Spatiotemporal Distribution and Fragmentation Driving Mechanism in Paddy Fields and Dryland of Urban Agglomeration in the Middle Reaches of the Yangtze River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Spatial-Temporal Change in Distribution Patterns of Paddy Fields and Dryland
- Gravity center migration model
- 2.
- Standard deviation ellipse
- 3.
- Land-use dynamic degree indicator
2.3.2. Comprehensive Evaluation of Paddy Field and Dryland Fragmentation
2.3.3. Detection of Driving Factors in Paddy Field and Dryland Fragmentation
- Selection of Driving Factors
- 2.
- Detection of driving factors based on the geodetector model
3. Results
3.1. Spatial-Temporal Change in Pattern of Distribution of Paddy Field and Dryland
3.1.1. Overall Change in Paddy Field and Dryland
3.1.2. Analysis of Gravity Center Migration in Paddy Field and Dryland
3.1.3. Dynamics Change in the Areas of Paddy Field and Dryland
3.2. Attribution of Spatial-Temporal Change in Paddy Fields and Dryland
3.3. Spatial-Temporal Change and Driving Mechanisms of Paddy Field and Dryland Fragmentation
3.3.1. Spatial-Temporal Change in Paddy Field and Dryland Fragmentation
3.3.2. Driving Mechanisms of Fragmentation in Paddy Fields and Dryland
4. Discussion
4.1. Analysis of Spatial-Temporal Change Characteristics of Paddy Fields and Dryland
4.2. Commonalities and Characteristics of Fragmentation Patterns in Paddy Fields and Dryland
4.3. Driving Mechanisms of Paddy Field and Dryland Fragmentation
4.4. Limitation and Prospect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, H.; Lei, G.; Zhang, B.; Zhao, Y.; Zhang, X.; Dong, B. Farmland Change Induced Land and Water Resource Balance in Naoli River Basin from 1990 to 2013. Trans. Chin. Soc. Agric. Eng. 2015, 31, 272–280. [Google Scholar]
- Zhao, X.; Zhang, Z.; Wang, X.; Zuo, L.; Liu, B.; Yi, L.; Xu, J.; Wen, Q. Analysis of Chinese Cultivated Land′ s Spatial-Temporal Changes and Causes in Recent 30 Years. Trans. Chin. Soc. Agric. Eng. 2014, 30, 1–11. [Google Scholar]
- Xie, S.; Yin, G.; Wei, W.; Sun, Q.; Zhang, Z. Spatial–Temporal Change in Paddy Field and Dryland in Different Topographic Gradients: A Case Study of China during 1990–2020. Land 2022, 11, 1851. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Wang, S.; Zheng, J.; Wang, D.; Wang, Z.; Gao, M. Spatiotemporal and Evolutional Characteristics of Paddy Yield in the Three Gorges Reservoir of Chongqing from 1990 to 2015. Chin. J. Agric. Resour. Reg. Plan 2022, 43, 71–80. [Google Scholar]
- Li, S.; Wang, Z. Dryland Agriculture in Eastern Asia. Dryland Agric. 2006, 23, 671–731. [Google Scholar]
- Ouyang, W.; Shan, Y.; Hao, F.; Lin, C. Differences in Soil Organic Carbon Dynamics in Paddy Fields and Drylands in Northeast China Using the CENTURY Model. Agric. Ecosyst. Environ. 2014, 194, 38–47. [Google Scholar] [CrossRef]
- Downing, T.E. Partible Inheritance and Land Fragmentation in a Oaxaca Village. Hum. Organ. 1977, 36, 235–243. [Google Scholar] [CrossRef]
- Jin, X.; Shao, Y.; Zhang, Z.; Resler, L.M.; Campbell, J.B.; Chen, G.; Zhou, Y. The Evaluation of Land Consolidation Policy in Improving Agricultural Productivity in China. Sci. Rep. 2017, 7, 2792. [Google Scholar] [CrossRef]
- Kalantari, K.; Abdollahzadeh, G. Factors Affecting Agricultural Land Fragmentation in Iran: A Case Study of Ramjerd Sub District in Fars Province. Am. J. Agric. Biol. Sci. 2008, 3, 358–363. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, K.; Feng, Z.; Wu, K. Quantification and Driving Mechanism of Cultivated Land Fragmentation under Scale Differences. Ecol. Inform. 2023, 78, 102336. [Google Scholar] [CrossRef]
- Penghui, J.; Dengshuai, C.; Manchun, L. Farmland Landscape Fragmentation Evolution and Its Driving Mechanism from Rural to Urban: A Case Study of Changzhou City. J. Rural. Stud. 2021, 82, 1–18. [Google Scholar] [CrossRef]
- Du, G.; Gai, Z.; Wang, H. Theoretical Explanation and Research Framework of Cultivated-Land Fragmentation in China. J. Earth Sci. Environ. 2021, 43, 997–1008. [Google Scholar]
- Xu, W.; Jin, X.; Liu, J.; Zhou, Y. Analysis of Influencing Factors of Cultivated Land Fragmentation Based on Hierarchical Linear Model: A Case Study of Jiangsu Province, China. Land Use Policy 2021, 101, 105119. [Google Scholar] [CrossRef]
- Ertunç, E. Analysis of the Effect of Land Consolidation Projects in Terms of Land Fragmentation and Parcel Shapes: The Case of Konya, Turkey. Arab. J. Geosci. 2020, 13, 350. [Google Scholar] [CrossRef]
- Di Falco, S.; Penov, I.; Aleksiev, A.; Van Rensburg, T.M. Agrobiodiversity, Farm Profits and Land Fragmentation: Evidence from Bulgaria. Land Use Policy 2010, 27, 763–771. [Google Scholar] [CrossRef]
- Wang, L.; Anna, H.; Zhang, L.; Xiao, Y.; Wang, Y.; Xiao, Y.; Liu, J.; Ouyang, Z. Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chin. Geogr. Sci. 2019, 29, 809–819. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, Y.; Li, J. Measure of Urban-Rural Transformation in Beijing-Tianjin-Hebei Region in the New Millennium: Population-Land-Industry Perspective. Land Use Policy 2018, 79, 595–608. [Google Scholar] [CrossRef]
- Lu, H.; Xie, H.; Yao, G. Impact of Land Fragmentation on Marginal Productivity of Agricultural Labor and Non-Agricultural Labor Supply: A Case Study of Jiangsu, China. Habitat Int. 2019, 83, 65–72. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, X.; Lu, W.; Liu, Y. The Characteristics of Rural Labors, Land Fragmentation, and Agricultural Machinery Services. Res. Agric. Mod. 2016, 37, 910–916. [Google Scholar]
- Hao, W.; Hu, X.; Wang, J.; Zhang, Z.; Shi, Z.; Zhou, H. The Impact of Farmland Fragmentation in China on Agricultural Productivity. J. Clean. Prod. 2023, 425, 138962. [Google Scholar] [CrossRef]
- Song, W.; Liu, M. Farmland Conversion Decreases Regional and National Land Quality in China. Land Degrad. Dev. 2017, 28, 459–471. [Google Scholar] [CrossRef]
- Jin, R.; Li, B.; Zhou, T.; Wanatowski, D.; Piroozfar, P. An Empirical Study of Perceptions towards Construction and Demolition Waste Recycling and Reuse in China. Resour. Conserv. Recycl. 2017, 126, 86–98. [Google Scholar] [CrossRef]
- Kong, X. China Must Protect High-Quality Arable Land. Nature 2014, 506, 7. [Google Scholar] [CrossRef] [PubMed]
- Sklenicka, P.; Janovska, V.; Salek, M.; Vlasak, J.; Molnarova, K. The Farmland Rental Paradox: Extreme Land Ownership Fragmentation as a New Form of Land Degradation. Land Use Policy 2014, 38, 587–593. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Xu, W.; Zhou, Y. Evolution of Cultivated Land Fragmentation and Its Driving Mechanism in Rural Development: A Case Study of Jiangsu Province. J. Rural. Stud. 2022, 91, 58–72. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, L.; Guo, Z.; Peng, Y. Cultivated Land Protection Policies in China Facing 2030: Dynamic Balance System versus Basic Farmland Zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Ntihinyurwa, P.D.; de Vries, W.T.; Chigbu, U.E.; Dukwiyimpuhwe, P.A. The Positive Impacts of Farm Land Fragmentation in Rwanda. Land Use Policy 2019, 81, 565–581. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Qu, F. Land Fragmentation and Its Driving Forces in China. Land Use Policy 2006, 23, 272–285. [Google Scholar] [CrossRef]
- Bürgi, M.; Celio, E.; Diogo, V.; Hersperger, A.M.; Kizos, T.; Lieskovsky, J.; Pazur, R.; Plieninger, T.; Prishchepov, A.V.; Verburg, P.H. Advancing the Study of Driving Forces of Landscape Change. J. Land Use Sci. 2022, 17, 540–555. [Google Scholar] [CrossRef]
- Niroula, G.S.; Thapa, G.B. Impacts and Causes of Land Fragmentation, and Lessons Learned from Land Consolidation in South Asia. Land Use Policy 2005, 22, 358–372. [Google Scholar] [CrossRef]
- Cheng, L.; Xia, N.; Jiang, P.; Zhong, L.; Pian, Y.; Duan, Y.; Huang, Q.; Li, M. Analysis of Farmland Fragmentation in China Modernization Demonstration Zone since “Reform and Openness”: A Case Study of South Jiangsu Province. Sci. Rep. 2015, 5, 11797. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jin, X.; Xu, W.; Sun, R.; Han, B.; Yang, X.; Gu, Z.; Xu, C.; Sui, X.; Zhou, Y. Influential Factors and Classification of Cultivated Land Fragmentation, and Implications for Future Land Consolidation: A Case Study of Jiangsu Province in Eastern China. Land Use Policy 2019, 88, 104185. [Google Scholar] [CrossRef]
- Xu, M.; Niu, L.; Wang, X.; Zhang, Z. Evolution of Farmland Landscape Fragmentation and Its Driving Factors in the Beijing-Tianjin-Hebei Region. J. Clean. Prod. 2023, 418, 138031. [Google Scholar] [CrossRef]
- Liang, J.; Pan, S.; Chen, W.; Li, J.; Zhou, T. Cultivated Land Fragmentation and Its Influencing Factors Detection: A Case Study in Huaihe River Basin, China. Int. J. Environ. Res. Public. Health 2021, 19, 138. [Google Scholar] [CrossRef]
- Lv, T.; Fu, S.; Zhang, X.; Hu, H.; Zhang, Y. Spatiotemporal Evolution and Convergence of Agricultural Eco-Efficiency in the Middle Reaches of the Yangtze River. Phys. Chem. Earth Parts ABC 2023, 131, 103438. [Google Scholar] [CrossRef]
- Song, L.; Cao, Y.; Zhou, W.; Kuang, X.; Luo, G. Study on the Variation of Arable Land Use and Management Countermeasures under Rapid Urbanization: The Application of a Gravity Model in a Regional Perspective. Environ. Monit. Assess. 2019, 191, 120. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Cao, A. Analysis of the Heterogeneity of Landscape Risk Evolution and Driving Factors Based on a Combined GeoDa and Geodetector Model. Ecol. Indic. 2022, 144, 109568. [Google Scholar] [CrossRef]
- Zeng, X.; Zhou, J.; Zhai, J.; Su, B.; Xiong, M. Research on Climate Projection for the Period 2011–2050 in the Yangtze River Basin. Clim. Chang. Res. 2011, 7, 116–122. [Google Scholar]
- Yang, B.; Zhang, Z.; Wu, H. Detection and Attribution of Changes in Agricultural Eco-Efficiency within Rapid Urbanized Areas: A Case Study in the Urban Agglomeration in the Middle Reaches of Yangtze River, China. Ecol. Indic. 2022, 144, 109533. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G. Spatiotemporal Patterns and Characteristics of Land-Use Change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Min, Q.; He, L. Agro-Cultural Landscapes in China: Types and Significances. In Biocultural Landscapes; Hong, S.K., Bogaert, J., Min, Q., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal Characteristics, Patterns, and Causes of Land-Use Changes in China since the Late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Li, S.; Zhang, D.; Xie, Y.; Yang, C. Analysis on the Spatio-Temporal Evolution and Influencing Factors of China’s Grain Production. Environ. Sci. Pollut. Res. 2022, 29, 23834–23846. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, B.; Liu, Y.; Liu, Y.; Xu, S.; Zhao, Y.; Chen, Y.; Hong, S. Urban Expansion Patterns and Their Driving Forces Based on the Center of Gravity-GTWR Model: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration. J. Geogr. Sci. 2020, 30, 297–318. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Yao, Y.; Wang, J.; Yu, F.; Liu, J.; Li, J. Dynamics and Climatic Drivers of Evergreen Vegetation in the Qinling-Daba Mountains of China. Ecol. Indic. 2022, 136, 108625. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Huang, C. Dynamic Changes Analysis and Hotspots Detection of Land Use in the Central Core Functional Area of Jing-Jin-Ji from 2000 to 2015 Based on Remote Sensing Data. Math. Problems Eng. 2017, 2017, 2183585. [Google Scholar] [CrossRef]
- Chen, X.; He, L.; Luo, F.; He, Z.; Bai, W.; Xiao, Y.; Wang, Z. Dynamic Characteristics and Impacts of Ecosystem Service Values under Land Use Change: A Case Study on the Zoigê Plateau, China. Ecol. Inform. 2023, 78, 102350. [Google Scholar] [CrossRef]
- Rosa, I.M.; Gabriel, C.; Carreiras, J.M. Spatial and Temporal Dimensions of Landscape Fragmentation across the Brazilian Amazon. Reg. Environ. Chang. 2017, 17, 1687–1699. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Cheng, E.; Findlay, C. Land Fragmentation and Farm Productivity in China in the 1990s. China Econ. Rev. 1996, 7, 169–180. [Google Scholar] [CrossRef]
- Dumanski, J.; Pieri, C. Land Quality Indicators: Research Plan. Agric. Ecosyst. Environ. 2000, 81, 93–102. [Google Scholar] [CrossRef]
- Reid, R.S.; Thornton, P.K.; Kruska, R.L. Loss and Fragmentation of Habitat for Pastoral People and Wildlife in East Africa: Concepts and Issues. Afr. J. Range Forage Sci. 2004, 21, 171–181. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Zhang, Y.; Wu, J.; Li, W.; Li, Y. Evaluating the Effectiveness of Landscape Metrics in Quantifying Spatial Patterns. Ecol. Indic. 2010, 10, 217–223. [Google Scholar] [CrossRef]
- Niesterowicz, J.; Stepinski, T.F. On Using Landscape Metrics for Landscape Similarity Search. Ecol. Indic. 2016, 64, 20–30. [Google Scholar] [CrossRef]
- Li, X. TOPSIS Model with Entropy Weight for Eco Geological Environmental Carrying Capacity Assessment. Microprocess. Microsyst. 2021, 82, 103805. [Google Scholar] [CrossRef]
- Wang, D.; Yang, H.; Hu, Y.; Zhu, A.-X.; Mao, X. Analyzing Spatio-Temporal Characteristics of Cultivated Land Fragmentation and Their Influencing Factors in a Rapidly Developing Region: A Case Study in Guangdong Province, China. Land 2022, 11, 1750. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Ma, L.; Ge, D.; Tu, S.; Qu, Y. Farmland Function Evolution in the Huang-Huai-Hai Plain: Processes, Patterns and Mechanisms. J. Geogr. Sci. 2018, 28, 759–777. [Google Scholar] [CrossRef]
- Wang, J.-F.; Li, X.-H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical Detectors-based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, D.; Li, J.; Liang, J.; Zhang, D.; Chen, W. Cultivated Land Use Efficiency and Its Driving Factors in the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109411. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, K.; Cao, L.; Guan, X.; Zhang, H. Driving Forces and Prediction of Urban Land Use Change Based on the Geodetector and CA-Markov Model: A Case Study of Zhengzhou, China. Int. J. Digit. Earth 2022, 15, 2246–2267. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, H.; Song, G.; Liu, Y. Optimization of Cultivated Land Pattern for Achieving Cultivated Land System Security: A Case Study in Heilongjiang Province, China. Land Use Policy 2021, 108, 105589. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, R.; Cui, J. Spatial Differentiation and Influencing Factors in the Ecological Well-Being Performance of Urban Agglomerations in the Middle Reaches of the Yangtze River: A Hierarchical Perspective. Int. J. Environ. Res. Public Health 2022, 19, 12867. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.; Wang, W.; Lei, X.; Deng, Y. Exploring Spatial-Temporal Change and Gravity Center Movement of Construction Land in the Chang-Zhu-Tan Urban Agglomeration. J. Geogr. Sci. 2019, 29, 1363–1380. [Google Scholar] [CrossRef]
- Yi, Z.; Shufang, T.; Hang, D. Evaluation and Analysis of the Exploitative Intensity of Mineral Resources in Jiangxi Province. China Min. Mag. 2021, 30, 30–37. [Google Scholar]
- Hao, L.; Sun, G.; Liu, Y.; Wan, J.; Qin, M.; Qian, H.; Liu, C.; Zheng, J.; John, R.; Fan, P. Urbanization Dramatically Altered the Water Balances of a Paddy Field-Dominated Basin in Southern China. Hydrol. Earth Syst. Sci. 2015, 19, 3319–3331. [Google Scholar] [CrossRef]
- Zhao, S.; Fang, J. Impact of Impoldering and Lake Restoration on Land-Cover Changes in Dongting Lake Area, Central Yangtze. AMBIO J. Hum. Environ. 2004, 33, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Ouyang, Z.; Li, Y.; Li, F. Cultivated Land Use Change in China, 1999–2007: Policy Development Perspectives. J. Geogr. Sci. 2012, 22, 1061–1078. [Google Scholar] [CrossRef]
- Xue, B.; Xiao, X.; Li, J.; Xie, X.; Lu, C. Spatio-Temporal Evolution of Water Areas and Croplands in the Three Provinces of Northeast China Based on Remote Sensing Data. Chin. J. Ecol. 2019, 38, 1444. [Google Scholar]
- Zhou, J.; Cao, X. What Is the Policy Improvement of China’s Land Consolidation? Evidence from Completed Land Consolidation Projects in Shaanxi Province. Land Use Policy 2020, 99, 104847. [Google Scholar] [CrossRef]
- Xie, Y.; Yu, M.; Tian, G.; Xing, X. Socio-Economic Driving Forces of Arable Land Conversion: A Case Study of Wuxian City. China 2005, 15, 238–252. [Google Scholar] [CrossRef]
- Wen, G.; Yang, G.; Li, Y.; Zhao, W.; Wang, W. The Governance Effect of Rural Land Consolidation on Cultivated Land Fragmentation and Its Causes: A Case Study on Jiangxia District, Xian’an District, Tongshan County in Hubei Province. China Land Sci. 2016, 30, 82–89. [Google Scholar]
- Zhang, L.; Wang, Z.; Du, G.; Chen, Z. Analysis of Climatic Basis for the Change of Cultivated Land Area in Sanjiang Plain of China. Front. Earth Sci. 2022, 10, 862141. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. Climate Warming and Land Use Change in Heilongjiang Province, Northeast China. Appl. Geogr. 2011, 31, 476–482. [Google Scholar] [CrossRef]
- Koohafkan, P. Water and Cereals in Drylands; Routledge: London, UK, 2012; ISBN 1-84977-374-2. [Google Scholar]
- Zhou, G.S. Research Prospect on Impact of Climate Change on Agricultural Production in China. Meteorol. Environ. Sci. 2015, 38, 80–94. [Google Scholar]
- Yu, D.; Ramsey, R.D.; Zhao, X.-M.; Fu, Y.-Q.; Sun, C.-K. Feasible Conversion Degree of Dryland to Paddy Field in Jinxian County, Jiangxi Province, China. Geocarto Int. 2019, 34, 1042–1053. [Google Scholar] [CrossRef]
- Wang, J.; He, T.; Lin, Y. Changes in Ecological, Agricultural, and Urban Land Space in 1984–2012 in China: Land Policies and Regional Social-Economical Drivers. Habitat Int. 2018, 71, 1–13. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Liu, Y.; Liu, Y. Interaction between Construction Land Expansion and Cropland Expansion and Its Socioeconomic Determinants: Evidence from Urban Agglomeration in the Middle Reaches of the Yangtze River, China. Front. Environ. Sci. 2022, 10, 334. [Google Scholar] [CrossRef]
- Lei, D.; Shangguan, Z.-P.; Rui, L.I. Effects of the Grain-for-Green Program on Soil Erosion in China. Int. J. Sediment. Res. 2012, 27, 120–127. [Google Scholar]
- Chen, S.; Zhong, W.; Pan, S.; Xie, Q.; Kim, T.-W. Comprehensive Drought Assessment Using a Modified Composite Drought Index: A Case Study in Hubei Province, China. Water 2020, 12, 462. [Google Scholar] [CrossRef]
- Yang, R.; Harrison, M.T.; Wang, X. Current State and Limiting Factors of Wheat Yield at the Farm Level in Hubei Province. Agronomy 2023, 13, 2043. [Google Scholar] [CrossRef]
- Wang, L.; Long, H.; Liu, H.; Dong, G. Analysis of the Relationship between Drought-Flood Disasters and Land-Use Changes in West Jilin, China. Disaster Adv. 2012, 5, 652–658. [Google Scholar]
- Liu, X.; Zhang, Y.; Dong, G.; Hou, G.; Jiang, M. Landscape Pattern Changes in the Xingkai Lake Area, Northeast China. Int. J. Environ. Res. Public Health 2019, 16, 3820. [Google Scholar] [CrossRef]
- Yan, J.; Yang, Z.; Li, Z.; Li, X.; Xin, L.; Sun, L. Drivers of Cropland Abandonment in Mountainous Areas: A Household Decision Model on Farming Scale in Southwest China. Land Use Policy 2016, 57, 459–469. [Google Scholar] [CrossRef]
Indicator Category | Landscape Indicator | Calculation Formula and Definition | Indicator Direction |
---|---|---|---|
Resource scale | NP | , is the total number of paddy field or dryland patches in a certain area. | + |
CA | , represents the total area of paddy field or dryland in a certain area. | − | |
Spatial agglomeration | AI | , is the circumference of patch . AI reflects the degree of patch agglomeration in the regional paddy field and dryland. | − |
PD | . PD reflects the amount of paddy field and dryland per unit area | + | |
Landscape shape | AWMSI | , is the area of patch . AWMSI reflects the regularity and complexity of the patch shape, when the value is 1, the patch shape is the simplest square. | + |
Categories of Driving Factors | Driving Factors | Factors’ Description |
---|---|---|
Socioeconomic development | Per capita regional GDP (X1) | The level of regional social and economic development |
Proportion of industry and service industry (X2) | The characteristics of regional industrial structure | |
Urbanization rate (X3) | The degree of concentration of the population in the urban territory | |
Agricultural development | Per capita disposable income of rural residents (X4) | The level of rural residents’ income and standard of living |
Grain output (X5) | The production and availability of regional cereals, pulses, and potatoes | |
Per capita cultivated land area (X6) | The potential for mechanization and large-scale farming | |
Natural conditions | Elevation (X7) | The steepness of the regional paddy field or dryland |
Slope (X8) | Height difference above from sea level for regional paddy field or dryland |
Period | 1990 | 2000 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Paddy Field | Dryland | Paddy Field | Dryland | Paddy Field | Dryland | Paddy Field | Dryland | |
Gravity center latitude | 29°12′16″ N | 29°46′54″ N | 29°12′19″ N | 29°47′16″ N | 29°12′4″ N | 29°47′11″ N | 29°11′33″ N | 29°48′17″ N |
Gravity center longitude | 113°50′18″ E | 113°37′55″ E | 113°50′12″ E | 113°37′46″ E | 113°50′22″ E | 113°37′38″ E | 113°50′41″ E | 113°37′13″ E |
Migration distance (km) | - | - | 0.2 | 0.74 | 0.54 | 0.28 | 1.1 | 2.15 |
Migration direction | - | - | Northwest | Northwest | Southeast | Southwest | Southeast | Northwest |
Period | 1990 | 2000 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Paddy Field | Dryland | Paddy Field | Dryland | Paddy Field | Dryland | Paddy Field | Dryland | |
Rotation angle (°) | 121.19 | 130.16 | 121.18 | 130.30 | 117.99 | 130.69 | 122.34 | 130.61 |
X-axis standard deviation | 268,851.84 | 279,873.68 | 268,748.92 | 279,879.08 | 263,926.60 | 279,768.91 | 267,284.37 | 279,851.92 |
Y-axis standard deviation | 227,751.29 | 211,977.87 | 227,500.80 | 211,927.50 | 227,258.82 | 211,273.15 | 227,597.52 | 210,487.70 |
Province | City | 1990–2000 (%) | 2000–2010 (%) | 2010–2020 (%) | |||
---|---|---|---|---|---|---|---|
Paddy Field | Dryland | Paddy Field | Dryland | Paddy Field | Dryland | ||
Hunan | Changde | −0.35 | −0.42 | −3.09 | −13.40 | −1.58 | −1.04 |
Changsha | −0.72 | −2.15 | −8.59 | −17.93 | −5.04 | −5.05 | |
Hengyang | −0.46 | −1.17 | −0.47 | −18.88 | −2.11 | −1.63 | |
Loudi | −0.58 | −1.18 | −3.32 | −11.24 | −2.13 | −2.83 | |
Xiangtan | −0.39 | −4.27 | −5.38 | −17.71 | −2.90 | −4.37 | |
Yiyang | −0.34 | −1.48 | −2.15 | −16.40 | −0.92 | −1.72 | |
Yueyang | −0.56 | −1.27 | −0.46 | −5.89 | −0.97 | −1.51 | |
Zhuzhou | −0.55 | 0.34 | −6.23 | −11.04 | −3.26 | −2.77 | |
Hubei | Ezhou | −0.74 | −4.24 | −6.15 | −11.00 | −5.36 | −2.77 |
Huanggang | −0.40 | −0.04 | −2.94 | −8.25 | −1.03 | 1.17 | |
Huangshi | −0.38 | −0.31 | −3.23 | −14.06 | −3.61 | 4.36 | |
Jingmen | −0.42 | −1.26 | 0.14 | −6.10 | −1.35 | −0.15 | |
Jingzhou | −1.76 | −1.79 | −7.29 | −4.60 | 1.73 | 0.17 | |
Qianjiang | −4.39 | −0.78 | −3.20 | −2.40 | −0.58 | −0.90 | |
Tianmen | −0.87 | −0.65 | 3.51 | −3.09 | −4.22 | 2.52 | |
Wuhan | −3.19 | −2.12 | −8.26 | −11.89 | −0.43 | 0.48 | |
Xiangyang | −9.39 | −1.83 | −3.15 | −31.06 | −7.27 | 17.92 | |
Xianning | −1.38 | 1.16 | −6.89 | −11.12 | −0.67 | 0.36 | |
Xiantao | −0.18 | −0.12 | −3.05 | −6.84 | 0.73 | 2.20 | |
Xiaogan | −0.56 | −0.91 | −1.07 | −8.58 | −0.84 | 2.78 | |
Yichang | −1.25 | 0.26 | −6.87 | −20.73 | −2.17 | 5.17 | |
Jiangxi | Fuzhou | 0.38 | −1.17 | −5.89 | −11.84 | −1.38 | −1.99 |
Jian | −0.57 | −0.95 | −2.96 | −9.32 | −1.33 | −1.24 | |
Jingdezhen | −0.41 | −8.76 | −5.78 | −19.85 | −2.60 | −3.14 | |
Jiujiang | −0.48 | −0.51 | −5.40 | −4.58 | −2.93 | −3.91 | |
Nanchang | −0.61 | −0.58 | −1.52 | −6.14 | −3.09 | −5.80 | |
Pingxiang | −0.53 | −4.00 | −6.45 | −15.36 | −2.54 | −2.40 | |
Shangrao | −0.48 | −2.23 | −0.66 | −9.30 | −1.40 | −1.29 | |
Xinyu | −0.33 | −3.87 | −3.14 | −9.24 | −2.42 | −0.95 | |
Yichun | 0.08 | −1.10 | −4.20 | −7.19 | −0.80 | −1.57 | |
Yingtan | 0.04 | −0.81 | −3.58 | −9.62 | −2.61 | −3.90 |
Period | 1990–2000 | 2000–2010 | 2010–2020 | |||
---|---|---|---|---|---|---|
Area | Proportion | Area | Proportion | Area | Proportion | |
Change in paddy field (km2) | −699.08 | −922.63 | −2495.97 | |||
Forest | −7.16 | 1.02% | −55.30 | 5.99% | 62.82 | −2.52% |
Grassland | 1.89 | −0.27% | 23.67 | −2.57% | 5.22 | −0.21% |
Water area | −378.09 | 54.08% | −951.30 | 103.11% | 310.23 | −12.43% |
Construction land | −317.07 | 45.36% | −1506.78 | 163.31% | −1302.84 | 52.20% |
Unutilized land | 0.72 | −0.10% | −22.32 | 2.42% | 9.45 | −0.38% |
Dryland | 0.63 | −0.09% | 1589.40 | −172.27% | −1580.85 | 63.34% |
Paddy field loss (km2) | 978.44 | 9393.30 | 8208.81 | |||
Forest | 19.22 | 1.96% | 3260.52 | 34.71% | 2456.01 | 29.92% |
Grassland | 0.90 | 0.09% | 134.64 | 1.43% | 99.72 | 1.21% |
Water area | 631.53 | 64.54% | 2224.26 | 23.68% | 795.06 | 9.69% |
Construction land | 319.14 | 32.62% | 2162.25 | 23.02% | 2259.36 | 27.52% |
Unutilized land | 2.25 | 0.23% | 59.94 | 0.64% | 19.08 | 0.23% |
Dryland | 5.40 | 0.55% | 1551.69 | 16.52% | 2579.58 | 31.42% |
Paddy field gains (km2) | 279.36 | 8470.67 | 5712.84 | |||
Forest | 12.06 | 4.32% | 3205.22 | 37.84% | 2518.83 | 44.09% |
Grassland | 2.79 | 1.00% | 158.31 | 1.87% | 104.94 | 1.84% |
Water area | 253.44 | 90.72% | 1272.96 | 15.03% | 1105.29 | 19.35% |
Construction land | 2.07 | 0.74% | 655.47 | 7.74% | 956.52 | 16.74% |
Unutilized land | 2.97 | 1.06% | 37.62 | 0.44% | 28.53 | 0.50% |
Dryland | 6.03 | 2.16% | 3141.09 | 37.08% | 998.73 | 17.48% |
Period | 1990–2000 | 2000–2010 | 2010–2020 | |||
---|---|---|---|---|---|---|
Area | Proportion | Area | Proportion | Area | Proportion | |
Change in dryland (km2) | −375.39 | −3126.15 | 1486.62 | |||
Forest | −46.62 | 12.42% | −315.99 | 10.11% | 176.04 | 11.84% |
Grassland | 7.47 | −1.99% | −22.68 | 0.73% | 4.50 | 0.30% |
Water area | −123.93 | 33.01% | −312.75 | 10.00% | 84.60 | 5.69% |
Construction land | −210.87 | 56.17% | −876.96 | 28.05% | −361.80 | −24.34% |
Unutilized land | −0.81 | 0.22% | −8.37 | 0.27% | 2.43 | 0.16% |
Paddy field | −0.63 | 0.17% | −1589.40 | 50.84% | 1580.85 | 106.34% |
Dryland loss (km2) | 657.99 | 6753.51 | 3369.51 | |||
Forest | 271.53 | 41.27% | 1777.95 | 26.33% | 1124.91 | 33.38% |
Grassland | 10.98 | 1.67% | 107.28 | 1.59% | 67.50 | 2.00% |
Water area | 156.51 | 23.79% | 588.60 | 8.72% | 237.33 | 7.04% |
Construction land | 211.77 | 32.18% | 1120.59 | 16.59% | 935.55 | 27.77% |
Unutilized land | 1.17 | 0.18% | 18.00 | 0.27% | 5.49 | 0.16% |
Paddy field | 6.03 | 0.92% | 3141.09 | 46.51% | 998.73 | 29.64% |
Dryland gains (km2) | 282.60 | 3627.36 | 4856.13 | |||
Forest | 224.91 | 79.59% | 1461.96 | 40.30% | 1300.95 | 26.79% |
Grassland | 18.45 | 6.53% | 84.6 | 2.33% | 72 | 1.48% |
Water area | 32.58 | 11.53% | 275.85 | 7.60% | 321.93 | 6.63% |
Construction land | 0.9 | 0.32% | 243.63 | 6.72% | 573.75 | 11.81% |
Unutilized land | 0.36 | 0.13% | 9.63 | 0.27% | 7.92 | 0.16% |
Paddy field | 5.4 | 1.91% | 1551.69 | 42.78% | 2579.58 | 53.12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Duo, L.; Bao, C.; Zhang, X.; Zou, Z. Spatiotemporal Distribution and Fragmentation Driving Mechanism in Paddy Fields and Dryland of Urban Agglomeration in the Middle Reaches of the Yangtze River. Land 2024, 13, 58. https://doi.org/10.3390/land13010058
Li D, Duo L, Bao C, Zhang X, Zou Z. Spatiotemporal Distribution and Fragmentation Driving Mechanism in Paddy Fields and Dryland of Urban Agglomeration in the Middle Reaches of the Yangtze River. Land. 2024; 13(1):58. https://doi.org/10.3390/land13010058
Chicago/Turabian StyleLi, Dehua, Linghua Duo, Chenhao Bao, Xiaoping Zhang, and Zili Zou. 2024. "Spatiotemporal Distribution and Fragmentation Driving Mechanism in Paddy Fields and Dryland of Urban Agglomeration in the Middle Reaches of the Yangtze River" Land 13, no. 1: 58. https://doi.org/10.3390/land13010058
APA StyleLi, D., Duo, L., Bao, C., Zhang, X., & Zou, Z. (2024). Spatiotemporal Distribution and Fragmentation Driving Mechanism in Paddy Fields and Dryland of Urban Agglomeration in the Middle Reaches of the Yangtze River. Land, 13(1), 58. https://doi.org/10.3390/land13010058