Remote Sensing and Field Data Analysis to Evaluate the Impact of Stone Bunds on Rainfed Agriculture in West Africa
Abstract
:1. Introduction
- Examine the influence of stone bunds on soil moisture dynamics.
- Evaluate the effect of stone bunds on vegetation growth using NDVI data on a large spatial scale.
- Analyze the relationship between stone bunds, environmental factors, and agricultural productivity.
2. Materials and Methods
2.1. Study Area
2.2. Soil Data
2.3. Experimental Plots
2.4. Soil Hydraulic Properties
2.5. NDVI Analysis
2.5.1. NDVI Data Extraction and Processing
2.5.2. NDVI Classification
2.6. Statistical Analysis
3. Results
3.1. Soil Moisture Dynamics
3.2. Infiltration Rates and Hydraulic Conductivity
3.3. NDVI Analysis and Vegetation Response to Stone Bunds
3.4. Crop Yield Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amponsem, J. Climate Change: Drought Hits Ghana’s Second Farming Season. 2015. Available online: https://www.modernghana.com/news/641431/climate-change-drought-hits-ghanas-second-farming-season.html (accessed on 30 July 2024).
- FAO. Ghana at a Glance. 2024. Available online: https://www.fao.org/ghana/fao-in-ghana/ghana-at-a-glance/en/ (accessed on 31 May 2024).
- Quinton, J. Desertification, Land Degradation and Sustainability: Paradigms, Processes, Principles and Policies; Imeson, A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2012. [Google Scholar] [CrossRef]
- Breman, H. Desertification control, the West African case; prevention is better than cure. Biotropica 1992, 24, 328–334. [Google Scholar] [CrossRef]
- Darkoh, M.B. Desertification in Africa. J. East. Afr. Res. Dev. 1989, 19, 1–50. [Google Scholar]
- Warren, A.; Batterbury, S.; Osbahr, H. Soil erosion in the West African Sahel: A review and an application of a “local political ecology” approach in South West Niger. Glob. Environ. Change 2001, 11, 79–95. [Google Scholar] [CrossRef]
- Yirdaw, E.; Tigabu, M.; Monge, A. Rehabilitation of degraded dryland ecosystems—Review. Silva Fenn. 2017, 51, 1673. [Google Scholar] [CrossRef]
- Dang, H.L.; Li, E.; Nuberg, I.; Bruwer, J. Factors influencing the adaptation of farmers in response to climate change: A review. Clim. Dev. 2019, 11, 765–774. [Google Scholar] [CrossRef]
- Tefera, M.L.; Seddaiu, G.; Carletti, A. Traditional In Situ Water Harvesting Practices and Agricultural Sustainability in Sub-Saharan Africa—A Meta-Analysis. Sustainability 2024, 16, 6427. [Google Scholar] [CrossRef]
- Tefera, M.L.; Carletti, A.; Altea, L.; Rizzu, M.; Migheli, Q.; Seddaiu, G. Land degradation and the upper hand of sustainable agricultural intensification in sub-Saharan Africa—A systematic review. J. Agric. Rural Dev. Trop. Subtrop. 2014, 125, 63–83. [Google Scholar] [CrossRef]
- Hossini, H.; Karimi, H.; Mustafa, Y.T.; Al-Quraishi, A.M.F. Role of Effective Factors on Soil Erosion and Land Degradation: A Review. In Environmental Degradation in Asia; Earth and Environmental Sciences Library; Springer: Cham, Switzerland, 2022; pp. 221–235. [Google Scholar] [CrossRef]
- Li, H.; Zhu, H.; Liang, C.; Wei, X.; Yao, Y. Soil erosion significantly decreases aggregate-associated OC and N in agricultural soils of Northeast China. Agric. Ecosyst. Environ. 2022, 323, 107677. [Google Scholar] [CrossRef]
- Indoria, A.K.; Sharma, K.L.; Reddy, K.S. Hydraulic properties of soil under warming climate. In Climate Change and Soil Interactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 473–508. [Google Scholar]
- Taye, G.; Poesen, J.; Vanmaercke, M.; van Wesemael, B.; Martens, L.; Teka, D.; Nyssen, J.; Deckers, J.; Vanacker, V.; Haregeweyn, N.; et al. Evolution of the effectiveness of stone bunds and trenches in reducing runoff and soil loss in the semi-arid Ethiopian highlands. Z. Geomorphol. 2015, 59, 477–493. [Google Scholar] [CrossRef]
- Taye, G.; Tesfaye, S.; Van Parijs, I.; Poesen, J.; Vanmaercke, M.; van Wesemael, B.; Guyassaa, E.; Nyssen, J.; Deckers, J.; Haregeweyn, N. Impact of soil and water conservation structures on the spatial variability of topsoil moisture content and crop productivity in semi-arid Ethiopia. Soil Tillage Res. 2024, 238, 105998. [Google Scholar] [CrossRef]
- Zougmoré, R.; Jalloh, A.; Tioro, A. Climate-smart soil water and nutrient management options in semiarid West Africa: A review of evidence and analysis of stone bunds and zaï techniques. Agric. Food Secur. 2014, 3, 16. [Google Scholar] [CrossRef]
- Surendran, U.; Nagakumar, K.C.V.; Samuel, M.P. Remote Sensing in Precision Agriculture. In Digital Agriculture; Springer International Publishing: Cham, Switzerland, 2024; pp. 201–223. [Google Scholar]
- Rekha, B.U.; Desai, V.V.; Ajawan, P.S.; Jha, S.K. Remote Sensing Technology and Applications in Agriculture. In Proceedings of the International Conference on Computational Techniques, Belgaum, India, 21–22 December 2018; pp. 193–197. [Google Scholar]
- Kumar, S.; Meena, R.S.; Sheoran, S.; Jangir, C.K.; Jhariya, M.K.; Banerjee, A.; Raj, A. Remote sensing for agriculture and resource management. In Natural Resources Conservation and Advances for Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 91–135. [Google Scholar]
- Zhang, H.; Chang, J.; Zhang, L.; Wang, Y.; Li, Y.; Wang, X. NDVI dynamic changes and their relationship with meteorological factors and soil moisture. Environ. Earth Sci. 2018, 77, 582. [Google Scholar] [CrossRef]
- Wang, Y.W. Sustainable agricultural practices: Energy inputs and outputs, pesticide, fertilizer and greenhouse gas management. Asia Pac. J. Clin. Nutr. 2009, 18, 498–500. [Google Scholar]
- Felegari, S.; Sharifi, A.; Moravej, K.; Golchin, A.; Tariq, A. Investigation of the Relationship Between NDVI Index, Soil Moisture, and Precipitation Data Using Satellite Images. In Sustainable Agriculture Systems and Technologies; Wiley: Hoboken, NJ, USA, 2022; pp. 314–325. [Google Scholar] [CrossRef]
- Ding, Y.; He, X.; Zhou, Z.; Hu, J.; Cai, H.; Wang, X.; Li, L.; Xu, J.; Shi, H. Response of vegetation to drought and yield monitoring based on NDVI and SIF. Catena 2022, 219, 106328. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A.; Kalacska, M. Integration of satellite imagery and in situ soil moisture data for estimating irrigation water requirements. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102396. [Google Scholar] [CrossRef]
- Chanev, M.; Kamenova, I.; Filchev, L. Remote Sensing Monitoring of Water Productivity in Agricultural Crops: A Review. In River Conservation and Water Resource Management; Advances in Geographical and Environmental Sciences; Springer: Singapore, 2023; pp. 17–26. [Google Scholar] [CrossRef]
- Singh, R. Bunds. In Soil and Water Conservation Structures Design; Water Science and Technology Library; Springer: Singapore, 2023; pp. 95–119. [Google Scholar] [CrossRef]
- Naazie, G.K.; Dakyaga, F.; Derbile, E.K. Agro-ecological intensification for climate change adaptation: Tales on soil and water management practices of smallholder farmers in rural Ghana. Discov. Sustain. 2023, 4, 27. [Google Scholar] [CrossRef]
- Meresa, M.; Tadesse, M.; Zeray, N. Effect of soil and water conservation structures on smallholder farmers’ livelihood: Wenago district, Southern Ethiopia. Cogent Soc. Sci. 2023, 9, 2272305. [Google Scholar] [CrossRef]
- Alemayehu, A.A.; Getu, L.A.; Addis, H.K.; Tejada Moral, M. Impacts of stone bunds on selected soil properties and crop yield in Gumara-Maksegnit watershed Northern Ethiopia. Cogent Food Agric. 2020, 6, 1785777. [Google Scholar] [CrossRef]
- Barry, B.; Olaleye, A.O.; Zougmoré, R.; Fatondji, D. Rainwater Harvesting Technologies in the Sahelian Zone of West Africa and the Potential for Outscaling; IWMI: Colombo, Sri Lanka, 2008; p. 40. [Google Scholar]
- Wolka, K.; Moges, A.; Yimer, F. Effects of level soil bunds and stone bunds on soil properties and its implications for crop production: The case of Bokole watershed, Dawuro zone, Southern Ethiopia. Agric. Sci. 2011, 2, 357–363. [Google Scholar] [CrossRef]
- Wolka, K.; Mulder, J.; Biazin, B. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agric. Water Manag. 2018, 207, 67–79. [Google Scholar] [CrossRef]
- Abi, M.; Kessler, A.; Oosterveer, P.; Tolossa, D. Understanding the Spontaneous Spreading of Stone Bunds in Ethiopia: Implications for Sustainable Land Management. Sustainability 2018, 10, 2666. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Gebremichael, D.; Vancampenhout, K.; D’aes, M.; Yihdego, G.; Govers, G.; Leirs, H.; Moeyersons, J.; Naudts, J.; et al. Interdisciplinary on-site evaluation of stone bunds to control soil erosion on cropland in Northern Ethiopia. Soil Tillage Res. 2007, 94, 151–163. [Google Scholar] [CrossRef]
- Sultan, D.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Tsubo, M.; Meshesha, D.T.; Masunaga, T.; Aklog, D.; Fenta, A.A.; Ebabu, K. Impact of Soil and Water Conservation Interventions on Watershed Runoff Response in a Tropical Humid Highland of Ethiopia. Environ. Manag. 2018, 61, 860–874. [Google Scholar] [CrossRef] [PubMed]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis; Klute, A., Ed.; SSSA Book Series; Soil Science Society of America (SSSA): Madison, WI, USA, 1986; pp. 363–375. [Google Scholar] [CrossRef]
- USDA. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA-Natural Resources Conservation Service. U.S. Government Printing Office: Washington, DC, USA, 1999. [Google Scholar]
- AfricaagMedia. Ghana: Sorghum. 15 September 2021. Available online: http://www.agricinafrica.com/2021/09/ghana-sorghum.html (accessed on 27 May 2024).
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydrology Papers; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Angulo-Jaramillo, R.; Bagarello, V.; Di Prima, S.; Gosset, A.; Iovino, M.; Lassabatere, L. Beerkan Estimation of Soil Transfer parameters (BEST) across soils and scales. J. Hydrol. 2019, 576, 239–261. [Google Scholar] [CrossRef]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Wheat Yield Estimation with NDVI Values Using a Proximal Sensing Tool. Remote Sens. 2020, 12, 2749. [Google Scholar] [CrossRef]
- Dalezios, N.R.; Domenikiotis, C.; Loukas, A.; Tzortzios, S.T.; Kalaitzidis, C. Cotton yield estimation based on NOAA/AVHRR produced NDVI. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2001, 26, 247–251. [Google Scholar] [CrossRef]
- Lee, G.; Kim, G.; Min, G.; Kim, M.; Jung, S.; Hwang, J.; Cho, S. Vegetation Classification in Urban Areas by Combining UAV-Based NDVI and Thermal Infrared Image. Appl. Sci. 2022, 13, 515. [Google Scholar] [CrossRef]
- Abdisa, B.T.; Mamo Diga, G.; Regassa Tolessa, A. Impact of climate variability on rain-fed maize and sorghum yield among smallholder farmers. Cogent Food Agric. 2022, 8, 2057656. [Google Scholar] [CrossRef]
- Tolosa, A.A.; Dadi, D.K.; Mirkena, L.W.; Erena, Z.B.; Liban, F.M. Impacts of Climate Variability and Change on Sorghum Crop Yield in the Babile District of Eastern Ethiopia. Climate 2023, 11, 99. [Google Scholar] [CrossRef]
- Horton, R.E. An Approach Toward a Physical Interpretation of Infiltration-Capacity. Soil Sci. Soc. Am. J. 1941, 5, 399–417. [Google Scholar] [CrossRef]
- Singh, N.K.; Emanuel, R.E.; McGlynn, B.L.; Miniat, C.F. Soil Moisture Responses to Rainfall: Implications for Runoff Generation. Water Resour. Res. 2021, 57, e2020WR028827. [Google Scholar] [CrossRef]
- Kirkby, M.J.; Morgan, R.P.C. Soil Erosion. In Journal of Hydrology; J.W. Sons: Chichester, UK, 1982; Volume 55. [Google Scholar]
- Klik, A.; Schürz, C.; Strohmeier, S.; Demelash Melaku, N.; Ziadat, F.; Schwen, A.; Zucca, C. Impact of stone bunds on temporal and spatial variability of soil physical properties: A field study from northern Ethiopia. Land Degrad. Dev. 2018, 29, 585–595. [Google Scholar] [CrossRef]
- Gebrernichael, D.; Nyssen, J.; Poesen, J.; Deckers, J.; Haile, M.; Govers, G.; Moeyersons, J. Effectiveness of stone bunds in controlling soil erosion on cropland in the Tigray Highlands, northern Ethiopia. Soil Use Manag. 2005, 21, 287–297. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Wiegand, C.L.; Richardson, A.J.; Escobar, D.E.; Gerbermann, A.H. Vegetation indices in crop assessments. Remote Sens. Environ. 1991, 35, 105–119. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Li, S.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef]
- Mando, A.; Stroosnijder, L. The biological and physical role of mulch in the rehabilitation of crusted soil in the Sahel. Soil Use Manag. 2006, 15, 123–127. [Google Scholar] [CrossRef]
- Akinseye, F.M.; Ajeigbe, H.A.; Traore, P.C.S.; Agele, S.O.; Zemadim, B.; Whitbread, A. Improving sorghum productivity under changing climatic conditions: A modelling approach. Field Crops Res. 2020, 246, 107685. [Google Scholar] [CrossRef]
- Katerji, N.; Mastrorilli, M. Water Use Efficiency of Cultivated Crops. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Wakjira, M.T.; Peleg, N.; Anghileri, D.; Molnar, D.; Alamirew, T.; Six, J.; Molnar, P. Rainfall seasonality and timing: Implications for cereal crop production in Ethiopia. Agric. For. Meteorol. 2021, 310, 108633. [Google Scholar] [CrossRef]
- Liaqat, W.; Altaf, M.T.; Barutçular, C.; Mohamed, H.I.; Ahmad, H.; Jan, M.F.; Khan, E.H. Sorghum: A Star Crop to Combat Abiotic Stresses, Food Insecurity, and Hunger Under a Changing Climate: A Review. J. Soil Sci. Plant Nutr. 2024, 24, 74–101. [Google Scholar] [CrossRef]
- Adimassu, Z.; Mul, M.; Owusu, A. Intra-seasonal rainfall variability and crop yield in the Upper East Region of Ghana. Environ. Dev. Sustain. 2023, 1–20. [Google Scholar] [CrossRef]
- Quaye-Ballard, J.A.; Okrah, T.M.; Andam-Akorful, S.A.; Awotwi, A.; Antwi, T.; Osei-Wusu, W.; Tang, X.; Quaye-Ballard, N.L. Spatiotemporal dynamics of rainfall in Upper East Region of Ghana, West Africa, 1981–2016. SN Appl. Sci. 2020, 2, 1675. [Google Scholar] [CrossRef]
- Amede, T.; Awulachew, S.B.; Matti, B.; Yitayew, M. Managing Rainwater for Resilient Dryland Systems in Sub-Saharan Africa: Review of Evidences. In Nile River Basin; Springer: Cham, Switzerland, 2014; pp. 517–540. [Google Scholar]
- Nyssen, J.; Poesen, J.; Deckers, J. Land degradation and soil and water conservation in tropical highlands. Soil Tillage Res. 2009, 103, 197–202. [Google Scholar] [CrossRef]
- Vohland, K.; Barry, B. A review of in situ rainwater harvesting (RWH) practices modifying landscape functions in African drylands. Agric. Ecosyst. Environ. 2009, 131, 119–127. [Google Scholar] [CrossRef]
Soil Depth | Soil Texture | pH (H2O) | Organic Matter (g·Kg−1) | Total N (g·Kg−1) | C/N (g·Kg−1) | P2O5 (mg·Kg−1) | K2O (mg·Kg−1) |
---|---|---|---|---|---|---|---|
0–10 | Loam | 6.3 | 26 | 1.3 | 12 | 9 | 150 |
20–30 | Clay Loam | 6.3 | 21 | 0.9 | 13 | 5 | 89 |
20–30 | Clay Loam | 6.2 | 9 | 0.6 | 8 | 5 | 14 |
30–40 | Clay | 6.2 | 9 | 0.4 | 13 | 4 | 28 |
NDVI Category | NDVI Range | Description |
---|---|---|
Low | 0.2< NDVI < 0.3 | Sparse or stressed vegetation |
Mid | 0.3 ≤ NDVI < 0.5 | Moderate vegetation coverage |
High | NDVI ≥ 0.5 | Dense and healthy vegetation |
VWC Stone Bunds at 10 cm | VWC Control at 10 cm | VWC Stone Bunds at 20 cm | VWC Control at 20 cm | ||
---|---|---|---|---|---|
All study period | Maximum | 50.3 | 42.3 | 54.6 | 49.3 |
Mean | 18.2 | 15 | 25.1 | 23.04 | |
SD | 7.9 | 6.8 | 8.1 | 7.44 | |
May–October 2022 | Maximum | 50.3 | 42.3 | 54.6 | 49.3 |
Mean | 22.02 | 18.75 | 31.23 | 28.26 | |
SD | 6.43 | 5.9 | 9.7 | 8 | |
May–October 2023 | Maximum | 45.5 | 39.7 | 47.2 | 39.8 |
Mean | 24.23 | 19.7 | 27.82 | 22.49 | |
SD | 7.49 | 6.6 | 6.2 | 6.2 |
Plot | Infiltration Tests | Ks Min (mm/min) | Ks Max (mm/min) | Ks Mean (mm/min) | Standard Dev (mm/min) |
---|---|---|---|---|---|
Upper-Bund | 4 | 0.992 | 3.232 | 1.654 | 0.917 |
Mid-Bund | 4 | 0.802 | 2.853 | 2.032 | 0.858 |
Lower-Bund | 3 | 0.858 | 2.047 | 1.435 | 0.486 |
Control | 4 | 0.834 | 1.832 | 1.185 | 0.399 |
Df | Sum Sq | Mean Sq | F-Value | Pr (>F) | Significance | |
---|---|---|---|---|---|---|
Treatment | 1 | 0.232 | 0.2322 | 17.262 | 3.79 × 10−5 | *** |
Location | 5 | 0.318 | 0.0636 | 4.729 | 0.000309 | *** |
Rainfall | 1 | 2.39 | 2.3901 | 177.678 | <2 × 10−16 | *** |
Treatment: Location | 5 | 0.033 | 0.0066 | 0.492 | 0.782596 | No |
Treatment: Rainfall | 1 | 0.062 | 0.0618 | 4.596 | 0.032492 | * |
Residuals | 26 | 0.22 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tefera, M.L.; Awada, H.; Pirastru, M.; Kombiok, J.M.; Adjebeng-Danquah, J.; Adombilla, R.; Asungre, P.A.; Mahama, G.; Carletti, A.; Seddaiu, G. Remote Sensing and Field Data Analysis to Evaluate the Impact of Stone Bunds on Rainfed Agriculture in West Africa. Land 2024, 13, 1654. https://doi.org/10.3390/land13101654
Tefera ML, Awada H, Pirastru M, Kombiok JM, Adjebeng-Danquah J, Adombilla R, Asungre PA, Mahama G, Carletti A, Seddaiu G. Remote Sensing and Field Data Analysis to Evaluate the Impact of Stone Bunds on Rainfed Agriculture in West Africa. Land. 2024; 13(10):1654. https://doi.org/10.3390/land13101654
Chicago/Turabian StyleTefera, Meron Lakew, Hassan Awada, Mario Pirastru, James Mantent Kombiok, Joseph Adjebeng-Danquah, Ramson Adombilla, Peter Anabire Asungre, George Mahama, Alberto Carletti, and Giovanna Seddaiu. 2024. "Remote Sensing and Field Data Analysis to Evaluate the Impact of Stone Bunds on Rainfed Agriculture in West Africa" Land 13, no. 10: 1654. https://doi.org/10.3390/land13101654
APA StyleTefera, M. L., Awada, H., Pirastru, M., Kombiok, J. M., Adjebeng-Danquah, J., Adombilla, R., Asungre, P. A., Mahama, G., Carletti, A., & Seddaiu, G. (2024). Remote Sensing and Field Data Analysis to Evaluate the Impact of Stone Bunds on Rainfed Agriculture in West Africa. Land, 13(10), 1654. https://doi.org/10.3390/land13101654