Nutrients management (NM). This includes the management of N, P, and K under conventional or organic agriculture and also the practice of adding no nutrients to the soil;
- Nutrients and amendments distribution techniques (N/A D). This describes the choices in fertirrigation, soil incorporation, and foliar spray and also the practice of no nutrients and amendments distribution;
- Green manuring (GM). This variable is concerned with whether green manuring has been carried out or not;
- Amendments (A). These include biochar, compost, cow manure, chicken manure, leonardite, or their combinations as well as no amendment additions;
- Biomass (B). This highlights the use of green manuring, the incorporation of plant residues after food harvest, or the use of spontaneous plants and waste biomass;
- Crop type (CT). This includes break crops, start crops, and impoverishment crops;
- Soil coverage (SC). This describes the type of mulching used (plastic layer or cover crop);
- Irrigation (I). This considers drip, partial root zone drying, sprinklers, emergency drought systems, or no irrigation;
- Weeding (W). This includes hand and manual weeding or the use of a rototiller for weed removal as well as the use of mulching or cover cropping for weed control;
- Soil organic carbon evolution (∆SOC). This is the target variable and is measured as the difference in SOC amounts before and after the application of agricultural practices and the food harvest. Furthermore, the SOC values were grouped into three classes to facilitate clarity and correct interpretation of the results. Specifically, the “NEGATIVE” class explains the reductions in SOC that are lower than −0.5 g∙kg−1, the “NEUTRAL” class includes all the variations between −0.5 and +0.5 g∙kg−1, and the “POSITIVE” class reports increments in SOC that are higher than 0.5 g∙kg−1.
2.2. The Decision Tree
3. Results and Discussion
3.1. Dataset Description
3.2. Decision Tree Interpretation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- European Parliament Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’); European Union: Luxembourg, 2021; Volume 243.
- McMahon, J.A.; Cardwell, M.N. (Eds.) Research Handbook on EU Agriculture Law. In Research Handbooks in European Law; Edward Elgar Publishing: Cheltenham, UK; Northampton, MA, USA, 2015; ISBN 978-1-78195-461-4. [Google Scholar]
- COWI; Directorate-General for Climate Action (European Commission); Ecologic Institute; IEEP; Radley, G.; Keenleyside, C.; Frelih-Larsen, A.; McDonald, H.; Pyndt Andersen, S.; Qwist-Hoffmann, H.; et al. Setting up and Implementing Result-Based Carbon Farming Mechanisms in the EU: Technical Guidance Handbook; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-29655-3.
- European Commission. Commission Staff Working Document. Sustainable Carbon Cycles—Carbon Farming Accompanying the Communication from the Commission to the European Parliament and the Council Sustainable Carbon Cycles, SWD/2021/450 Final. Available online: https://op.europa.eu/en/publication-detail/-/publication/d1d1329f-5d8e-11ec-9c6c-01aa75ed71a1/language-en (accessed on 8 November 2023).
- European Parliament Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 Establishing a Scheme for Greenhouse Gas Emission Allowance Trading within the Community and Amending Council Directive 96/61/EC (Text with EEA Relevance); European Union: Luxembourg, 2003; Volume 275.
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; A New Circular Economy Action Plan For a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020.
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020.
- COWI; Ecologic Institute; IEEP. Analytical Support for the Operationalisation of an EU Carbon Farming Initiative: Lessons Learned from Existing Result-Based Carbon Farming Schemes and Barriers and Solutions for Implementation within the EU; Report to the European Commission, DG Climate Action under Contract No. CLIMA/C.3/ETU/2018/007; COWI: Kongens Lyngby, Danmark, 2020; p. 260. [Google Scholar]
- European Commission. List of Potential Agricultural Practices That Eco-Schemes Could Support; European Commission: Brussels, Belgium, 2021; p. 5.
- European Commission. Approved 28 CAP Strategic Plans (2023–2027) Summary Overview for 27 Member States. Facts and Figures; European Commission: Brussels, Belgium, 2023; p. 100.
- Oldfield, E.E.; Bradford, M.A.; Wood, S.A. Global Meta-Analysis of the Relationship between Soil Organic Matter and Crop Yields. Soil 2019, 5, 15–32. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E. An Overview of Land Degradation, Desertification and Sustainable Land Management Using GIS and Remote Sensing Applications. Rend. Fis. Acc. Lincei 2023, 34, 767–808. [Google Scholar] [CrossRef]
- Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef]
- Wu, Q.; Guan, X.; Zhang, J.; Xu, Y. The Role of Rural Infrastructure in Reducing Production Costs and Promoting Resource-Conserving Agriculture. Int. J. Environ. Res. Public Health 2019, 16, 3493. [Google Scholar] [CrossRef] [PubMed]
- European Network for Rural Development. Upscaling Carbon Farming in the EU; ENRD Thematic Group on Carbon Farming: Brussels, Belgium, 2022; p. 4. [Google Scholar]
- Paul, S.S.; Coops, N.C.; Johnson, M.S.; Krzic, M.; Chandna, A.; Smukler, S.M. Mapping Soil Organic Carbon and Clay Using Remote Sensing to Predict Soil Workability for Enhanced Climate Change Adaptation. Geoderma 2020, 363, 114177. [Google Scholar] [CrossRef]
- Yang, L.; He, X.; Shen, F.; Zhou, C.; Zhu, A.-X.; Gao, B.; Chen, Z.; Li, M. Improving Prediction of Soil Organic Carbon Content in Croplands Using Phenological Parameters Extracted from NDVI Time Series Data. Soil Tillage Res. 2020, 196, 104465. [Google Scholar] [CrossRef]
- Pande, C.B.; Kadam, S.A.; Jayaraman, R.; Gorantiwar, S.; Shinde, M. Prediction of Soil Chemical Properties Using Multispectral Satellite Images and Wavelet Transforms Methods. J. Saudi Soc. Agric. Sci. 2022, 21, 21–28. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Garosi, Y.; Reza Owliaie, H.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the Spatial Prediction of Soil Organic Carbon Using Environmental Covariates Selection: A Comparison of a Group of Environmental Covariates. Catena 2022, 208, 105723. [Google Scholar] [CrossRef]
- Dechow, R.; Franko, U.; Kätterer, T.; Kolbe, H. Evaluation of the RothC Model as a Prognostic Tool for the Prediction of SOC Trends in Response to Management Practices on Arable Land. Geoderma 2019, 337, 463–478. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Fan, M.; Chen, F.; Gao, C. Machine-Learning-Based Prediction and Key Factor Identification of the Organic Carbon in Riverine Floodplain Soils with Intensive Agricultural Practices. J. Soils Sediments 2021, 21, 2896–2907. [Google Scholar] [CrossRef]
- Kaya, F.; Keshavarzi, A.; Francaviglia, R.; Kaplan, G.; Başayiğit, L.; Dedeoğlu, M. Assessing Machine Learning-Based Prediction under Different Agricultural Practices for Digital Mapping of Soil Organic Carbon and Available Phosphorus. Agriculture 2022, 12, 1062. [Google Scholar] [CrossRef]
- Wang, Q.; Le Noë, J.; Li, Q.; Lan, T.; Gao, X.; Deng, O.; Li, Y. Incorporating Agricultural Practices in Digital Mapping Improves Prediction of Cropland Soil Organic Carbon Content: The Case of the Tuojiang River Basin. J. Environ. Manag. 2023, 330, 117203. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Annual Report 2022|UNFCCC; United Nations: New York, NY, USA, 2023; p. 56.
- FAO. Recarbonizing Global Soils—A Technical Manual of Recommended Management Practices; FAO: Roma, Italy, 2021; ISBN 978-92-5-134838-3. [Google Scholar]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Kerry, R. Digital Mapping of Soil Organic Carbon at Multiple Depths Using Different Data Mining Techniques in Baneh Region, Iran. Geoderma 2016, 266, 98–110. [Google Scholar] [CrossRef]
- Hashimoto, S.; Nanko, K.; Ťupek, B.; Lehtonen, A. Data-Mining Analysis of the Global Distribution of Soil Carbon in Observational Databases and Earth System Models. Geosci. Model Dev. 2017, 10, 1321–1337. [Google Scholar] [CrossRef]
- Zhu, C.; Wei, Y.; Zhu, F.; Lu, W.; Fang, Z.; Li, Z.; Pan, J. Digital Mapping of Soil Organic Carbon Based on Machine Learning and Regression Kriging. Sensors 2022, 22, 8997. [Google Scholar] [CrossRef]
- Farhate, C.V.V.; Souza, Z.M.D.; Oliveira, S.R.D.M.; Tavares, R.L.M.; Carvalho, J.L.N. Use of Data Mining Techniques to Classify Soil CO2 Emission Induced by Crop Management in Sugarcane Field. PLoS ONE 2018, 13, e0193537. [Google Scholar] [CrossRef]
- Akbari, M.; Goudarzi, I.; Tahmoures, M.; Elveny, M.; Bakhshayeshi, I. Predicting Soil Organic Carbon by Integrating Landsat 8 OLI, GIS and Data Mining Techniques in Semi-Arid Region. Earth Sci. Inform. 2021, 14, 2113–2122. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, Y.; Chen, S.; Shen, R.; Hu, B.; Peng, J.; Wang, N.; Guo, L.; Zhuo, Z.; Yang, Y.; et al. Data Mining of Urban Soil Spectral Library for Estimating Organic Carbon. Geoderma 2022, 426, 116102. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A.M. On-Line Vis-NIR Spectroscopy Prediction of Soil Organic Carbon Using Machine Learning. Soil Tillage Res. 2019, 190, 120–127. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Mouazen, A.M. Removal of External Influences from On-Line Vis-NIR Spectra for Predicting Soil Organic Carbon Using Machine Learning. Catena 2022, 211, 106015. [Google Scholar] [CrossRef]
- Zayani, H.; Fouad, Y.; Michot, D.; Kassouk, Z.; Baghdadi, N.; Vaudour, E.; Lili-Chabaane, Z.; Walter, C. Using Machine-Learning Algorithms to Predict Soil Organic Carbon Content from Combined Remote Sensing Imagery and Laboratory Vis-NIR Spectral Datasets. Remote Sens. 2023, 15, 4264. [Google Scholar] [CrossRef]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: Burlington, MA, USA, 1993; ISBN 978-1-55860-238-0. [Google Scholar]
- USDA. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 1999.
- European Council Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora; European Union: Luxembourg, 1992; Volume 206.
- Liu, X.; Herbert, S.J.; Hashemi, A.M.; Zhang, X.; Ding, G. Effects of Agricultural Management on Soil Organic Matter and Carbon Transformation—A Review. Plant Soil Environ. 2006, 52, 531–543. [Google Scholar] [CrossRef]
- Smith, C. Decision Trees and Random Forests: A Visual Introduction for Beginners; Blue Windmill Media: Vancouver, BC, Canada, 2017; ISBN 978-1-5498-9375-9. [Google Scholar]
- Ben Amor, N.; Benferhat, S.; Elouedi, Z. Qualitative Classification and Evaluation in Possibilistic Decision Trees. In Proceedings of the 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542), Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 653–657. [Google Scholar]
- Chen, D.; Chang, N.; Xiao, J.; Zhou, Q.; Wu, W. Mapping Dynamics of Soil Organic Matter in Croplands with MODIS Data and Machine Learning Algorithms. Sci. Total Environ. 2019, 669, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Kebonye, N.M.; Agyeman, P.C.; Biney, J.K.M. Optimized Modelling of Countrywide Soil Organic Carbon Levels via an Interpretable Decision Tree. Smart Agric. Technol. 2023, 3, 100106. [Google Scholar] [CrossRef]
- Kotu, V.; Deshpande, B. Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 978-0-12-801460-8. [Google Scholar]
- Cherfi, A.; Nouira, K.; Ferchichi, A. Very Fast C4.5 Decision Tree Algorithm. Appl. Artif. Intell. 2018, 32, 119–137. [Google Scholar] [CrossRef]
- Song, Y.; Lu, Y. Decision Tree Methods: Applications for Classification and Prediction. Shanghai Arch. Psychiatry 2015, 27, 130. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Giri, M. Comparative Study Id3, Cart And C4.5 Decision Tree Algorithm: A Survey. Int. J. Adv. Inf. Sci. Technol. 2014, 3, 47–52. [Google Scholar]
- Tan, P.-N.; Steinbach, M.; Karpatne, A.; Kumar, V. Introduction to Data Mining, 2nd ed.; Pearson: New York, NY, USA, 2019; ISBN 978-0-13-312890-1. [Google Scholar]
- Maimon, O.; Rokach, L. Data Mining and Knowledge Discovery Handbook; Springer: New York, NY, USA, 2005; ISBN 978-0-387-24435-8. [Google Scholar]
- Hssina, B.; Merbouha, A.; Ezzikouri, H.; Erritali, M. A Comparative Study of Decision Tree ID3 and C4.5. Int. J. Adv. Comput. Sci. Appl. 2014, 4, 13–19. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques. In Morgan Kaufmann Series in Data Management Systems, 3rd ed.; Morgan Kaufmann: Burlington, MA, USA, 2011; ISBN 978-0-12-374856-0. [Google Scholar]
- Kass, G.V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Appl. Stat. 1980, 29, 119. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: New York, NY, USA, 2017; ISBN 978-1-315-13947-0. [Google Scholar]
- Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Quinlan, J.R. Improved Use of Continuous Attributes in C4.5. J. Artif. Intell. Res. 1996, 4, 77–90. [Google Scholar] [CrossRef]
- Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased Recursive Partitioning: A Conditional Inference Framework. J. Comput. Graph. Stat. 2006, 15, 651–674. [Google Scholar] [CrossRef]
- Salzberg, S.L. C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Mach. Learn. 1994, 16, 235–240. [Google Scholar] [CrossRef]
- Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 Algorithms in Data Mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Pan, Y.; Gu, J.; Zhao, A.; Liu, X. A Comparison of Model-Assisted Estimators to Infer Land Cover/Use Class Area Using Satellite Imagery. Remote Sens. 2014, 6, 8904–8922. [Google Scholar] [CrossRef]
- Ting, K.M. Confusion Matrix. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; p. 209. ISBN 978-0-387-30164-8. [Google Scholar]
- Lantz, B. Machine Learning with R: Learn How to Use R to Apply Powerful Machine Learning Methods and Gain an Insight into Real-World Applications; 1. publ.; Packt Publishing: Birmingham, UK, 2013; ISBN 978-1-78216-214-8. [Google Scholar]
- Ba’abbad, I.; Althubiti, T.; Alharbi, A.; Alfarsi, K.; Rasheed, S. A Short Review of Classification Algorithms Accuracy for Data Prediction in Data Mining Applications. J. Data Anal. Inf. Process. 2021, 9, 162–174. [Google Scholar] [CrossRef]
- Fernando, M.; Shrestha, A. The Potential of Cover Crops for Weed Management: A Sole Tool or Component of an Integrated Weed Management System? Plants 2023, 12, 752. [Google Scholar] [CrossRef]
- Crézé, C.M.; Horwath, W.R. Cover Cropping: A Malleable Solution for Sustainable Agriculture? Meta-Analysis of Ecosystem Service Frameworks in Perennial Systems. Agronomy 2021, 11, 862. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The Role of Cover Crops in Improving Soil Fertility and Plant Nutritional Status in Temperate Climates. A Review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Bell, S.M.; Terrer, C.; Barriocanal, C.; Jackson, R.B.; Rosell-Melé, A. Soil Organic Carbon Accumulation Rates on Mediterranean Abandoned Agricultural Lands. Sci. Total Environ. 2021, 759, 143535. [Google Scholar] [CrossRef]
- EU Carbon Permits—Price—Chart—Historical Data—News. Available online: https://tradingeconomics.com/commodity/carbon (accessed on 9 November 2023).
- Fontaine, S.; Mariotti, A.; Abbadie, L. The Priming Effect of Organic Matter: A Question of Microbial Competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Kuzyakov, Y.; Schillaci, C.; Laudicina, V.A.; La Mantia, T. Turnover and Availability of Soil Organic Carbon under Different M Editerranean Land-uses as Estimated by 13C Natural Abundance. Eur. J. Soil Sci. 2013, 64, 466–475. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; et al. Persistence of Soil Organic Carbon Caused by Functional Complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- European Commission. Common Agricultural Policy for 2023–2027 28 Cap Strategic Plans at a Glance; European Commission: Brussels, Belgium, 2022; p. 13.
- Rigon, J.P.G.; Calonego, J.C. Soil Carbon Fluxes and Balances of Crop Rotations under Long-Term No-Till. Carbon Balance Manag. 2020, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, S.; Yu, Q.; Zhang, Y.; Wang, R.; Li, J.; Wang, X. No Tillage Increases Soil Organic Carbon Storage and Decreases Carbon Dioxide Emission in the Crop Residue-Returned Farming System. J. Environ. Manag. 2020, 261, 110261. [Google Scholar] [CrossRef] [PubMed]
- Cooper, H.V.; Sjögersten, S.; Lark, R.M.; Girkin, N.T.; Vane, C.H.; Calonego, J.C.; Rosolem, C.; Mooney, S.J. Long-term Zero-tillage Enhances the Protection of Soil Carbon in Tropical Agriculture. Eur. J. Soil Sci. 2021, 72, 2477–2492. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Feng, X.; Yang, H.; Li, Y.; Yakov, K.; Liu, S.; Li, F.-M. Effects of Tillage on Soil Organic Carbon and Crop Yield under Straw Return. Agric. Ecosyst. Environ. 2023, 354, 108543. [Google Scholar] [CrossRef]
- Zhao, S.; Qiu, S.; Xu, X.; Ciampitti, I.A.; Zhang, S.; He, P. Change in Straw Decomposition Rate and Soil Microbial Community Composition after Straw Addition in Different Long-Term Fertilization Soils. Appl. Soil Ecol. 2019, 138, 123–133. [Google Scholar] [CrossRef]
- Guest, E.J.; Palfreeman, L.J.; Holden, J.; Chapman, P.J.; Firbank, L.G.; Lappage, M.G.; Helgason, T.; Leake, J.R. Soil Macroaggregation Drives Sequestration of Organic Carbon and Nitrogen with Three-Year Grass-Clover Leys in Arable Rotations. Sci. Total Environ. 2022, 852, 158358. [Google Scholar] [CrossRef]
- Malamataris, D.; Pisinaras, V.; Babakos, K.; Chatzi, A.; Hatzigiannakis, E.; Kinigopoulou, V.; Hatzispiroglou, I.; Panagopoulos, A. Effects of Weed Removal Practices on Soil Organic Carbon in Apple Orchards Fields. In Proceedings of the ECWS-7 2023, 7th International Electronic Conference on Water Sciences, Online, 15–30 March 2023; p. 25. [Google Scholar]
- Núñez, A.; Cotrufo, M.F.; Schipanski, M. Irrigation Effects on the Formation of Soil Organic Matter from Aboveground Plant Litter Inputs in Semiarid Agricultural Systems. Geoderma 2022, 416, 115804. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling Downwards—Dissolved Organic Matter in Soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Jarvis, P.; Rey, A.; Petsikos, C.; Wingate, L.; Rayment, M.; Pereira, J.; Banza, J.; David, J.; Miglietta, F.; Borghetti, M.; et al. Drying and Wetting of Mediterranean Soils Stimulates Decomposition and Carbon Dioxide Emission: The “Birch Effect”. Tree Physiol. 2007, 27, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Eurostat Agri-Environmental Indicator—Tillage Practices. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_tillage_practices (accessed on 8 November 2023).
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the Soil Erosion Cover-Management Factor at the European Scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions EU Biodiversity Strategy for 2030 Bringing Nature Back into Our Lives; European Commission: Brussels, Belgium, 2020.
- Emde, D.; Hannam, K.D.; Most, I.; Nelson, L.M.; Jones, M.D. Soil Organic Carbon in Irrigated Agricultural Systems: A Meta-analysis. Glob. Chang. Biol. 2021, 27, 3898–3910. [Google Scholar] [CrossRef] [PubMed]
- Betancur, M.; Retamal-Salgado, J.; López, M.D.; Vergara-Retamales, R.; Schoebitz, M. Plant Performance and Soil Microbial Responses to Irrigation Management: A Novel Study in a Calafate Orchard. Horticulturae 2022, 8, 1138. [Google Scholar] [CrossRef]
- Yang, P.; Wu, L.; Cheng, M.; Fan, J.; Li, S.; Wang, H.; Qian, L. Review on Drip Irrigation: Impact on Crop Yield, Quality, and Water Productivity in China. Water 2023, 15, 1733. [Google Scholar] [CrossRef]
- European Parliament Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Union: Luxembourg, 2000; Volume 327.
- Yu, Y.; Zhang, Y.; Xiao, M.; Zhao, C.; Yao, H. A Meta-Analysis of Film Mulching Cultivation Effects on Soil Organic Carbon and Soil Greenhouse Gas Fluxes. Catena 2021, 206, 105483. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, J.; Yao, Z.; Luo, S.; Tian, L.; Tian, C.; Sun, Y. Preliminary Findings of Polypropylene Carbonate (PPC) Plastic Film Mulching Effects on the Soil Microbial Community. Agriculture 2022, 12, 406. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Z.; Sun, M.; Liu, S. Plastic Mulching Reduces Surface-Soil Microbial Biomass Carbon and Structural Stability in a Pear Orchard; Research Square: Durham, NC, USA, 2023. [Google Scholar]
- Zhang, F.; Wei, Y.; Bo, Q.; Tang, A.; Song, Q.; Li, S.; Yue, S. Long-Term Film Mulching with Manure Amendment Increases Crop Yield and Water Productivity but Decreases the Soil Carbon and Nitrogen Sequestration Potential in Semiarid Farmland. Agric. Water Manag. 2022, 273, 107909. [Google Scholar] [CrossRef]
- Mo, F.; Yu, K.-L.; Crowther, T.W.; Wang, J.-Y.; Zhao, H.; Xiong, Y.-C.; Liao, Y.-C. How Plastic Mulching Affects Net Primary Productivity, Soil C Fluxes and Organic Carbon Balance in Dry Agroecosystems in China. J. Clean. Prod. 2020, 263, 121470. [Google Scholar] [CrossRef]
- Marks, J.N.J.; Lines, T.E.P.; Penfold, C.; Cavagnaro, T.R. Cover Crops and Carbon Stocks: How under-Vine Management Influences SOC Inputs and Turnover in Two Vineyards. Sci. Total Environ. 2022, 831, 154800. [Google Scholar] [CrossRef] [PubMed]
- Anuo, C.O.; Cooper, J.A.; Koehler-Cole, K.; Ramirez, S.; Kaiser, M. Effect of Cover Cropping on Soil Organic Matter Characteristics: Insights from a Five-Year Field Experiment in Nebraska. Agric. Ecosyst. Environ. 2023, 347, 108393. [Google Scholar] [CrossRef]
- Seitz, D.; Fischer, L.M.; Dechow, R.; Wiesmeier, M.; Don, A. The Potential of Cover Crops to Increase Soil Organic Carbon Storage in German Croplands. Plant Soil 2023, 488, 157–173. [Google Scholar] [CrossRef]
- Qin, Z.; Guan, K.; Zhou, W.; Peng, B.; Tang, J.; Jin, Z.; Grant, R.; Hu, T.; Villamil, M.B.; DeLucia, E.; et al. Assessing Long-term Impacts of Cover Crops on Soil Organic Carbon in the Central US Midwestern Agroecosystems. Glob. Chang. Biol. 2023, 29, 2572–2590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kaye, J.P.; Bradley, B.A.; Amsili, J.P.; Suseela, V. Cover Crop Functional Types Differentially Alter the Content and Composition of Soil Organic Carbon in Particulate and Mineral-associated Fractions. Glob. Change Biol. 2022, 28, 5831–5848. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Bio-Waste in Europe—Turning Challenges into Opportunities; Publications Office of the European Union: Luxembourg, 2020; p. 56.
- Dresboll, D.; Magid, J. Structural Changes of Plant Residues during Decomposition in a Compost Environment. Bioresour. Technol. 2006, 97, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Mekki, A.; Aloui, F.; Sayadi, S. Influence of Biowaste Compost Amendment on Soil Organic Carbon Storage under Arid Climate. J. Air Waste Manag. Assoc. 2019, 69, 867–877. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on Packaging and Packaging Waste, Amending Regulation (EU) 2019/1020 and Directive (EU) 2019/904, and Repealing Directive 94/62/EC; European Commission: Brussels, Belgium, 2022.
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions EU Policy Framework on Biobased, Biodegradable and Compostable Plastics; European Commission: Brussels, Belgium, 2022.
- Datta, A.; Jat, H.S.; Yadav, A.K.; Choudhary, M.; Sharma, P.C.; Rai, M.; Singh, L.K.; Majumder, S.P.; Choudhary, V.; Jat, M.L. Carbon Mineralization in Soil as Influenced by Crop Residue Type and Placement in an Alfisols of Northwest India. Carbon Manag. 2019, 10, 37–50. [Google Scholar] [CrossRef]
- Jat, H.S.; Choudhary, M.; Datta, A.; Yadav, A.K.; Meena, M.D.; Devi, R.; Gathala, M.K.; Jat, M.L.; Mcdonald, A.; Sharma, P.C. Temporal Changes in Soil Microbial Properties and Nutrient Dynamics under Climate Smart Agriculture Practices. Soil Tillage Res. 2020, 199, 104595. [Google Scholar] [CrossRef]
- Audette, Y.; Congreves, K.A.; Schneider, K.; Zaro, G.C.; Nunes, A.L.P.; Zhang, H.; Voroney, R.P. The Effect of Agroecosystem Management on the Distribution of C Functional Groups in Soil Organic Matter: A Review. Biol. Fertil. Soils 2021, 57, 881–894. [Google Scholar] [CrossRef]
- Aly, A.; Piscitelli, L.; Laarif, Y.; Rouifi, A.; Mondelli, D.; De Mastro, G. Compost Tea Supplied by Partial Root-Zone Drying Irrigation Affected Growth and Productivity of Eggplants and Cucumbers Grown in Succession. Biol. Agric. Hortic. 2023, 1–12. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal; European Commission: Brussels, Belgium, 2019.
Var. | Percentage Values | Var. | Percentage Values | Var. | Percentage Values |
---|---|---|---|---|---|
S | 90%—Open field 10%—Tunnel | GM | 82%—NO 18%—YES | SC | 3%—Plastic layer 3%—Cover crops 94%—NO |
TD | 12%—1 trimester 30%—2 trimesters 58%—3 trimesters | A | 3%—Biochar 28%—Compost 3%—Manure + compost 56%—NO 6%—Manure 2%—Chicken manure 2%—Leonardite | I | 5%—Emergency 76%—Drip 3%—Drought 7%—NO 6%—Sprinkler 3%—Partial root zone drying |
NM | 34%—NO 49%—Organic 17%—Conventional | B | 6%—Waste biomass 18%—Cover crop 1%—Spontaneous cover 75%—NO | W | 48%—Manual 11%—Hand 20%—Rototiller 9%—NO 2%—Chemical 7%—Mulching 3%—Cover cropping |
N/A D | 31%—Fertirrigation 41%—Soil incorporation 1%—Foliar spray 19%—NO 8%—Fertirrigation + soil incorporation | CT | 27%—Break crop 67%—Start crop 6%—Impoverishment crop | ∆SOC | 13%—NEGATIVE 22%—NEUTRAL 65%—POSITIVE |
Rule No. | If Condition | Then, ∆SOC Class |
---|---|---|
1 | treatment duration = 1 trimester AND nutrients management = organic | NEGATIVE |
2 | treatment duration = 2 trimesters AND weeding = NO | POSITIVE |
3 | treatment duration = 2 trimesters AND weeding = hand AND nutrients management = NO | POSITIVE |
4 | treatment duration = 3 trimesters AND irrigation = NO | POSITIVE |
5 | treatment duration = 3 trimesters AND irrigation = sprinkler | POSITIVE |
6 | treatment duration = 3 trimesters AND irrigation = drip AND soil coverage = cover crops | POSITIVE |
7 | treatment duration = 3 trimesters AND irrigation = drip AND soil coverage = NO AND biomass = waste biomass | POSITIVE |
8 | treatment duration = 3 trimesters AND irrigation = drip AND soil coverage = NO AND biomass = cover crop AND nutrients and amendments distribution techniques = NO | POSITIVE |
9 | treatment duration = 3 trimesters AND irrigation = drip AND soil coverage = NO AND biomass = cover crop AND nutrients and amendments distribution techniques = fertirrigation AND nutrients management = organic | POSITIVE |
PREDICTED | |||||
---|---|---|---|---|---|
Negative | Neutral | Positive | Tot. | ||
ACTUAL | Negative | 13 | 2 | 0 | 15 |
Neutral | 7 | 6 | 12 | 25 | |
Positive | 4 | 6 | 65 | 75 | |
Tot. | 24 | 15 | 76 | 115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piscitelli, L.; De Boni, A.; Roma, R.; Ottomano Palmisano, G. Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production. Land 2024, 13, 5. https://doi.org/10.3390/land13010005
Piscitelli L, De Boni A, Roma R, Ottomano Palmisano G. Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production. Land. 2024; 13(1):5. https://doi.org/10.3390/land13010005
Chicago/Turabian StylePiscitelli, Lea, Annalisa De Boni, Rocco Roma, and Giovanni Ottomano Palmisano. 2024. "Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production" Land 13, no. 1: 5. https://doi.org/10.3390/land13010005
APA StylePiscitelli, L., De Boni, A., Roma, R., & Ottomano Palmisano, G. (2024). Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production. Land, 13(1), 5. https://doi.org/10.3390/land13010005