Spatiotemporal Pattern Analysis and Prediction of Carbon Storage Based on Land Use and Cover Change: A Case Study of Jiangsu Coastal Cities in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
- Land use and cover change dataset
- Basic Data on the City
- Natural and Socio-Economic Factor Data
2.3. Method
2.3.1. Research Framework
2.3.2. InVEST Model
2.3.3. Carbon Density Adjustment
2.3.4. FLUS Model and Land Use Transition Matrix
- Natural Development Scenario (S1): Continues the development trend of land use in Jiangsu Province before 2020, predicting the total demand area for land use types in 2030 by following natural development patterns.
- Ecological Protection Scenario (S2): Restricts urbanization to direct land use towards ecological protection. The “Jiangsu Province ‘14th Five-Year’ Forestry and Grassland Protection and Development Plan Outline” proposes a target of 24.1% forest coverage by 2025 and 26% by 2030 [31]. Therefore, based on the total land demand under scenario S1 in 2030, considering the structure of ecological, agricultural, and urban land use, the conversion probability for each type of land use is set, with a 20% decrease in the probability of arable land, forestland, and grassland becoming construction land; a 60% increase in the probability of arable land becoming forestland or grassland; a prohibition of water bodies becoming construction land; and the ecological red line area within the region denoting a restricted expansion area.
- Economic Development Scenario (S3): Jiangsu Province has always been at the forefront of urbanization development in China, and it is expected that the possibility of various types of land use becoming construction land will increase. Based on the total demand area for each land type under scenario S1 in 2030, the proportion of forestland, grassland, and water bodies being converted to construction land is increased by 15%, 10%, and 10%, respectively, with a 60% decrease in the possibility of construction land being converted to other types, and free transfer between other types of land use.
2.3.5. Coefficient of Improved Cross-Sensitivity Model
3. Results
3.1. Land Use and Cover Change Situation from 1995 to 2020
3.2. Evolution of Future Land Use Situation Under Three Scenarios
3.3. Carbon Storage Situation from 1995 to 2020
3.4. Future Evolution of Carbon Storage Under Three Scenarios
3.5. Cross-Sensitivity Coefficient Analysis
4. Discussion
4.1. Regional Development and Planning Strategies
4.2. Limitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tylianakis, J.M.; Didham, R.K.; Bascompte, J.; Wardle, D.A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 2008, 11, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, S.; Lu, C. Exploration of China’s net CO2 emissions evolutionary pathways by 2060 in the context of carbon neutrality. Sci. Total Environ. 2022, 831, 154909. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, F.; Ciais, P.; Zhang, H.; Lü, H.; Wang, T.; Chevallier, F.; Liu, Z.; Yuan, W.; Peters, W. Challenges to achieve carbon neutrality of China by 2060: Status and perspectives. Sci. Bull. 2022, 67, 2030–2035. [Google Scholar] [CrossRef] [PubMed]
- Sohi, S.P. Carbon storage with benefits. Science 2012, 338, 1034–1035. [Google Scholar] [CrossRef]
- Bongaarts, J. Intergovernmental panel on climate change special report on global warming of 1.5 °C Switzerland: IPCC, 2018. Popul. Dev. Rev. 2019, 45, 251–252. [Google Scholar] [CrossRef]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Bickle, M.J. Geological carbon storage. Nat. Geosci. 2009, 2, 815–818. [Google Scholar] [CrossRef]
- Shi, G.; Jiang, N.; Yao, L. Land use and cover change during the rapid economic growth period from 1990 to 2010: A case study of Shanghai. Sustainability 2018, 10, 426. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, H.; Kong, L.; Qiao, Y.; Hu, M. An overview of terrestrial ecosystem carbon sink assessment methods towards achieving carbon neutrality in China. Acta Ecol. Sin. 2023, 43, 4294–4307. [Google Scholar]
- Faichia, C.; Tong, Z.; Zhang, J.; Liu, X.; Kazuva, E.; Ullah, K.; Al-Shaibah, B. Using RS data-based CA-Markov model for dynamic simulation of historical and future LUCC in Vientiane, Laos. Sustainability 2020, 12, 8410. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, C.; Zhu, J.; Zhang, Y.; Sun, H.; Kang, H. Spatio-temporal evolution, prediction and optimization of LUCC based on CA-Markov and InVEST models: A case study of Mentougou District, Beijing. Int. J. Environ. Res. Public Health 2022, 19, 2432. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhu, A.X.; Liu, J. Land-use change modeling with cellular automata using land natural evolution unit. Catena 2023, 224, 106998. [Google Scholar] [CrossRef]
- Kahsay, A.; Haile, M.; Gebresamuel, G.; Mohammed, M.; Okolo, C.C. Assessing land use type impacts on soil quality: Application of multivariate statistical and expert opinion-followed indicator screening approaches. Catena 2023, 231, 107351. [Google Scholar] [CrossRef]
- Wang, X.; Ma, B.; Li, D.; Chen, K.; Yao, H. Multi-scenario simulation and prediction of ecological space in Hubei province based on FLUS model. J. Nat. Resour. 2020, 35, 230–242. [Google Scholar]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Zhou, R.; Lin, M.; Gong, J.; Wu, Z. Spatiotemporal heterogeneity and influencing mechanism of ecosystem services in the Pearl River Delta from the perspective of LUCC. J. Geogr. Sci. 2019, 29, 831–845. [Google Scholar] [CrossRef]
- Hou, J.; Chen, J.; Zhang, K.; Zhou, G.; You, H.; Han, X. Temporal and spatial variation characteristics of carbon storage in the source region of the Yellow River based on InVEST and GeoSoS—FLUS models and its response to different future scenarios. Environ. Sci. 2022, 43, 5253–5262. [Google Scholar]
- Bao, G.Y.; Huang, H.; Gao, Y.N.; Wang, D.B. Study on driving mechanisms of land use change in the coastal area of Jiangsu, China. J. Coast. Res. 2017, 79, 104–108. [Google Scholar] [CrossRef]
- Shi, G.; Ye, P.; Ding, L.; Quinones, A.; Li, Y.; Jiang, N. Spatio-temporal patterns of land use and cover change from 1990 to 2010: A case study of Jiangsu province, China. Int. J. Environ. Res. Public Health 2019, 16, 907. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, T.; Yang, S. Carbon emission and its decoupling research of transportation in Jiangsu Province. J. Clean. Prod. 2017, 142, 907–914. [Google Scholar] [CrossRef]
- Yangtze River Delta Science Data Center, National Science and Technology Infrastructure of China. National Earth System Science Data Sharing Infrastructure. 2015. Available online: http://nnu.www.geodata.cn (accessed on 10 May 2024).
- National Bureau of Statistics of the People’s Republic of China. China Statistical Bureau 2023. Available online: http://www.stats.gov.cn (accessed on 14 June 2024).
- Chen, Q.; Ning, Y. Projecting LUCC dynamics and ecosystem services in an emerging urban agglomeration under SSP-RCP scenarios and their management implications. Sci. Total Environ. 2024, 949, 175100. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, J.; Li, Y.; Wu, W. Using the InVEST-PLUS model to predict and analyze the pattern of ecosystem carbon storage in Liaoning Province, China. Remote Sens. 2023, 15, 4050. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z.; Ouyang, Z. Vegetation carbon storage and density of forest ecosystems in China. Chin. J. Appl. Ecol. 2001, 12, 13–16. [Google Scholar]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). Sci. Data Bank 2019, 4, 90–96. [Google Scholar]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Chen, C.; Tao, G.; Shi, J.; Shen, M.; Zhu, Z.H. A lithium-ion battery degradation prediction model with uncertainty quantification for its predictive maintenance. IEEE Trans. Ind. Electron. 2023, 71, 3650–3659. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.R.; Mu, F.Y. Spatial pattern reconstruction of soil organic carbon storage based on CA-Markov: A case study of Pan-Yangtze River Delta region. Resour. Environ. Yangtze Basin 2018, 27, 1565–1575. [Google Scholar]
- Zheng, H.; Yu, F.; Wan, H.; Shi, P.; Wang, H. Land use change in the Yangtze River Economic Belt during 2010 to 2020 and future comprehensive prediction based on Markov and ARIMA models. Photogramm. Eng. Remote Sens. 2024, 90, 345–354. [Google Scholar] [CrossRef]
- Kou, J.; Wang, J.; Ding, J.; Ge, X. Spatial simulation and prediction of land use/land cover in the transnational Ili-Balkhash Basin. Remote Sens. 2023, 15, 3059. [Google Scholar] [CrossRef]
- Chen, X.; Ding, W.; Li, X. Analysis of cross-sensitivity of land use transition and ecosystem service value of urban agglomeration in central Yunnan. Res. Soil Water Conserv. 2022, 29, 233–241. [Google Scholar]
- Tang, T.; Zhou, H.; Han, M. Evolution simulation of carbon sinks in rapid urbanization areas under territorial spatial planning policy: A study on Guiyang. Mod. Urban Res. 2023, 6, 8–16. [Google Scholar]
- Xu, M.; Hu, W. A research on coordination between economy, society and environment in China: A case study of Jiangsu. J. Clean. Prod. 2020, 258, 120641. [Google Scholar] [CrossRef]
- Wang, S.; Hua, G.; Yang, L. Coordinated development of economic growth and ecological efficiency in Jiangsu, China. Environ. Sci. Pollut. Res. 2020, 27, 36664–36676. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Xu, W.; Zhou, Y. Evolution of cultivated land fragmentation and its driving mechanism in rural development: A case study of Jiangsu Province. J. Rural Stud. 2022, 91, 58–72. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, Y.; Wan, Z.; Chen, Z.; Lin, J.; Chen, P.; Sun, W.; Yuan, H.; Zhang, Y. Cross-sensitivity analysis of land use transition and ecological service values in rare earth mining areas in southern China. Scientific Reports 2023, 13, 22817. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Chuai, X.; Yang, H. The impact of land urbanization on carbon dioxide emissions in the Yangtze River Delta, China: A multiscale perspective. Cities 2021, 116, 103275. [Google Scholar] [CrossRef]
- Zhang, M.; Li, P. Analyzing the impact of urbanization on energy consumption in Jiangsu Province. Nat. Hazards 2015, 76, 177–190. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, Y.; Wang, P. Driving effects of urbanization on city-level carbon dioxide emissions: From multiple perspectives of urbanization. Int. J. Urban Sci. 2022, 26, 108–128. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Xiao, L.; Huang, X.J.; Miao, Y.U. Arable Land Use Transitions and Its Response of Ecosystem Services Value Change in Jiangsu Coastal Areas. J. Nat. Resour. 2017, 32, 961–976. [Google Scholar]
- Chuai, X.; Huang, X.; Wang, W.; Wu, C.; Zhao, R. Spatial simulation of land use based on terrestrial ecosystem carbon storage in Coastal Jiangsu, China. Sci. Rep. 2014, 4, 5667. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Fang, C. Integrated land use change related carbon source/sink examination in Jiangsu Province. Land 2021, 10, 1310. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the characteristic spatiotemporal variation in habitat quality using the invest model—A case study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Chen, J.; Kasimu, A.; Reheman, R.; Wei, B.; Han, F.; Zhang, Y. Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model. J. Arid. Land 2024, 16, 852–874. [Google Scholar] [CrossRef]
Organic Carbon Density | Arable Land | Forest | Water Area | Grassland | Construction Area | Unutilized Land |
---|---|---|---|---|---|---|
Above land | 0.54 | 3.98 | 0.23 | 0.81 | 0.18 | 0.11 |
Below land | 0.25 | 0.86 | 0.18 | 0.28 | 0.06 | 0.21 |
Soil | 12.29 | 22.53 | 12.45 | 10.96 | 0.52 | 11.28 |
Dead | 0.38 | 18.39 | 0.01 | 3.17 | 0.02 | 0.01 |
Development Scenario | Land Use Type | Arable Land | Forest | Grassland | Water Area | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|---|
Natural development scenario | Arable land | 1 | 1 | 1 | 1 | 1 | 1 |
Forest | 1 | 1 | 1 | 1 | 1 | 1 | |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | |
Water area | 1 | 1 | 1 | 1 | 1 | 1 | |
Construction land | 1 | 1 | 1 | 1 | 1 | 1 | |
Unutilized land | 1 | 1 | 1 | 1 | 1 | 1 | |
Ecological protection scenario | Arable land | 1 | 1 | 1 | 1 | 1 | 1 |
Forest | 0 | 1 | 1 | 0 | 0 | 0 | |
Grassland | 0 | 1 | 1 | 0 | 0 | 0 | |
Water area | 1 | 1 | 1 | 1 | 1 | 1 | |
Construction land | 1 | 1 | 1 | 1 | 1 | 1 | |
Unutilized land | 1 | 1 | 1 | 1 | 1 | 1 | |
Economic development scenario | Arable land | 1 | 1 | 1 | 1 | 1 | 1 |
Forest | 1 | 1 | 1 | 1 | 1 | 1 | |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | |
Water area | 1 | 1 | 1 | 1 | 1 | 1 | |
Construction land | 0 | 0 | 0 | 0 | 1 | 0 | |
Unutilized land | 1 | 1 | 1 | 1 | 1 | 1 |
Land Use Type | Arable Land | Forest | Grassland | Water Area | Construction Land | Unutilized Land | Sum |
---|---|---|---|---|---|---|---|
Arable land | 20,563 | 107 | 83 | 658 | 3345 | 11 | 24,767 |
Forest | 110 | 134 | 6 | 10 | 51 | 0 | 311 |
Grassland | 268 | 3 | 136 | 261 | 52 | 2 | 722 |
Water area | 511 | 5 | 58 | 823 | 204 | 31 | 1632 |
Construction land | 1814 | 21 | 38 | 665 | 1122 | 1 | 3661 |
Unutilized land | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
Sum | 23,266 | 270 | 321 | 2417 | 4776 | 45 | 31,095 |
Land Use Type | Arable Land | Forest | Grassland | Water Area | Construction Land | Unutilized Land | Sum |
---|---|---|---|---|---|---|---|
Arable land | 21,596 | 22 | 39 | 278 | 1331 | 0 | 23,266 |
Forest | 22 | 187 | 13 | 34 | 14 | 0 | 270 |
Grassland | 2 | 33 | 273 | 5 | 8 | 0 | 321 |
Water area | 229 | 22 | 23 | 2120 | 23 | 0 | 2417 |
Construction land | 1159 | 12 | 19 | 12 | 3574 | 0 | 4776 |
Unutilized land | 0 | 0 | 0 | 0 | 0 | 45 | 45 |
Sum | 23,008 | 276 | 367 | 2449 | 4950 | 45 | 31,095 |
Land Use Type | Arable Land | Forest | Grassland | Water Area | Construction Land | Unutilized Land | Sum |
---|---|---|---|---|---|---|---|
Arable land | 21,781 | 2 | 27 | 241 | 1209 | 6 | 23,266 |
Forest | 0 | 270 | 0 | 0 | 0 | 0 | 270 |
Grassland | 0 | 0 | 321 | 0 | 0 | 0 | 321 |
Water area | 218 | 25 | 12 | 2135 | 21 | 6 | 2417 |
Construction land | 1178 | 84 | 23 | 24 | 3464 | 3 | 4776 |
Unutilized land | 4 | 8 | 5 | 21 | 2 | 5 | 45 |
Sum | 23,181 | 389 | 388 | 2421 | 4696 | 20 | 31,095 |
Land Use Type | Arable Land | Forest | Grassland | Water Area | Construction Land | Unutilized Land | Sum |
---|---|---|---|---|---|---|---|
Arable land | 22,415 | 21 | 14 | 250 | 561 | 5 | 23,266 |
Forest | 44 | 215 | 6 | 1 | 2 | 2 | 270 |
Grassland | 12 | 5 | 257 | 16 | 27 | 4 | 321 |
Water area | 226 | 12 | 9 | 2153 | 15 | 2 | 2417 |
Construction land | 0 | 0 | 0 | 0 | 4776 | 0 | 4776 |
Unutilized land | 3 | 1 | 2 | 3 | 12 | 24 | 45 |
Sum | 22,700 | 254 | 288 | 2423 | 5393 | 37 | 31,095 |
Scenario | Arable Land | Forest | Grassland | Water Area | Construction Land | Unutilized Land | Sum | Total Carbon Storage (Unit: Tg) |
---|---|---|---|---|---|---|---|---|
In 2020 | 23,266 | 270 | 321 | 2417 | 4776 | 45 | 31,095 | 565.93 |
S1 in 2030 | 23,008 | 276 | 367 | 2449 | 4950 | 45 | 31,095 | 563.73 |
S2 in 2030 | 23,181 | 389 | 388 | 2421 | 4696 | 20 | 31,095 | 578.49 |
S3 in 2030 | 22,700 | 254 | 288 | 2423 | 5393 | 37 | 31,095 | 556.64 |
Land Use Type | Arable Land | Forest | Grassland | Water Area | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|
Arable land | 0.0% | 44.4% | −0.9% | 2.7% | 43.5% | 0.0% |
Forest | 0.0% | 2.6% | −1.9% | 3.6% | 0.0% | |
Grassland | 0.0% | 2.7% | 2.2% | 0.0% | ||
Water area | 0.0% | 1.2% | 0.0% | |||
Construction land | 0.0% | 0.0% | ||||
Unutilized land | 0.0% |
Land Use Type | Arable Land | Forest | Grassland | Water Area | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|
Arable land | 0.0% | 56.0% | 3.7% | −1.9% | −14.7% | 0.0% |
Forest | 0.0% | −7.9% | 1.9% | 5.1% | 0.0% | |
Grassland | 0.0% | 0.1% | 0.1% | 0.0% | ||
Water area | 0.0% | −0.5% | 0.0% | |||
Construction land | 0.0% | 0.0% | ||||
Unutilized land | 0.0% |
Land Use Type | Arable Land | Forest | Grassland | Water Area | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|
Arable land | 0.0% | 29.5% | −0.5% | 0.5% | 58.4% | 0.0% |
Forest | 0.0% | 1.6% | 0.0% | 6.2% | 0.0% | |
Grassland | 0.0% | 1.7% | 0.8% | 0.0% | ||
Water area | 0.0% | 1.7% | 0.0% | |||
Construction land | 0.0% | 0.0% | ||||
Unutilized land | 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, G.; Wang, Y.; Zhang, J.; Xu, J.; Chen, Y.; Chen, W.; Liu, J. Spatiotemporal Pattern Analysis and Prediction of Carbon Storage Based on Land Use and Cover Change: A Case Study of Jiangsu Coastal Cities in China. Land 2024, 13, 1728. https://doi.org/10.3390/land13111728
Shi G, Wang Y, Zhang J, Xu J, Chen Y, Chen W, Liu J. Spatiotemporal Pattern Analysis and Prediction of Carbon Storage Based on Land Use and Cover Change: A Case Study of Jiangsu Coastal Cities in China. Land. 2024; 13(11):1728. https://doi.org/10.3390/land13111728
Chicago/Turabian StyleShi, Ge, Yutong Wang, Jingran Zhang, Jinghai Xu, Yu Chen, Wei Chen, and Jiahang Liu. 2024. "Spatiotemporal Pattern Analysis and Prediction of Carbon Storage Based on Land Use and Cover Change: A Case Study of Jiangsu Coastal Cities in China" Land 13, no. 11: 1728. https://doi.org/10.3390/land13111728