Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Land Use Transfer Change
2.3.2. Landscape Indices
2.3.3. Habitat Quality
2.3.4. Spatial Autocorrelation Analysis
2.3.5. Geographic Detector
2.3.6. Geographically Weighted Regression
2.3.7. Simulation and Prediction of LULC Based on PLUS Model
3. Results
3.1. Landscape Pattern Changes from 2000 to 2020
3.1.1. Spatial and Temporal Changes in LULC
3.1.2. Analysis of the Evolution of Landscape Pattern Features
3.1.3. Landscape Index Analysis Based on Moving Window Method
3.2. Habitat Quality Changes
3.2.1. Spatial and Temporal Evolution of Habitat Quality
3.2.2. Spatial Autocorrelation Analysis of Habitat Quality
3.3. Result of Identification of Driving Factors
3.4. Spatial Interactions among Driving Factors and Habitat Quality
3.5. Simulation of LULC
3.6. Simulation of Habitat Quality
4. Discussion
4.1. Response of Habitat Quality to LULC Change
4.2. Methodological Considerations
4.3. Suggestions for Land Space Optimization Based on Habitat Quality Improvement
4.4. Limitations and Outlook
5. Conclusions
- (1)
- Agricultural land and forest were the main LULC categories in Harbin City from 2000 to 2020. Large tracts of agricultural land were transformed into forests and building sites as a result of the combined effects of increasing urbanization and the ongoing implementation of ecological protection laws. The built-up area of the city expanded through encroachment into agricultural land. The heterogeneity of the landscape in Harbin City continued to increase from 2000 to 2020, the degree of fragmentation decreased, and the degree of human interference generally showed a decreasing trend.
- (2)
- The habitat quality index of Harbin City exhibited stability around 0.72 from 2000 to 2020, with a slight upward trend. In spatial distribution, the prevailing pattern displayed a gradient of habitat quality, characterized by lower quality in the west and higher quality in the east. Around 50% of the city’s area comprised medium-quality habitat, while approximately 40% constituted high-quality habitat, demonstrating a consistent upward trajectory. The research area’s habitat quality is generally excellent, suggesting a promising course for growth.
- (3)
- The most explanatory power for habitat quality was found in population density; nonetheless, over 80% of the area had detrimental effects on habitat quality. The slope had less of an impact on habitat quality than NDVI, GDP, and elevation, although all three demonstrated significant explanatory power. Habitat quality is typically positively impacted by natural factors.
- (4)
- Harbin will concurrently achieve socioeconomic development and environmental preservation from 2030 to 2050. However, the overall habitat quality continues to decline.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, T.; Zhao, C.; Wen, S.; Hu, Y. Research progress in urban biotope mapping and its application in biodiversity conservation. Landsc. Archit. 2022, 29, 12–17. [Google Scholar] [CrossRef]
- Db Baan, L.; Alkemade, R.; Koellner, T. Land use impacts on biodiversity in LCA: A global approach. Int. J. Life Cycle Assess. 2013, 18, 1216–1230. [Google Scholar] [CrossRef]
- Di Febbraro, M.; Sallustio, L.; Vizzarri, M.; De Rosa, D.; De Lisio, L.; Loy, A.; Eichelberger, B.A.; Marchetti, M. Expert-based and correlative models to map habitat quality: Which gives better support to conservation planning? Glob. Ecol. Conserv. 2018, 16, e513. [Google Scholar] [CrossRef]
- Fellman, J.B.; Eran, H.; William, D.; Sanjay, P.; Meador, J.P. Stream physical characteristics impact habitat quality for Pacific salmon in two temperate coastal watersheds. PLoS ONE 2015, 10, e132652. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tian, J.; Lv, X. Assessment of stream habitat quality in Naoli River Watershed, China. Acta Ecol. Sin. 2010, 30, 481–486. [Google Scholar]
- Lawton, J.H.; Bignell, D.E.; Bolton, B.; Bloemers, G.F.; Eggleton, P.; Hammond, P.M.; Hodda, M.; Holt, R.D.; Larsen, T.B.; Mawdsley, N.A.; et al. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 1998, 391, 72–76. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J. Evaluation on effect of land consolidation on habitat quality based on InVEST model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 250–255. [Google Scholar]
- Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Nie, S. Impact of LUCC on landscape pattern in the Yangtze River Basin during 2001–2019. Ecol. Inform. 2022, 69, 101631. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Li, J. Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the Yangtze River Economic Belt and Yellow River Basin of China. Land Use Policy 2023, 125, 106463. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.; Hill, S.; Contu, S.; Lysenko, I.; Senior, R.; Börger, L.; Bennett, D.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Luan, W.; Li, X. Rapid urbanization and its driving mechanism in the Pan-Third Pole region. Sci. Total Environ. 2021, 750, 141270. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ma, L.; Liu, J.; Zhuang, Z.; Huang, Q.; Li, M. Constructing ecological networks based on habitat quality assessment: A case study of Changzhou, China. Sci. Rep. 2017, 7, 46073. [Google Scholar] [CrossRef] [PubMed]
- Hillard, E.M.; Nielsen, C.K.; Groninger, J.W. Swamp rabbits as indicators of wildlife habitat quality in bottomland hardwood forest ecosystems. Ecol. Indic. 2017, 79, 47–53. [Google Scholar] [CrossRef]
- Wu, K.; Shui, W.; Xue, C.; Huang, Y.; Jiang, C. Spatiotemporal responses of habitat quality to land use changes in the source area of Pearl River, China. Chin. J. Appl. Ecol. 2023, 34, 169–177. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. J. Clean. Prod. 2021, 329, 129778. [Google Scholar] [CrossRef]
- Upadhaya, S.; Dwivedi, P. Conversion of forestlands to blueberries: Assessing implications for habitat quality in Alabaha river watershed in Southeastern Georgia, United States. Land Use Policy 2019, 89, 104229. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Feng, T.; Li, W.; Yiqiang, G.; Meichen, F.; Ni, H.; Wensheng, D.; Ming, L.; Jianjun, Z.; Wang, L.; Wei, S. Spatio-temporal variation and coupling coordination relationship between urbanisation and habitat quality in the Grand Canal, China. Land Use Policy 2022, 117, 106119. [Google Scholar]
- Chen, X.; Yu, L.; Cao, Y.; Xu, Y.; Zhao, Z.; Zhuang, Y.; Liu, X.; Du, Z.; Liu, T.; Yang, B.; et al. Habitat quality dynamics in China’s first group of national parks in recent four decades: Evidence from land use and land cover changes. J. Environ. Manag. 2023, 325, 116505. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xie, B.; Zhang, D. Spatial-temporal evolution of habitat quality and its influencing factors in the Yellow River Basin based on InVEST model and GeoDetector. J. Desert Res. 2021, 41, 12–22. [Google Scholar]
- Wang, H.; Hu, Y.; Yan, H.; Liang, Y.; Guo, X.; Ye, J. Trade-off among grain production, animal husbandry production, and habitat quality based on future scenario simulations in Xilinhot. Sci. Total Environ. 2022, 817, 153015. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, Y.; Li, P.; Bai, Q. Spatial and temporal variations of habitat quality under the background of gully control and land consolidation in Yan’an, China. Acta Ecol. Sin. 2022, 42, 9808–9819. [Google Scholar]
- Zhang, H.; Li, J.; Tian, P.; Wang, Z.; Shen, X. Spatio-temporal evolution of habitat quality in the East China Sea continental coastal zone based on land use changes. Acta Ecol. Sin. 2023, 43, 937–947. [Google Scholar]
- Wu, L.; Sun, C.; Fan, F. Estimating the characteristic spatiotemporal variation in habitat quality using the invest model—A case study from Guangdong-Hong Kong-Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Tang, F.; Fu, M.; Wang, L.; Zhang, P. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- Fan, X.; Xinchen, G.; Yu, H.; Long, A.; Ou, S.; Li, J.; Rong, Y.; Tang, G.; Zheng, Y.; Shi, M.; et al. The spatial and temporal evolution and drivers of habitat quality in the Hung River Valley. Land 2021, 10, 1369. [Google Scholar] [CrossRef]
- Hennig, E.I.; Schwick, C.; Soukup, T.; Orlitová, E.; Kienast, F.; Jaeger, J.A.G. Multi-scale analysis of urban sprawl in Europe: Towards a European de-sprawling strategy. Land Use Policy 2015, 49, 483–498. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, J.; Hou, J. Spatial-temporal change driving forces and distribution prediction of landscape ecological risk in Harbin. Bull. Surv. Mapp. 2022, 83–89, 94. [Google Scholar]
- Liu, T.; Tang, Y.; Ding, J.; Niu, J.; Geng, H. Spatiotemporal responses of habitat quality to urban sprawl in the Changsha metropolitan area. J. Ecol. Rural Environ. 2023, 39, 20–28. [Google Scholar]
- Reheman, R.; Kasim, A.; Ablat, H.; Duolat, X.; Xu, J. Research on the temporal and spatial evolution of habitat quality in urban agglomeration on the northern slope of Tianshan Mountains based on InVEST model. J. Ecol. Rural Environ. 2022, 38, 1112–1121. [Google Scholar]
- Bosso, L.; Smeraldo, S.; Russo, D.; Chiusano, M.L.; Bertorelle, G.; Johannesson, K.; Butlin, R.K.; Danovaro, R.; Raffini, F. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions 2022, 24, 3169–3187. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.; Zheng, W.; Yin, L. Spatial and temporal distribution characteristics of haze and pollution particles in China based on spatial statistics. Urban Clim. 2022, 41, 101031. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Li, W.; Wang, Y.; Xie, S.; Sun, R.; Cheng, X. Impacts of landscape multifunctionality change on landscape ecological risk in a megacity, China: A case study of Beijing. Ecol. Indic. 2020, 117, 106681. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.; Zou, D.; Wu, T.; Xu, H.; Hu, G.; Li, R.; Ding, Y.; Zhao, L.; Li, W.; et al. Modeling soil organic carbon spatial distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan Plateau. Catena 2020, 187, 104399. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Yang, H.; Huang, J.; Liu, D. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage. Appl. Geogr. 2020, 115, 102135. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, P.; Tian, Y.; Chen, H.; Chen, Y. Exploring the impact of integrated spatial function zones on land use dynamics and ecosystem services tradeoffs based on a future land use simulation (FLUS) model. Ecol. Indic. 2023, 150, 110246. [Google Scholar] [CrossRef]
- Gustafson, E. Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1998, 1, 143–156. [Google Scholar] [CrossRef]
- Lin, W.; Sun, Y.; Nijhuis, S.; Wang, Z. Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study. Sci. Total Environ. 2020, 739, 139899. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, J.; Li, M. Analysis on spatial and temporal changes of regional habitat quality based on the spatial pattern reconstruction of land use. Acta Geogr. Sin. 2020, 75, 160–178. [Google Scholar]
- Li, Q.; Zhang, X.; Liu, Q.; Liu, Y.; Ding, Y.; Zhang, Q. Impact of land use intensity on ecosystem services: An example from the agro-pastoral ecotone of central Inner Mongolia. Sustainability 2017, 9, 1030. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, G.; Ren, Q.; Yang, J. Research on the relationship between business cycle and industrial fluctuations in northeast China based on complete ensemble empirical mode decomposition with adaptive noise. Complexity 2021, 2021, 8832201. [Google Scholar] [CrossRef]
- Eduardo, G.; Miguel, I.; Katažyna, B.; Marius, K.; Donalda, K.; Paulo, P. Future scenarios impact on land use change and habitat quality in Lithuania. Environ. Res. 2021, 197, 111101. [Google Scholar]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef]
- Moreira, M.; Fonseca, C.; Vergílio, M.; Calado, H.; Gil, A. Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: A case study of Pico Island (Azores, Portugal). Land Use Policy 2018, 78, 637–649. [Google Scholar] [CrossRef]
- Ma, T.; Liu, R.; Li, Z.; Ma, T. Research on the evolution characteristics and dynamic simulation of habitat quality in the Southwest Mountainous urban agglomeration from 1990 to 2030. Land 2023, 12, 1488. [Google Scholar] [CrossRef]
- Li, J.; Dong, S.; Li, Y.; Wang, Y.; Li, Z.; Li, F. Effects of land use change on ecosystem services in the China-Mongolia-Russia economic corridor. J. Clean. Prod. 2022, 360, 132175. [Google Scholar] [CrossRef]
- Ivanova, N.; Fomin, V.; Kusbach, A. Experience of Forest Ecological Classification in Assessment of Vegetation Dynamics. Sustainability 2022, 14, 3384. [Google Scholar] [CrossRef]
- Pfister, R.D.; Arno, S.F. Classifying Forest Habitat Types Based on Potential Climax Vegetation. For. Sci. 1980, 26, 52–70. [Google Scholar]
- Aznarez, C.; Svenning, J.; Taveira, G.; Baró, F.; Pascual, U. Wildness and habitat quality drive spatial patterns of urban biodiversity. Landsc. Urban Plan. 2022, 228, 104570. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, R. The construction of green infrastructure network in the perspectives of ecosystem services and ecological sensitivity: The case of Harbin, China. Glob. Ecol. Conserv. 2021, 27, e1534. [Google Scholar] [CrossRef]
Data | Data Source | Spatial Resolution | Temporal Resolution | Accessed Date |
---|---|---|---|---|
Land use/land cover | GlobeLand30 (http://www.globallandcover.com/) | 30 m × 30 m | 2000, 2010, and 2020 | 15 October 2022 |
Annual average precipitation | National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn) | 1 km × 1 km | 2000, 2010, and 2020 | 15 October 2022 |
Temperature | National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn) | 1 km × 1 km | 2000, 2010, and 2020 | 15 October 2022 |
DEM | Geospatial data cloud (http://www.cloud.cn) | 30 m × 30 m | 2009 | 6 December 2022 |
NDVI | The United States Geological Survey (https://lpdaac.usgs.gov/products/mod13q1v061/) | 250 m × 250 m | 2000, 2010, and 2020 | 8 March 2023 |
Population density data | WorldPop Hub (https://hub.worldpop.org/) | 1000 m × 1000 m | 2000, 2010, and 2020 | 8 March 2023 |
GDP | China’s Resource and Environmental Sciences Data Centre (https://www.resdc.cn/) | 1000 m × 1000 m | 2000, 2010 and 2019 | 8 March 2023 |
Roads and rivers | National Geographic Information Resource Directory Service System (https://www.webmap.cn/main.do?method=index) | — | — | 8 March 2023 |
Types | Landscape Indices | Abbreviation |
---|---|---|
Area-edge | Largest Patch Index | LPI |
Percentage of Landscape | PLAND | |
Shape | Landscape Shape Index | LSI |
Aggregation Index | AI | |
Aggregation | Contagion Index | CONTAG |
Subdivision | Number of Patches | NP |
Patch Density | PD | |
Landscape Division Index | DIVISION | |
Diversity | Shannon’s Diversity Index | SHDI |
Category | Driving Factors |
---|---|
Natural factors | Average annual precipitation (PRE) |
Average annual temperature (TEM) | |
Elevation (DEM) | |
Slope (SLO) | |
Normalized difference vegetation index (NDVI) | |
Distance from water | |
Social factors | Population (POP) |
Gross domestic product (GDP) | |
Distance from railways | |
Distance from highways |
Year | NP | PD | LPI | LSI | SHDI | CONTAG | DIVISION | AI |
---|---|---|---|---|---|---|---|---|
2000 | 259,906 | 4.90 | 28.70 | 197.18 | 1.13 | 65.34 | 0.8764 | 94.92 |
2010 | 253,173 | 4.77 | 28.55 | 199.41 | 1.14 | 65.04 | 0.8778 | 94.86 |
2020 | 236,092 | 4.45 | 26.99 | 195.49 | 1.19 | 63.71 | 0.8854 | 94.97 |
Levels | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area/km2 | Proportion/% | Area/km2 | Proportion/% | Area/km2 | Proportion/% | |
Low | 1516.51 | 2.86 | 1562.49 | 2.94 | 2245.94 | 4.23 |
Low-medium | 528.921 | 1.00 | 527.631 | 0.99 | 707.73 | 1.33 |
Medium | 27,853.6 | 52.50 | 27,489.9 | 51.79 | 25,603.9 | 48.25 |
Medium-high | 2224.48 | 4.19 | 2025.23 | 3.82 | 1561.73 | 2.94 |
High | 20,934.5 | 39.46 | 21,470.3 | 40.45 | 22,943.8 | 43.24 |
Year | Levels | Low | Low–medium | Medium | Medium–High | High | Total |
---|---|---|---|---|---|---|---|
2000–2010 | Low | 1177.84 | 15.97 | 259.25 | 21.40 | 36.75 | 1511.21 |
Low–medium | 18.49 | 380.32 | 99.68 | 16.03 | 12.14 | 526.67 | |
Medium | 261.89 | 111.13 | 26,534.41 | 326.62 | 649.13 | 27,883.19 | |
Medium–high | 70.62 | 14.62 | 157.66 | 1507.59 | 468.73 | 2219.23 | |
High | 28.89 | 4.93 | 462.64 | 146.57 | 20,273.54 | 20,916.57 | |
2010–2020 | Low | 1377.26 | 11.01 | 154.29 | 4.12 | 11.06 | 1557.74 |
Low–medium | 167.45 | 216.84 | 111.53 | 17.82 | 13.33 | 526.97 | |
Medium | 594.98 | 455.27 | 24,760.49 | 663.90 | 1040.18 | 27,514.83 | |
Medium–high | 59.30 | 21.01 | 141.18 | 665.58 | 1131.41 | 2018.48 | |
High | 41.36 | 4.34 | 456.43 | 205.27 | 20,736.30 | 21,443.70 | |
2000–2020 | Low | 1219.95 | 17.93 | 234.59 | 5.13 | 33.61 | 1511.21 |
Low–medium | 155.35 | 163.32 | 169.33 | 19.48 | 19.18 | 526.67 | |
Medium | 713.68 | 504.65 | 24,424.20 | 818.90 | 1421.64 | 27,883.06 | |
Medium–high | 103.13 | 16.87 | 203.74 | 499.95 | 1395.41 | 2219.11 | |
High | 48.24 | 5.69 | 590.76 | 213.03 | 20,058.73 | 20,916.46 | |
Total | 2240.35 | 708.46 | 25,622.62 | 1556.49 | 22,928.57 | 53,056.51 |
Year | Climate Factors | Topographic Factors | Vegetation Factors | Human Factors | |||
---|---|---|---|---|---|---|---|
PRE | TMP | DEM | SLO | NDVI | POP | GDP | |
2000 | 0.316 | 0.341 | 0.405 | 0.178 | 0.533 | 0.506 | 0.427 |
2010 | 0.230 | 0.338 | 0.398 | 0.179 | 0.438 | 0.532 | 0.424 |
2020 | 0.301 | 0.326 | 0.398 | 0.174 | 0.390 | 0.534 | 0.457 |
Types | 2030 | 2040 | 2050 | |||
---|---|---|---|---|---|---|
Area/km2 | Proportion/% | Area/km2 | Proportion/% | Area/km2 | Proportion/% | |
Agricultural land | 24,828.05 | 46.79 | 23,989.40 | 45.21 | 23,270.71 | 43.85 |
Forest | 19,259.47 | 36.30 | 19,439.21 | 36.63 | 19,576.18 | 36.89 |
Grassland | 4056.10 | 7.64 | 3974.47 | 7.49 | 3926.33 | 7.40 |
Wetland | 1030.82 | 1.94 | 1129.75 | 2.13 | 1209.37 | 2.28 |
Water body | 1137.66 | 2.14 | 1337.08 | 2.52 | 1519.00 | 2.86 |
Construction land | 2728.15 | 5.14 | 3171.02 | 5.98 | 3539.26 | 6.67 |
Bare land | 22.76 | 0.04 | 22.09 | 0.04 | 22.16 | 0.04 |
Levels | 2030 | 2040 | 2050 | |||
---|---|---|---|---|---|---|
Area/km2 | Proportion/% | Area/km2 | Proportion/% | Area/km2 | Proportion/% | |
Low | 2813.22 | 5.30 | 3288.02 | 6.20 | 3675.97 | 6.93 |
Low–medium | 881.14 | 1.66 | 1037.49 | 1.96 | 1159.56 | 2.19 |
Medium | 24,486.50 | 46.15 | 23,449.70 | 44.19 | 22,589.64 | 42.57 |
Medium–high | 1631.04 | 3.07 | 1784.12 | 3.36 | 1835.30 | 3.46 |
High | 23,251.11 | 43.82 | 23,503.68 | 44.29 | 23,802.55 | 44.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Hu, Y. Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China. Land 2024, 13, 67. https://doi.org/10.3390/land13010067
Qi Y, Hu Y. Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China. Land. 2024; 13(1):67. https://doi.org/10.3390/land13010067
Chicago/Turabian StyleQi, Yuxin, and Yuandong Hu. 2024. "Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China" Land 13, no. 1: 67. https://doi.org/10.3390/land13010067
APA StyleQi, Y., & Hu, Y. (2024). Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China. Land, 13(1), 67. https://doi.org/10.3390/land13010067