Using Local Entropy Mapping as an Approach to Quantify Surface Temperature Changes Induced by Urban Parks in Mexico City
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description of the Study Area
2.2. Methodological Proposal
2.3. Obtaining Data on Urban Parks and Building Contours
2.4. Image Processing for Land Surface Temperature (LST) Estimate
2.5. Calculation of the Intensity of the Urban Heat Island and the Cooling Effect of Urban Parks
2.6. Local Bivariate Relationships
3. Results
3.1. Intensity of the Urban Heat Island Intensity in Mexico City
3.2. Understanding Cooling Effect of Urban Parks
4. Discussion
4.1. Relevance and Context of the Study
4.2. Cooling Effects Dynamics in the Context of the Study
4.3. Methodological Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Taha, H.; Akbari, H. Residential cooling loads and the urban heat island—The effects of albedo. Build. Environ. 1988, 23, 271–283. [Google Scholar] [CrossRef]
- He, B.J. Towards the next generation of green building for urban heat island mitigation: Zero UHI impact building. Sustain. Cities Soc. 2019, 50, 101647. [Google Scholar] [CrossRef]
- Kraemer, R.; Kabisch, N. Parks under stress: Air temperature regulation of urban green spaces under conditions of drought and summer heat. Front. Environ. Sci. 2022, 10, 318. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.H.; Akbari, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef]
- Knight, T.; Price, S.; Bowler, D.; Hookway, A.; King, S.; Konno, K.; Richter, R.L. How effective is ‘greening’ of urban areas in reducing human exposure to ground-level ozone concentrations, UV exposure and the ‘urban heat island effect’? An updated systematic review. Environ. Evid. 2021, 10, 1–38. [Google Scholar] [CrossRef]
- Aram, F.; García, E.H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, 1–31. [Google Scholar] [CrossRef]
- Rajagopal, P.; Priya, R.S.; Senthil, R. A review of recent developments in the impact of environmental measures on urban heat island. Sustain. Cities Soc. 2023, 88, 104279. [Google Scholar] [CrossRef]
- Jabbar, H.K.; Hamoodi, M.N.; Al-Hameedawi, A.N. Urban heat islands: A review of contributing factors, effects and data. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1129, p. 012038. [Google Scholar]
- Ren, J.; Shi, K.; Li, Z.; Kong, X.; Zhou, H. A Review on the Impacts of Urban Heat Islands on Outdoor Thermal Comfort. Buildings 2023, 13, 1368. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Wang, F.; Qiao, Z.; An, H.; Han, D.; Luo, J. Exploring the cooling effect of urban parks based on the ECOSTRESS land surface temperature. Front. Ecol. Evol. 2022, 10, 1031517. [Google Scholar] [CrossRef]
- Wang, J.; Wei, L.; Gao, G.; Zhu, J.; Su, X.; Sun, L. Comprehensive investigation of pharmacodynamic material basis of Wikstroemia indica (L.) C.A. Mey. by serum pharmacochemistry and bivariate correlation analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1179, 122770. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Yang, M.; Lin, G.; Ma, X.; Wang, X.; Huang, Q.; Zhang, T. Cooling Effect of Green Space and Water on Urban Heat Island and the Perception of Residents: A Case Study of Xi’an City. Int. J. Environ. Res. Public Health 2022, 19, 14880. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Almeida, C.R.D.; Teodoro, A.C.; Gonçalves, A. Study of the urban heat island (UHI) using remote sensing data/techniques: A systematic review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Yang, P.; Xiao, Z.N.; Ye, M.S. Cooling effect of urban parks and their relationship with urban heat islands. Atmos. Ocean. Sci. Lett. 2016, 9, 298–305. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Momin, S. Quantifying the cooling effect of urban green space: A case from urban parks in a tropical mega metropolitan area (India). Sustain. Cities Soc. 2022, 87, 104062. [Google Scholar] [CrossRef]
- Qiu, X.; Kil, S.H.; Jo, H.K.; Park, C.; Song, W.; Choi, Y.E. Cooling Effect of Urban Blue and Green Spaces: A Case Study of Changsha, China. Int. J. Environ. Res. Public Health 2023, 20, 2613. [Google Scholar] [CrossRef]
- Feng, X.; Yu, J.; Xin, C.; Ye, T.; Wang, T.A.; Chen, H.; Zhang, L. Quantifying and Comparing the Cooling Effects of Three Different Morphologies of Urban Parks in Chengdu. Land 2023, 12, 451. [Google Scholar] [CrossRef]
- Han, D.; Yang, X.; Cai, H.; Xu, X. Impacts of neighboring buildings on the cold island effect of central parks: A case study of Beijing, China. Sustainability 2020, 12, 9499. [Google Scholar] [CrossRef]
- Gao, Z.; Zaitchik, B.F.; Hou, Y.; Chen, W. Toward park design optimization to mitigate the urban heat Island: Assessment of the cooling effect in five US cities. Sustain. Cities Soc. 2022, 81, 103870. [Google Scholar] [CrossRef]
- Feng, X.; Myint, S.W. Exploring the effect of neighboring land cover pattern on land surface temperature of central building objects. Build. Environ. 2016, 95, 346–354. [Google Scholar] [CrossRef]
- Lin, P.; Song, D.; Qin, H. Impact of parking and greening design strategies on summertime outdoor thermal condition in old mid-rise residential estates. Urban For. Urban Green. 2021, 63, 127200. [Google Scholar] [CrossRef]
- CONAGUA (Comisión Nacional del Agua). Reporte del clima en México. Coordinación General del Servicio Meteorológico Nacional. Año 13, Número 6. 2023. Available online: https://smn.conagua.gob.mx/tools/DATA/Climatología/Diagnóstico%20Atmosférico/Reporte%20del%20Clima%20en%20México/RC-Junio23.pdf (accessed on 30 April 2023).
- SEDEMA (Secretariat of Environment of Mexico City). “Inventory of Green spaces”. Mexico City, Secretariat of Environment of Mexico City. 2020. Available online: https://sedema.cdmx.gob.mx/programas/programa/inventario-de-areas-verdes (accessed on 30 April 2023).
- Sirko, W.; Kashubin, S.; Ritter, M.; Annkah, A.; Bouchareb, Y.S.E.; Dauphin, Y.; Keysers, D.; Neumann, M.; Cisse, M.; Quinn, J. Continental-scale building detection from high resolution satellite imagery. arXiv 2021, arXiv:2107.12283. [Google Scholar]
- Núñez, J.M. Análisis espacial de las áreas verdes urbanas de la Ciudad de México. Econ. Soc. Territ. 2021, 21, 803–833. [Google Scholar]
- Sadeghian, M.M.; Vardanyan, Z. The benefits of urban parks, a review of urban research. J. Nov. Appl. Sci. 2013, 2, 231–237. [Google Scholar]
- Gonzales, J.J. Building-Level Comparison of Microsoft and Google Open Building Footprints Datasets (Short Paper). In Proceedings of the 12th International Conference on Geographic Information Science (GIScience 2023), Leeds, UK, 12–15 September 2023; Schloss-Dagstuhl-Leibniz Zentrum für Informatik: Wadern, Germany, 2023; pp. 1–35. [Google Scholar]
- Wen, X.; Yang, L.; Zhang, Y.; Wang, Q.; Ye, J.; McBroom, M. Analyzing temporal and spatial forest carbon storage using Google Plus Code: A case study of Zijin Mountain National Forest Park, China. Carbon Balance Manag. 2024, 19, 13. [Google Scholar] [CrossRef]
- Biljecki, F.; Chow, Y.S.; Lee, K. Quality of crowdsourced geospatial building information: A global assessment of OpenStreetMap attributes. Build. Environ. 2023, 237, 110295. [Google Scholar] [CrossRef]
- Núñez, J.M. Mapeo de la composición urbana, contraste entre dispersión y formas compactas en el sur de la Ciudad de México. In Ciudad Compacta: Del Concepto a la Práctica; Rothe, H.Q., Ed.; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2015; pp. 211–225. ISBN 978-607-0271-76-2. [Google Scholar]
- Rasul, A.; Balzter, H.; Smith, C.; Remedios, J.; Adamu, B.; Sobrino, J.A.; Weng, Q. A review on remote sensing of urban heat and cool islands. Land 2017, 6, 38. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, H.; Kainz, W. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 127–138. [Google Scholar] [CrossRef]
- Moreira, P.; Duarte, L.; Cunha, M.; Teodoro, A.C. Modeling Spatial-Temporal Wine Yield Based on Land Surface Temperature, Vegetation Indices and GIS-The Case of the Douro Wine Region. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 6431–6434. [Google Scholar] [CrossRef]
- Herlawati, H.; Handayanto, R.T.; Saimima, I.D.S.; Khaerudin, M.; Prayitno, M.H.; Kustanto, P.; Ismaniah, I.; Yusuf, A.Y.P.; Andrian, A. Evaluating the Effects of Mobility Restrictions during COVID-19 on Land Surface Temperature with GIS and Satellite Data. In Proceedings of the 2023 Eighth International Conference on Informatics and Computing (ICIC), Manado, Indonesia, 8–9 December 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Barane, P.K.; Dwarakish, G.S. Development of a tool for land surface temperature retrieval from Landsat data products. In Proceedings of the Global Civil Engineering Challenges in Sustainable Development and Climate Change, Moodbidri, India, 17–18 March 2017; pp. 17–18. [Google Scholar]
- Peng, J.; Dan, Y.; Qiao, R.; Liu, Y.; Dong, J.; Wu, J. How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives. Remote Sens. Environ. 2021, 252, 112135. [Google Scholar]
- Chen, M.; Jia, W.; Yan, L.; Du, C.; Wang, K. Quantification and mapping cooling effect and its accessibility of urban parks in an extreme heat event in a megacity. J. Clean. Prod. 2022, 334, 130252. [Google Scholar] [CrossRef]
- Geng, X.; Yu, Z.; Zhang, D.; Li, C.; Yuan, Y.; Wang, X. The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks. Sci. Total Environ. 2022, 823, 153806. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Su, Y.; Li, D.; Huang, G.; Chen, W.; Chen, S. Study on the cooling effects of urban parks on surrounding environments using Landsat TM data: A case study in Guangzhou, southern China. Int. J. Remote Sens. 2012, 33, 5889–5914. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Chau, H.W.; Sumaiya, M.M.F.; Wai, C.Y.; Muttil, N.; Jamei, E. Sustainable mitigation strategies for urban heat island effects in urban areas. Sustainability 2023, 15, 10767. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Sodoudi, S. The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Build. Environ. 2022, 217, 109082. [Google Scholar] [CrossRef]
- Zhao, J.S.; Zhang, Y. Proactive policing embedded in two models: A geospatial analysis of proactive activities by patrol officers and COP officers. J. Crim. Justice 2022, 82, 101972. [Google Scholar] [CrossRef]
- Schiller Pinar, I.C. Observatorio de bienestar ambiental del Área Metropolitana de Santiago para el periodo 2016-2021: En función de la temperatura y el vigor vegetacional. Bachelor’s Thesis, Universidad de Chile, Santiago, Chile, 2022. [Google Scholar]
- Blanco, A.J.A.; Quintana, V.M. Dependencia espacial de la tasa municipal de desempleo en Andalucía. Un análisis espacial exploratorio. Empiria Rev. Metodol. Cienc. Soc. 2021, 51, 89–124. [Google Scholar]
- Dai, W.; Chen, X. Entropy of function of uncertain variables. Math. Comput. Model. 2012, 55, 754–760. [Google Scholar] [CrossRef]
- Guo, D. Local entropy map: A nonparametric approach to detecting spatially varying multivariate relationships. Int. J. Geogr. Inf. Sci. 2010, 24, 1367–1389. [Google Scholar] [CrossRef]
- Heisler, G.M.; Brazel, A.J. The urban physical environment: Temperature and urban heat islands. Urban Ecosyst. Ecol. 2010, 55, 29–56. [Google Scholar]
- Salimi, M.; Al-Ghamdi, S.G. Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East. Sustain. Cities Soc. 2020, 54, 101948. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Monteiro, M.V.; Doick, K.J.; Handley, P.; Peace, A. The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban For. Urban Green. 2016, 16, 160–169. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, B.; Chen, G.; Li, J.; Song, C. Influence of park size and its surrounding urban landscape patterns on the park cooling effect. J. Urban Plan. Dev. 2015, 141, A4014002. [Google Scholar] [CrossRef]
- Barradas, V.L.; Miranda, J.A.; Esperón-Rodríguez, M.; Ballinas, M. (Re) Designing Urban Parks to Maximize Urban Heat Island Mitigation by Natural Means. Forests 2022, 13, 1143. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; Xie, G.D.; Odgaard, A.J. Impacts of the microclimate of a large urban park on its surrounding built environment in the summertime. Remote Sens. 2021, 13, 4703. [Google Scholar] [CrossRef]
Category | Category Key | Area (m2) | Percentage (%) | Number of Records per Category |
---|---|---|---|---|
Spaces with protective features | 900 | 9746.9 | 0.01% | 1 |
Spaces in protection categories | 500 | 7,178,264.9 | 10.66% | 31 |
Spaces with reminiscent vegetation | 800 | 1,964,258.0 | 2.92% | 68 |
Green spaces complementary to or linked to the road network | 200 | 9,530,119.8 | 14.16% | 5776 |
Green spaces with urban structure | 1000 | 23,511.1 | 0.03% | 36 |
Fragmented urban green spaces | 700 | 3,354,209.7 | 4.98% | 312 |
Urban facilities with vegetation | 600 | 28,479,055.1 | 42.31% | 3653 |
Urban forestry | 100 | 25,317.6 | 0.04% | 4 |
Parks, groves, and avenues | 400 | 12,669,913.4 | 18.82% | 1538 |
Squares and gardens | 300 | 3,649,563.5 | 5.42% | 315 |
Nursery | 1100 | 427,613.9 | 0.64% | 5 |
TOTAL | 67,311,573.8 | 100.00% | 1173 |
Categories | Entropy | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
# | % | Min–Max | Mean | Median | Min–Max | Mean | Median | |
Positive Linear | 112 | 6.4 | 0.329–0.645 | 0.458 | 0.446 | 0.001–0.078 | 0.015 | 0.004 |
Negative Linear | 305 | 17.3 | 0.333–0.551 | 0.401 | 0.37 | 0.001–0.079 | 0.01 | 0.003 |
Concave | 292 | 16.6 | 0.389–0.559 | 0.456 | 0.442 | 0.001–0.006 | 0.001 | 0.001 |
Convex | 177 | 10 | 0.351–0.564 | 0.464 | 0.462 | 0.001–0.076 | 0.015 | 0.005 |
Undefined Complex | 530 | 30.1 | 0.371–0.645 | 0.504 | 0.499 | 0.001–0.080 | 0.014 | 0.003 |
Not significant | 346 | 19.6 | 0.329–0.645 | 0.446 | 0.432 | 0.081–0.869 | 0.21 | 0.157 |
Total | 1762 | 100 | 0.329–0.645 | 0.458 | 0.446 | 0.001–0.869 | 0.05 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez, J.M.; Santamaría, A.; Avila, L.; Perez-De La Mora, D.A. Using Local Entropy Mapping as an Approach to Quantify Surface Temperature Changes Induced by Urban Parks in Mexico City. Land 2024, 13, 1701. https://doi.org/10.3390/land13101701
Núñez JM, Santamaría A, Avila L, Perez-De La Mora DA. Using Local Entropy Mapping as an Approach to Quantify Surface Temperature Changes Induced by Urban Parks in Mexico City. Land. 2024; 13(10):1701. https://doi.org/10.3390/land13101701
Chicago/Turabian StyleNúñez, Juan Manuel, Andrea Santamaría, Leonardo Avila, and D. A. Perez-De La Mora. 2024. "Using Local Entropy Mapping as an Approach to Quantify Surface Temperature Changes Induced by Urban Parks in Mexico City" Land 13, no. 10: 1701. https://doi.org/10.3390/land13101701
APA StyleNúñez, J. M., Santamaría, A., Avila, L., & Perez-De La Mora, D. A. (2024). Using Local Entropy Mapping as an Approach to Quantify Surface Temperature Changes Induced by Urban Parks in Mexico City. Land, 13(10), 1701. https://doi.org/10.3390/land13101701