Unveiling Heavy Metal Links: Correlating Dust and Topsoil Contamination in Vilnius Schools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Area of Study
2.2. Sample Collection
2.3. Statistical Analysis Methods
2.4. Descriptive Analysis
2.5. Pearson’s Correlation Analysis
2.6. Principal Component Analysis
2.7. Hierarchical Clustering Analysis
3. Results and Discussion
3.1. Pearson’s Correlations
3.2. Principal Component Analysis with Clusters
3.3. Hierarchical Clustering Analysis
3.4. Potential Health Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ignatavičius, G.; Unsal, M.H.; Busher, P.E.; Wołkowicz, S.; Satkūnas, J.; Šulijienė, G.; Valskys, V. Geochemistry of Mercury in Soils and Water Sediments. AIMS Environ. Sci. 2022, 9, 261–281. [Google Scholar] [CrossRef]
- Yesilkanat, C.M.; Kobya, Y. Spatial Characteristics of Ecological and Health Risks of Toxic Heavy Metal Pollution from Road Dust in the Black Sea Coast of Turkey. Geoderma Reg. 2021, 25, e00388. [Google Scholar] [CrossRef]
- Muhamad-Darus, F.; Nasir, R.A.; Sumari, S.M.; Ismail, Z.S.; Omar, N.A. Nursery Schools: Characterization of Heavy Metal Content in Indoor Dust. Asian J. Environ. Behav. Stud. 2017, 2, 63–70. [Google Scholar] [CrossRef]
- Radhi, A.B.; Shartooh, S.M.; Al-Heety, E.A. Heavy Metal Pollution and Sources in Dust from Primary Schools and Kindergartens in Ramadi City, Iraq. Iraqi J. Sci. 2021, 62, 1816–1828. [Google Scholar] [CrossRef]
- Al-Khashman, O.A. Heavy Metal Distribution in Dust, Street Dust and Soils from the Work Place in Karak Industrial Estate, Jordan. Atmos. Environ. 2004, 38, 6803–6812. [Google Scholar] [CrossRef]
- Sezgin, N.; Ozcan, H.; Demir, G.; Nemlioglu, S.; Bayat, C. Determination of Heavy Metal Concentrations in Street Dusts in Istanbul E-5 Highway. Environ. Int. 2004, 29, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, P.; Rajaram, B.; Bhanarkar, A.D.; Rao, C.V.C. Determining Heavy Metal Contamination of Road Dust in Delhi, India. Atmósfera 2016, 29, 221–234. [Google Scholar] [CrossRef]
- Trujillo-González, J.M.; Torres-Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jiménez-Ballesta, R. Heavy Metal Accumulation Related to Population Density in Road Dust Samples Taken from Urban Sites Under Different Land Uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [CrossRef]
- Zeider, K.; Manjón, I.; Betterton, E.A.; Sáez, A.E.; Sorooshian, A.; Ramírez-Andreotta, M.D. Backyard aerosol pollution monitors: Foliar surfaces, dust enrichment, and factors influencing foliar retention. Environ. Monit. Assess. 2023, 195, 1200. [Google Scholar] [CrossRef]
- Rodríguez-Chávez, T.B.; Rine, K.P.; Almusawi, R.M.; O’Brien-Metzger, R.; Ramírez-Andreotta, M.; Betterton, E.A.; Sáez, A.E. Outdoor/Indoor Contaminant Transport by Atmospheric Dust and Aerosol at an Active Smelter Site. Water Air Soil Pollut. 2021, 232, 226. [Google Scholar] [CrossRef]
- David, W.L.; Paloma, I.B. Migration of Contaminated Soil and Airborne Particulates to Indoor Dust. Environ. Sci. Technol. 2009, 43, 8199–8205. [Google Scholar] [CrossRef]
- Kvietkus, K.; Šakalys, J.; Didzbalis, J.; Garbarienė, I.; Špirkauskaitė, N.; Remeikis, V. Atmospheric aerosol episodes over Lithuania after the May 2011 volcano eruption at Grimsvötn, Iceland. Atmos. Res. 2013, 122, 93–101. [Google Scholar] [CrossRef]
- Becerra, J.A.; Lizana, J.; Gil, M.; Barrios-Padura, A.; Blondeau, P.; Chacartegui, R. Identification of potential indoor air pollutants in schools. J. Clean. Prod. 2020, 242, 118420. [Google Scholar] [CrossRef]
- Unsal, M.H.; Ignatavičius, G.; Valskienė, R.; Valskys, V. Long-Term Heavy Metal Accumulation in Sediment Dust of Schools in Vilnius: A Case Study. In Proceedings of the 12th International Scientific Conference, Environmental Engineering, Vilnius, Lithuania, 27–28 April 2023. [Google Scholar] [CrossRef]
- Orru, H.; Laukaitienė, A.; Zurlytė, I. Particulate air pollution and its impact on health in Vilnius and Kaunas. Medicina 2012, 48, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Sadrizadeh, S.; Yao, R.; Yuan, F.; Awbi, H.; Bahnfleth, W.; Bi, Y.; Cao, G.; Croitoru, C.; de Dear, R.; Haghighat, F.; et al. Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. J. Build. Eng. 2022, 57, 104908. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Indoor Environmental Contaminants in Schools. 2023. Available online: https://www.epa.gov/iaq-schools/indoor-environmental-contaminants-schools (accessed on 1 January 2024).
- Gunathilake, T.M.S.U.; Ching, Y.C.; Kadokami, K. An overview of organic contaminants in indoor dust, their health impact, geographical distribution and recent extraction/analysis methods. Environ. Geochem. Health 2022, 44, 677–713. [Google Scholar] [CrossRef]
- Olujimi, O.; Steiner, O.; Goessler, W. Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria. J. Afr. Earth Sci. 2015, 101, 396–404. [Google Scholar] [CrossRef]
- Sulaiman, F.R.; Bakri, N.I.F.; Nazmi, N.; Latif, M.T. Assessment of heavy metals in indoor dust of a university in a tropical environment. Environ. Forensics 2017, 18, 74–82. [Google Scholar] [CrossRef]
- Vilnius Municipality. Soil Pollution. Available online: https://aplinka.vilnius.lt/aplinkos-kokybe/uzterstos-teritorijos/dirvozemio-tarsa/ (accessed on 20 December 2023).
- Grigalavičienė, I.; Rutkovienė, V.; Marozas, V. The Accumulation of Heavy Metals Pb, Cu and Cd at Roadside Forest Soil. Pol. J. Environ. 2005, 14, 109–115. [Google Scholar]
- Jankaitė, A.; Baltrėnas, P.; Kazlauskienė, A. Heavy Metal Concentrations in Roadside Soils of Lithuania’s Highways. Geologija 2008, 50, 237–245. [Google Scholar] [CrossRef]
- HN 60-1996; Hazard Substances. Maximum Permitted and Temporarily Permitted Concentration in Soil. Health Protection Ministry of Lithuanian Republic: Vilniaus, Lithuania, 1996.
- Vaicys, M. Results of Forest Soil Monitoring. In Monitoring of Forest Ecosystems in Lithuania; Ozolinčius, R., Ed.; Lututė Print House: Kaunas, Lithuania, 1999; pp. 122–142. [Google Scholar]
- Official Statistics Portal of Lithuania. Transport. 2022. Available online: https://osp.stat.gov.lt/en/lietuvos-regionai-2022/aplinka/transportas (accessed on 30 December 2023).
- Taraškevičius, R.; Zinkutė, R.; Jankauskaitė, M. Differences of Vilnius Topsoil Contamination in the Neris River Valley Due to Anthropogenic Factors. Geologija 2008, 50, 135–142. [Google Scholar] [CrossRef]
- Taraškevičius, R.; Zinkutė, R.; Čyžius, G.J.; Kaminskas, M.; Jankauskaitė, M. Soil Contamination in One of Preschools Influenced by Metal Working Industry. In Proceedings of the 9th International Scientific and Practical Conference; Atlantis Press: Amsterdam, The Netherlands, 2015; Volume 1, pp. 83–86. [Google Scholar] [CrossRef]
- Kumpienė, J.; Brännvall, E.; Taraškevičius, R.; Aksamitauskas, E.; Zinkutė, R. Spatial Variability of Topsoil Contamination with Trace Elements in Preschools in Vilnius, Lithuania. J. Geochem. Explor. 2011, 108, 15–20. [Google Scholar] [CrossRef]
- Vilnius City Municipality Administration. Soil Pollution. Available online: https://aplinka.vilnius.lt/aplinkos-kokybe/uzterstos-teritorijos/dirvozemio-tarsa/#17 (accessed on 10 October 2023).
- Baltrenas, P.; Kliaugiene, E. Environmental Impacts on Soils from Transport Systems in Various Cities in Lithuania; Transactions on the Built Environment; Environmental Protection Department, Vilnius Gediminas Technical University: Vilnius, Lithuania; WIT Press: Billerica, MA, USA, 2003; Volume 64, ISSN 1743-3509. Available online: www.witpress.com (accessed on 30 December 2023).
- Shi, T.; Wang, Y. Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Sci. Total Environ. 2021, 755 Pt 1, 142367. [Google Scholar] [CrossRef]
- Abdulraheem, M.O.; Adeniran, J.A.; Ameen, H.A.; Odediran, E.T.; Yusuf, M.O.; Abdulraheem, K.A. Source identification and health risk assessments of heavy metals in indoor dusts of Ilorin, North central Nigeria. J. Environ. Health Sci. Eng. 2022, 20, 315–330. [Google Scholar] [CrossRef]
- Roy, A.; Jha, A.K.; Kumar, A.; Bhattacharya, T.; Chakraborty, S.; Raval, N.P.; Kumar, M. Heavy metal pollution in indoor dust of residential, commercial, and industrial areas: A review of evolutionary trends. Air Qual. Atmos. Health 2023. [Google Scholar] [CrossRef]
- Wang, M.; Lv, Y.; Lv, X.; Wang, Q.; Li, Y.; Lu, P.; Yu, H.; Wei, P.; Cao, Z.; An, T. Distribution, sources and health risks of heavy metals in indoor dust across China. Chemosphere 2023, 313, 137595. [Google Scholar] [CrossRef] [PubMed]
- Kunt, F.; Türkyılmaz, E.S. Detection of Heavy Metals in Educational Institutions’ Indoor Dust and Their Risks to Health. Atmosphere 2023, 14, 780. [Google Scholar] [CrossRef]
- Kadūnas, V.; Budavičius, R.; Gregorauskienė, V.; Katinas, V.; Kliaugienė, E.; Radzevičius, A.; Taraškevičius, R. Lietuvos Geocheminis Atlasas—Geochemical Atlas of Lithuania; Geologijos Institutas: Vilnius, Lithuania, 1999. [Google Scholar]
- DGE Baltic Soil. Vilniaus Miesto Viešųjų, Socialiai ir Taršai Jautrių, Potencialiai Užterštų Bei Praeities Taršos Šaltinių Teritorijų Dirvožemio (Ar Grunto) Monitoringo Rezultatai 2017–2021 Metų Laikotarpiu. Available online: https://aplinka.vilnius.lt/wp-content/uploads/2022/08/2017-2021-Dirvozemio-ataskaita-VVA.pdf (accessed on 6 December 2023).
- DGE Baltic Soil. Vilniaus Miesto Dirvožemio Ir Grunto Monitoringo Rezultatai 2023 Metais. Available online: https://aplinka.vilnius.lt/wp-content/uploads/2023/10/vilniaus-dirvozemio-monitroringas-2023.pdf (accessed on 6 December 2023).
- Kurt-Karakus, P.B. Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environ. Int. 2012, 50, 47–55. [Google Scholar] [CrossRef]
- Doyi, I.N.; Isley, C.F.; Soltani, N.S.; Taylor, M.P. Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environ. Int. 2019, 133, 105125. [Google Scholar] [CrossRef]
- Naimabadi, A.; Gholami, A.; Ramezani, A.M. Determination of heavy metals and health risk assessment in indoor dust from different functional areas in Neyshabur, Iran. Indoor Built Environ. 2020, 30, 1781–1795. [Google Scholar] [CrossRef]
- Aguilera, A. Health risk of heavy metals in street dust. Front. Biosci. 2021, 26, 327–345. [Google Scholar] [CrossRef]
- Zacco, A.; Resola, S.; Lucchini, R.; Albini, E.; Zimmerman, N.; Guazzetti, S.; Bontempi, E. Analysis of settled dust with X-ray Fluorescence for exposure assessment of metals in the province of Brescia, Italy. J. Environ. Monit. 2009, 11, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lu, X.; Gao, T.; Chang, Y. Identifying Hot-Spots of Metal Contamination in Campus Dust of Xi’an, China. Int. J. Environ. Res. Public Health 2016, 13, 555. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, Q.; Wen, X.; Yang, M.; Chen, H.; Wu, Z.; Lin, X. Multivariate Statistical Analysis of Heavy Metals in Foliage Dust Near Pedestrian Bridges in Guangzhou, South China in 2009. Environ. Earth Sci. 2012, 70, 107–113. [Google Scholar] [CrossRef]
- Ogundele, D.T.; Adio, A.A.; Oludele, O.E. Heavy Metal Concentrations in Plants and Soil along Heavy Traffic Roads in North Central Nigeria. J. Environ. Anal. Toxicol. 2015, 5, 334. [Google Scholar] [CrossRef]
- Tumas, R. Evaluation and prediction of nonpoint pollution in Lithuania. Ecol. Eng. 2000, 14, 443–451. [Google Scholar] [CrossRef]
- Logiewa, A.; Miazgowicz, A.; Krennhuber, K.; Lanzerstorfer, C. Variation in the Concentration of Metals in Road Dust Size Fractions Between 2 µm and 2 mm: Results from Three Metallurgical Centres in Poland. Arch. Environ. Contam. Toxicol. 2019, 78, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Beamer, P.I.; Elish, C.A.; Roe, D.J.; Loh, M.M.; Layton, D.W. Differences in Metal Concentration by Particle Size in House Dust and Soil. J. Environ. Monit. 2012, 14, 839. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Variations in the Composition of House Dust by Particle Size. J. Environ. Sci. Health Part A 2017, 52, 770–777. [Google Scholar] [CrossRef]
- Gunawardana, C.; Egodawatta, P.; Goonetilleke, A. Role of Particle Size and Composition in Metal Adsorption by Solids Deposited on Urban Road Surfaces. Environ. Pollut. 2014, 184, 44–53. [Google Scholar] [CrossRef]
- Cao, Z.G.; Yu, G.; Chen, Y.S.; Cao, Q.M.; Fiedler, H.; Deng, S.B.; Huang, J.; Wang, B. Particle Size: A Missing Factor in Risk Assessment of Human Exposure to Toxic Chemicals in Settled Indoor Dust. Environ. Int. 2012, 49, 24–30. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Peng, C.; Zhang, Y.; Guo, Z.; Xiao, X.; Kong, L. Comparison of Heavy Metals in Urban Soil and Dust in Cities of China: Characteristics and Health Risks. Int. J. Environ. Sci. Technol. 2022, 20, 2247–2258. [Google Scholar] [CrossRef]
- Peng, C.; Wang, M.; Chen, W. Modelling Cadmium Contamination in Paddy Soils Under Long-Term Remediation Measures: Model Development and Stochastic Simulations. Environ. Pollut. 2016, 216, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Mahanta, M.J.; Bhattacharyya, K.G. Total Concentrations, Fractionation and Mobility of Heavy Metals in Soils of Urban Area of Guwahati, India. Environ. Monit. Assess. 2010, 173, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Ma, J.H.; Liu, D.X.; Sun, Y.L.; Chen, Y.F. Assessment of Heavy Metal Pollution and Potential Ecological Risks of Urban Soils in Kaifeng City. Environ. Sci. 2015, 36, 1037–1044. Available online: https://pubmed.ncbi.nlm.nih.gov/25929074/ (accessed on 30 December 2023).
- Li, Y.; Yu, Y.; Yang, Z.; Shen, Z.; Wang, X.; Cai, Y. A Comparison of Metal Distribution in Surface Dust and Soil among Super City, Town, and Rural Area. Environ. Sci. Pollut. Res. 2016, 23, 7849–7860. [Google Scholar] [CrossRef]
- Huang, S.L.; Yin, C.Y.; Yap, S.Y. Particle Size and Metals Concentrations of Dust from a Paint Manufacturing Plant. J. Hazard. Mater. 2010, 174, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Nikodēmus, O.; Brūmelis, G. The spatial dynamics of atmospheric pollution in Latvia and the Baltic Republics, as measured in mosses, topsoil and precipitation. GeoJournal 1994, 33, 71–80. [Google Scholar] [CrossRef]
- Vasarevičius, S.; Greičiūtė, K. Investigation of soil pollution with heavy metals in Lithuanian military grounds. J. Environ. Eng. Landsc. Manag. 2004, 12, 132–137. [Google Scholar] [CrossRef]
- Jankauskaitė, M.; Taraškevičius, R.; Zinkutė, R.; Veteikis, D. Relationship between landscape self-regulation potential and topsoil additive contamination by trace elements in Vilnius city. J. Environ. Eng. Landsc. Manag. 2008, 16, 5–15. [Google Scholar] [CrossRef]
- Ignatavicius, G.; Valskys, V.; Bulskaya, I.V.; Paliulis, D.; Zigmontienė, A.; Satkūnas, J. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania. Est. J. Earth Sci. 2017, 66, 13. [Google Scholar] [CrossRef]
- Capitão, C.; Martins, R.; Santos, O.; Bicho, M.; Szigeti, T.; Katsonouri, A.; Bocca, B.; Ruggieri, F.; Wasowicz, W.; Tolonen, H.; et al. Exposure to heavy metals and red blood cell parameters in children: A systematic review of observational studies. Front. Pediatr. 2022, 10, 921239. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef]
- Bair, E.C. A Narrative Review of Toxic Heavy Metal Content of Infant and Toddler Foods and Evaluation of United States Policy. Front. Nutr. 2022, 9, 919913. [Google Scholar] [CrossRef]
- Al Osman, M.; Yang, F.; Massey, I.Y. Exposure routes and health effects of heavy metals on children. Biometals 2019, 32, 563–573. [Google Scholar] [CrossRef]
Year | Arsenic (As) | Chromium (Cr) | Copper (Cu) | Zinc (Zn) | Lead (Pb) |
---|---|---|---|---|---|
1999 | 2.5 | 32.9 | 8.8 | 30.9 | 16 |
2011 | - | 36.22 | 18.40 | 216.82 | 57.97 |
2017 | 3.20 | 20.31 | 18.41 | 150.69 | 38.98 |
2018 | 2.76 | 26.60 | 29.82 | 219.50 | 48.64 |
2019 | 2.86 | 36.35 | 45.59 | 141.19 | 57.00 |
2020 | 2.93 | 16.61 | 16.65 | 131.25 | 34.90 |
2021 | 2.44 | 28.31 | 47.46 | 110.75 | 34.58 |
2023 | 1.97 | 18.58 | 16.76 | 44.33 | 21.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unsal, M.H.; Ignatavičius, G.; Valskys, V. Unveiling Heavy Metal Links: Correlating Dust and Topsoil Contamination in Vilnius Schools. Land 2024, 13, 79. https://doi.org/10.3390/land13010079
Unsal MH, Ignatavičius G, Valskys V. Unveiling Heavy Metal Links: Correlating Dust and Topsoil Contamination in Vilnius Schools. Land. 2024; 13(1):79. https://doi.org/10.3390/land13010079
Chicago/Turabian StyleUnsal, Murat Huseyin, Gytautas Ignatavičius, and Vaidotas Valskys. 2024. "Unveiling Heavy Metal Links: Correlating Dust and Topsoil Contamination in Vilnius Schools" Land 13, no. 1: 79. https://doi.org/10.3390/land13010079
APA StyleUnsal, M. H., Ignatavičius, G., & Valskys, V. (2024). Unveiling Heavy Metal Links: Correlating Dust and Topsoil Contamination in Vilnius Schools. Land, 13(1), 79. https://doi.org/10.3390/land13010079