Mobilizing Global Change Science for Effective Multi-Actor Governance in the Laguna San Rafael and Guayaneco Biosphere Reserve
Abstract
:1. Introduction
1.1. Knowledge–Action Networks: Connecting Science, Management, and Governance
1.2. Case Study Context
2. Materials and Methods
2.1. Research Purpose
- Characterizing the evolution of GC research over the past two decades (2000–2021), within the LSRGBR.
- Characterizing the evolution of KA content related to GC research published over the past two decades (2000–2021), within the LSRGBR.
- Exploring how LSRGBR GC science can be applied to improve governance and management goals.
2.2. Research Design and Justification
2.2.1. Data Collection and Organization
2.2.2. Identification and Analysis of the LSRGBR Knowledge–Action Context
3. Results
3.1. Characterization of the LSRGBR Global Change Scientific Context
3.2. The Potential for Global Change Knowledge to Inform LSRGBR Action, Governance, and Management Goals
3.3. Knowledge Mobilization Potential in the Context of the Laguna San Rafael and Guayaneco Biosphere Reserve 2018–2024 Action Plan Objectives
4. Discussion
4.1. A Closer Look at Knowledge-Action Content and Evolution
4.2. Mobilizing Global Change Science for Effective Governance Action in the Laguna San Rafael and Guayaneco Biosphere Reserve
- Additional analysis of the existing dataset for this study could concentrate on authors and collaborators that have been involved in LSRGBR research, with the goal of identifying and prioritizing scientific contributors for a future KA network.
- Expanding the current review beyond the traditional boundaries of academic literature to include local expert contributions, plans, strategies, and technical reports. This would enable a wider consideration of place-based knowledge and help identify ways to increase synergies across sectors.
- Strengthening the case study we have developed with primary data collection through interviews, workshops, and a purposeful focus on understanding a wider variety of perspectives and ways of knowing.
- Evaluating how local, national, and international policy legislates and incentivizes human activities and GC for the LSRGBR. Purposeful analysis of research–policy–action links could help transform and focus LSRGBR governance interventions to expand the potential for transformative sustainability change [5,7].
- Directed content analysis can expand beyond the existing 2018–2024 action plan to consider other sustainability related models, like the GBF, the transformative change model advanced by IPBES [7,11], or the SDGs, which may highlight strategic considerations for future LSRGBR research agendas and action plans.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, X.; Van Der Leeuw, S.; O’Brien, K.; Berkhout, F.; Biermann, F.; Brondizio, E.S.; Cudennec, C.; Dearing, J.; Duraiappah, A.; Glaser, M.; et al. Plausible and Desirable Futures in the Anthropocene: A New Research Agenda. Glob. Environ. Chang. 2016, 39, 351–362. [Google Scholar] [CrossRef]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The Trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Steffen, W.; Persson, Å.; Deutsch, L.; Zalasiewicz, J.; Williams, M.; Richardson, K.; Crumley, C.; Crutzen, P.; Folke, C.; Gordon, L.; et al. The Anthropocene: From Global Change to Planetary Stewardship. AMBIO 2011, 40, 739–761. [Google Scholar] [CrossRef] [PubMed]
- Shoshitaishvili, B. From Anthropocene to Noosphere: The Great Acceleration. Earths Future 2021, 9, e2020EF001917. [Google Scholar] [CrossRef]
- Díaz, S.; Settele, J.; Brondizio, E.S.; Ngo, H.T.; Guèze, M.; Agard, A.; Arneth, P.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Service; IPBES Secretariat: Bonn, Germany, 2019; ISBN 978-3-947851-13-3. [Google Scholar]
- Gale, T.; Báez Montenegro, A. Toward Understanding Research Evolution on Indirect Drivers of Ecosystem Change along the Interface of Protected and Non-Protected Lands. Sustainability 2024, 16, 7572. [Google Scholar] [CrossRef]
- Brondízio, E.S.; Settele, J.; Díaz, S.; Ngo, H.T. (Eds.) The Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2019; ISBN 978-3-947851-20-1. [Google Scholar]
- Hindsley, P.; Yoskowitz, D. Global Change—Local Values: Assessing Tradeoffs for Coastal Ecosystem Services in the Face of Sea Level Rise. Glob. Environ. Chang. 2020, 61, 102039. [Google Scholar] [CrossRef]
- Convention on Biological Diversity. 15/4. Kunming-Montreal Global Biodiversity Framework; Secretariat of the Convention on Biological Diversity (SCBD): Montreal, QC, Canada, 2022; p. 15. [Google Scholar]
- Millennium Ecosystem Assessment (Program) (Ed.). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 978-1-59726-040-4. [Google Scholar]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—Connecting Nature and People. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef]
- Kates, R.W. What Kind of a Science Is Sustainability Science? Proc. Natl. Acad. Sci. USA 2011, 108, 19449–19450. [Google Scholar] [CrossRef]
- Convention on Biological Diversity. 15/8. Capacity-Building and Development and Technical and Scientific Cooperation; Secretariat of the Convention on Biological Diversity (SCBD): Montreal, QC, Canada, 2022; p. 23. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). A New Roadmap for the Man and the Biosphere (MAB) Programme and Its World Network of Biosphere Reserves: MAB Strategy (2015–2025), Lima Action Plan (2016–2025), Lima Declaration; UNESCO Man and the Biosphere Program: Paris, France, 2017; p. 55. [Google Scholar]
- Dudley, N.; Stolton, S. Best Practice in Delivering the 30 × 30 Target: Protected Areas and Other Effective Area-Based Conservation Measures; The Nature Conservancy Equilibrium Research: London, UK, 2022. [Google Scholar]
- Pool-Stanvliet, R.; Coetzer, K. The Scientific Value of UNESCO Biosphere Reserves. S. Afr. J. Sci. 2020, 116, 1–4. [Google Scholar] [CrossRef]
- Moreira Muñoz, A.; García, J.L.; Sagredo, E. Reserva de la Biosfera Laguna San Rafael: Sitio de importancia global para la investigación del cambio climático. In Reservas de la Biosfera de Chile: Laboratorios para la Sustentabilidad; Serie GEOlibros; Instituto de Geografía UC Universität Innsbruck: Santiago, Chile; Innsbruck, Austria, 2014; pp. 210–229. ISBN 978-956-14-1390-0. [Google Scholar]
- Alonso-Yañez, G.; Davidsen, C. Conservation Science Policies Versus Scientific Practice: Evidence from a Mexican Biosphere Reserve. Hum. Ecol. Rev. 2014, 20, 3–29. [Google Scholar] [CrossRef]
- Baumgartner, J.; Kuntner, E.; Melchert, J.; Misera, J.; Sauerwein-Schlosser, C.; Schleyer, C.; Unthan, N. Biosphere Reserves as Drivers of Regional Governance? Communication Challenges within the UNESCO Biosphere Reserves Engiadina Val Müstair (Switzerland) and Schwäbische Alb (Germany). Ecomont J. Prot. Mt. Areas Res. 2022, 15, 4–10. [Google Scholar] [CrossRef]
- Brenner, L.; Job, H. Challenges to Actor-oriented Environmental Governance: Examples from Three Mexican Biosphere Reserves. Tijdschr. Voor Econ. Soc. Geogr. 2012, 103, 1–19. [Google Scholar] [CrossRef]
- Muñoz-Erickson, T.A.; Cutts, B.B. Structural Dimensions of Knowledge-Action Networks for Sustainability. Curr. Opin. Environ. Sustain. 2016, 18, 56–64. [Google Scholar] [CrossRef]
- Shrivastava, P.; Raivio, K.; Kasuga, F.; Tewksbury, J.; Haines, A.; Daszak, P. Future Earth Health Knowledge-Action Network. Public Health Rev. 2016, 37, 25. [Google Scholar] [CrossRef]
- Barraclough, A.D.; Reed, M.G.; Coetzer, K.; Price, M.F.; Schultz, L.; Moreira-Muñoz, A.; Måren, I. Global Knowledge–Action Networks at the Frontlines of Sustainability: Insights from Five Decades of Science for Action in UNESCO ’s World Network of Biosphere Reserves. People Nat. 2023, 5, 1430–1444. [Google Scholar] [CrossRef]
- Weyland, F.; Mastrangelo, M.E.; Auer, A.D.; Barral, M.P.; Nahuelhual, L.; Larrazábal, A.; Parera, A.F.; Berrouet Cadavid, L.M.; López-Gómez, C.P.; Villegas Palacio, C. Ecosystem Services Approach in Latin America: From Theoretical Promises to Real Applications. Ecosyst. Serv. 2019, 35, 280–293. [Google Scholar] [CrossRef]
- Dawes, S.S.; Cresswell, A.M.; Pardo, T.A. From “Need to Know” to “Need to Share”: Tangled Problems, Information Boundaries, and the Building of Public Sector Knowledge Networks. Public Adm. Rev. 2009, 69, 392–402. [Google Scholar] [CrossRef]
- Nguyen, V.M.; Young, N.; Cooke, S.J. A Roadmap for Knowledge Exchange and Mobilization Research in Conservation and Natural Resource Management. Conserv. Biol. 2017, 31, 789–798. [Google Scholar] [CrossRef]
- Pontificia Universidad Católica de Chile. Pontificia Universidad Católica de Chile Reserva de La Biosfera Parques Nacionales Laguna San Rafael y El Guayaneco: Expediente Para Su Actualización y Zonificación; UNESCO Man and the Biosphere Program: Paris, France, 2018; p. 79. [Google Scholar]
- Chilean National Statistics Institute (INE). Ciudades, Pueblos, Aldeas y Caseríos 2019; Chilean National Statistics Institute (INE): Santiago, Chile, 2019; p. 171. [Google Scholar]
- Chilean National Congress. Crea el Servicio de Biodiversidad y Áreas Protegidas y el Sistema Nacional de Áreas Protegidas; Biblioteca del Congreso Nacional de Chile: Valparaiso, Chile, 2023; p. 71. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization. UNESCO Headquarters, Paris, Room II (Fontenoy Building): Final Report; UNESCO Man and the Biosphere Program: Paris, France, 2019; p. 104. [Google Scholar]
- Pontificia Universidad Católica de Chile. Pontificia Universidad Católica de Chile Lineamientos Del Plan de Gestión, Reserva de La Biosfera Laguna San Rafael, Región de Aysén, Chile; UNESCO Man and the Biosphere Program: Paris, France, 2018; p. 18. [Google Scholar]
- Harrison, H.; Birks, M.; Franklin, R.; Mills, J. Case Study Research: Foundations and Methodological Orientations. Forum Qual. Sozialforschung 2017, 18, 1. [Google Scholar] [CrossRef]
- Crowe, S.; Cresswell, K.; Robertson, A.; Huby, G.; Avery, A.; Sheikh, A. The Case Study Approach. BMC Med. Res. Methodol. 2011, 11, 100. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research: Design and Methods, 5th ed.; SAGE: Los Angeles, CA, USA, 2014; ISBN 978-1-4522-4256-9. [Google Scholar]
- Grant, M.J.; Booth, A. A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Huelin, R.; Iheanacho, I.; Payne, K.; Sandman, K. What’s in a Name? Systematic and Non-Systematic Literature Reviews, and Why the Distinction Matters. Evid. Forum 2015, 34–37. Available online: https://www.evidera.com/wp-content/uploads/2015/06/Whats-in-a-Name-Systematic-and-Non-Systematic-Literature-Reviews-and-Why-the-Distinction-Matters.pdf (accessed on 10 September 2024).
- Bourlon, F.; Gale, T.; Adiego, A.; Álvarez-Barra, V.; Salazar, A. Grounding Sustainable Tourism in Science—A Geographic Approach. Sustainability 2021, 13, 7455. [Google Scholar] [CrossRef]
- Gale, T.; Adiego, A.; Ednie, A.; Beeftink, K.; Báez, A. A Systematized Spatial Review of Global Protected Area Soundscape Research. Biodivers. Conserv. 2022, 31, 2945–2964. [Google Scholar] [CrossRef]
- UNGEGN. Toponymy Training Manual; United Nations Group of Experts on Geographical Names (UNGEGN): New York, NY, USA, 2017; p. 218. [Google Scholar]
- Gale, T.; Ednie, A.; Beeftink, K. Worldviews, Levels of Consciousness, and the Evolution of Planning Paradigms in Protected Areas. J. Sustain. Tour. 2019, 27, 1609–1633. [Google Scholar] [CrossRef]
- Graneheim, U.H.; Lindgren, B.-M.; Lundman, B. Methodological Challenges in Qualitative Content Analysis: A Discussion Paper. Nurse Educ. Today 2017, 56, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.F.; Shannon, S.E. Three Approaches to Qualitative Content Analysis. Qual. Health Res. 2005, 15, 1277–1288. [Google Scholar] [CrossRef]
- Nowell, L.S.; Norris, J.M.; White, D.E.; Moules, N.J. Thematic Analysis: Striving to Meet the Trustworthiness Criteria. Int. J. Qual. Methods 2017, 16, 160940691773384. [Google Scholar] [CrossRef]
- Rucks-Ahidiana, Z.; Bierbaum, A.H. Qualitative Spaces: Integrating Spatial Analysis for a Mixed Methods Approach. Int. J. Qual. Methods 2015, 14, 92–103. [Google Scholar] [CrossRef]
- Archibald, M.M. Investigator Triangulation: A Collaborative Strategy with Potential for Mixed Methods Research. J. Mix. Methods Res. 2016, 10, 228–250. [Google Scholar] [CrossRef]
- Gale, T.; Ednie, A.; Beeftink, K. Acceptability and Appeal: How Visitors’ Perceptions of Sounds Can Contribute to Shared Learning and Transdisciplinary Protected Area Governance. J. Outdoor Recreat. Tour. 2021, 35, 100414. [Google Scholar] [CrossRef]
- Aylwin, J.; Arce, L.; Guerra, F.; Nuñez, D.; Álvarez, R.; Mansilla, P.; Alday, D.; Caro, L.; Chiguay, C.; Huencoy, C. Conservación y Pueblos Indígenas En La Patagonia Chilena. In Conservación de la Patagonia Chilena: Evaluación del Conocimiento, Oportunidades y Desafíos; Castilla, J.C., Armesto, J.J., Martínez-Harms, M.J., Eds.; Ediciones Universidad Católica: Santiago, Chile, 2021; pp. 495–531. ISBN 978-956-14-2821-8. [Google Scholar]
- Barcaza, G.; Aniya, M.; Matsumoto, T.; Aoki, T. Satellite-Derived Equilibrium Lines in Northern Patagonia Icefield, Chile, and Their Implications to Glacier Variations. Arct. Antarct. Alp. Res. 2009, 41, 174–182. [Google Scholar] [CrossRef]
- Bórquez-Reyes, R.; Bourlon, F.; Moreno-Escobedo, M. El Turismo Científico y Su Influencia En La Comunidad Local: El Estudio de Caso de La Red de Turismo Científico En Aysén, Chile. Tur. Desarro. 2019, 12, 1–14. [Google Scholar]
- Bourlon, F. La Géographie Esthétique de Douglas Tompkins, Une Utopie Éco-Philanthropique En Patagonie. Études Caribéennes 2017, 37, 1–21. [Google Scholar] [CrossRef]
- Bourlon, F. Destinos Turísticos de Naturaleza en un Contexto de Crisis Sanitaria Global. Perspectivas de Actores, Oportunidades y Desafíos, el Caso de la Región de Aysén, Chile. Gestión Turística 2020, 33, 63–93. [Google Scholar] [CrossRef]
- Bourlon, F. La Ciencia Como Recurso Para El Desarrollo Turístico Sostenible de Los Archipiélagos Patagónicos. PASOS. Rev. Tur. Patrim. Cult. 2020, 18, 795–810. [Google Scholar] [CrossRef]
- Bourlon, F. Quel Tourisme Pour Les Confins de Nature Dans Un Monde En Crise? Perspectives Depuis La Patagonie Chilienne. Téoros: Rev. Rech. Tour. 2021, 39. [Google Scholar] [CrossRef]
- Braun, M.H.; Malz, P.; Sommer, C.; Farías-Barahona, D.; Sauter, T.; Casassa, G.; Soruco, A.; Skvarca, P.; Seehaus, T.C. Constraining Glacier Elevation and Mass Changes in South America. Nat. Clim Change 2019, 9, 130–136. [Google Scholar] [CrossRef]
- Collao-Barrios, G.; Gillet-Chaulet, F.; Favier, V.; Casassa, G.; Berthier, E.; Dussaillant, I.; Mouginot, J.; Rignot, E. Ice Flow Modelling to Constrain the Surface Mass Balance and Ice Discharge of San Rafael Glacier, Northern Patagonia Icefield. J. Glaciol. 2018, 64, 568–582. [Google Scholar] [CrossRef]
- Dussaillant, A.; Benito, G.; Buytaert, W.; Carling, P.; Meier, C.; Espinoza, F. Repeated Glacial-Lake Outburst Floods in Patagonia: An Increasing Hazard? Nat. Hazards 2010, 54, 469–481. [Google Scholar] [CrossRef]
- Dussaillant, A.; Buytaert, W.; Meier, C.; Espinoza, F. Hydrological Regime of Remote Catchments With Extreme Gradients Under Accelerated Change: The Baker Basin in Patagonia. Hydrol. Sci. J. 2012, 57, 1530–1542. [Google Scholar] [CrossRef]
- Fernández, R.A. Variaciones Recientes de Glaciares Ubicados Entre 41° y 49° de Latitud Sur y Su Relación Con Cambios Climáticos; Título de Geógrafo; Universidad de Chile: Santiago, Chile, 2003. [Google Scholar]
- Fretwell, P.T.; Jackson, J.A.; Ulloa Encina, M.J.; Häussermann, V.; Perez Alvarez, M.J.; Olavarría, C.; Gutstein, C.S. Using Remote Sensing to Detect Whale Strandings in Remote Areas: The Case of Sei Whales Mass Mortality in Chilean Patagonia. PLoS ONE 2019, 14, e0222498. [Google Scholar] [CrossRef]
- Hennicke Laporte, K.M.; Davinson Pacheco, L.G. Conflictividad Ambiental En Botaderos Mineros de Comunidades Del Lago General Carrera. Rev. Geogr. Norte Gd. 2021, 80, 209–225. [Google Scholar] [CrossRef]
- Iribarren Anacona, P.; Mackintosh, A.; Norton, K. Reconstruction of a Glacial Lake Outburst Flood (GLOF) in the Engaño Valley, Chilean Patagonia: Lessons for GLOF Risk Management. Sci. Total Environ. 2015, 527, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, J.; McCoy, S.W.; McGrath, D.; Nimick, D.A.; Fahey, M.; O’kuinghttons, J.; Friesen, B.A.; Leidich, J. Hydrologic and Geomorphic Changes Resulting from Episodic Glacial Lake Outburst Floods: Rio Colonia, Patagonia, Chile. Geophys. Res. Lett. 2017, 44, 854–864. [Google Scholar] [CrossRef]
- Koppes, M.; Conway, H.; Rasmussen, L.A.; Chernos, M. Deriving Mass Balance and Calving Variations from Reanalysis Data and Sparse Observations, Glaciar San Rafael, Northern Patagonia, 1950–2005. Cryosphere 2011, 5, 791–808. [Google Scholar] [CrossRef]
- Lafon, A.; Sánchez-Jardón, L. Laboratorio Abierto de Ciencias Subantárticas: Macroalgas Del Litoral de Aysén; Ediciones Universidad de Magallanes: Coyhaique, Chile, 2021; ISBN 978-956-7189-98-4. [Google Scholar]
- Maas, H.G.; Mulsow, C.; Wendt, A.; Casassa, G. Pilot Studies with a Photogrammetric Glacier Lake Outburst Flood Early Warning System. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 523–527. [Google Scholar] [CrossRef]
- Madriz, R.I.; Sepúlveda, J.; Cole, M.; Sánchez-Jardón, L. La Perla de los Andes, Andiperla: El Dragón de la Patagonia: Laboratorio Abierto de Ciencias Subantárticas, 1st ed.; Ediciones Universidad de Magallanes: Coyhaique, Chile, 2021; ISBN 978-956-7189-99-1. [Google Scholar]
- Mansilla, C.A.; Domínguez, E.; Mackenzie, R.; Hoyos-Santillan, J.; Henríquez, J.M.; Aravena, J.C.; Villa-Martínez, R. Peatlands in Chilean Patagonia: Distribution, Biodiversity, Ecosystem Services, and Conservation. In Conservation in Chilean Patagonia; Castilla, J.C., Armesto Zamudio, J.J., Martínez-Harms, M.J., Tecklin, D., Eds.; Integrated Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 19, pp. 153–174. ISBN 978-3-031-39407-2. [Google Scholar]
- Mardones, M.; Aguayo, M.; Smith, E.; Ruiz, P. Retroceso Glacial Reciente En El Campo de Hielo Norte, Región de Aysén, Chile: Relación Con Variaciones Climáticas. Rev. Geogr. Norte Gd. 2018, 69, 121–147. [Google Scholar] [CrossRef]
- Medel Santibáñez, P.A. Proyecto de Plaza-Embarcadero En Caleta Tortel, Región de Aysén, Patagonia de Chile. Rev. Urban. 2007, 9, 84–101. [Google Scholar] [CrossRef]
- Mulsow, C.; Koschitzki, R.; Maas, H.-G. Photogrammetric Monitoring of Glacier Margin Lakes. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 6, 1–6. [Google Scholar] [CrossRef]
- Quiroga, E.; Ortiz, P.; Gerdes, D.; Reid, B.; Villagran, S.; Quiñones, R. Organic Enrichment and Structure of Macrobenthic Communities in the Glacial Baker Fjord, Northern Patagonia, Chile. J. Mar. Biol. Ass. 2012, 92, 73–83. [Google Scholar] [CrossRef]
- Quiroga, E.; Ortiz, P.; Reid, B.; Gerdes, D. Classification of the Ecological Quality of the Aysen and Baker Fjords (Patagonia, Chile) Using Biotic Indices. Mar. Pollut. Bull. 2013, 68, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Rozzi, R.; Rosenfeld, S.; Armesto, J.J.; Mansilla, A.; Nuñez-Ávila, M.; Massardo, F. Conexiones Ecológicas a Través de La Interfaz Marino-Terrestre En La Patagonia Chilena. In Conservación de la Patagonia Chilena: Evaluación del Conocimiento, Oportunidades y Desafíos; Castilla, J.C., Armesto, J.J., Martínez-Harms, M.J., Eds.; Ediciones Universidad Católica: Santiago, Chile, 2021; pp. 391–425. ISBN 978-956-14-2821-8. [Google Scholar]
- Semmens, K.; Ramage, J. Melt Patterns and Dynamics in Alaska and Patagonia Derived from Passive Microwave Brightness Temperatures. Remote Sens. 2014, 6, 603–620. [Google Scholar] [CrossRef]
- Teillier, S.; Marticorena, C. Riqueza Florística Del Parque Nacional Laguna San Rafael, XI Región, Chile. Boletín Mus. Nac. Hist. Nat. 2002, 51, 43–73. [Google Scholar] [CrossRef]
- Ulloa, H.; Mazzorana, B.; Batalla, R.J.; Jullian, C.; Iribarren-Anacona, P.; Barrientos, G.; Reid, B.; Oyarzun, C.; Schaefer, M.; Iroumé, A. Morphological Characterization of a Highly-Dynamic Fluvial Landscape: The River Baker (Chilean Patagonia). J. South Am. Earth Sci. 2018, 86, 1–14. [Google Scholar] [CrossRef]
- Vandekerkhove, E. Impact of Climate Change on the Occurrence of Late Holocene Glacial Lake Outburst Floods in Patagonia: A Sediment Perspective; Ghent University: Ghent, Belgium, 2021. [Google Scholar]
- Vandekerkhove, E.; Bertrand, S.; Mauquoy, D.; McWethy, D.; Reid, B.; Stammen, S.; Saunders, K.; Torrejón, F. Neoglacial Increase in High-Magnitude Glacial Lake Outburst Flood Frequency, Upper Baker River, Chilean Patagonia (47 °S). Quat. Sci. Rev. 2020, 248, 1–14. [Google Scholar] [CrossRef]
- Wilson, R.; Harrison, S.; Reynolds, J.; Hubbard, A.; Glasser, N.F.; Wündrich, O.; Iribarren Anacona, P.; Mao, L.; Shannon, S. The 2015 Chileno Valley Glacial Lake Outburst Flood, Patagonia. Geomorphology 2019, 332, 51–65. [Google Scholar] [CrossRef]
- Valdovinos, C.; Kiessling, A.; Mardones, M.; Moya, C.; Oyanedel, A.; Salvo, J.; Olmos, V.; Parra, Ó. Distribución de macroinvertebrados (Plecoptera y Aeglidae) en ecosistemas fluviales de la Patagonia chilena: ¿Muestran señales biológicas de la evolución geomorfológica postglacial? Rev. Chil. Hist. Nat. 2010, 83, 267–287. [Google Scholar] [CrossRef]
- Vargas, C.A.; Martinez, R.A.; San Martin, V.; Aguayo, M.; Silva, N.; Torres, R. Allochthonous Subsidies of Organic Matter across a Lake–River–Fjord Landscape in the Chilean Patagonia: Implications for Marine Zooplankton in Inner Fjord Areas. Cont. Shelf Res. 2011, 31, 187–201. [Google Scholar] [CrossRef]
- Leon, C.; Campos, V.; Urrutia, R.; Mondaca, M.-A. Metabolic and Molecular Characterization of Bacterial Community Associated to Patagonian Chilean Oligotrophic-Lakes of Quaternary Glacial Origin. World J. Microbiol. Biotechnol. 2012, 28, 1511–1521. [Google Scholar] [CrossRef]
- Araneda, S.; Sierra, M. Las Dinámicas Territoriales Naturales como Articuladores del Espacio e Imagen Urbana: Coyhaique y Cochrane XI Región de Aysén. AUS 2013, 13, 11–14. [Google Scholar] [CrossRef]
- Romero Toledo, H. Agua, Poder y Discursos: Conflictos Socio-territoriales por la Construcción de Centrales Hidroeléctricas en la Patagonia Chilena. Anu. Estud. Am. 2009, 66, 81–103. [Google Scholar] [CrossRef]
- Segura, P.; Bourlon, F. Represas En Aysén: ¿Traba o Trampolín Para El Desarrollo Turístico Regional? Soc. Hoy 2011, 20, 145–157. [Google Scholar]
- Inostroza Villanueva, G.; Bourlon, F.; Gale-Detrich, T.; Blair, H. Exploring Social Representations of Nature-Based Tourism, Development Conflict, and Sustainable Development Futures in Chilean Patagonia. In Tourism and Conservation-based Development in the Periphery; Gale-Detrich, T., Ednie, A., Bosak, K., Eds.; Natural and Social Sciences of Patagonia; Springer International Publishing: Cham, Switzerland, 2023; pp. 229–261. ISBN 978-3-031-38047-1. [Google Scholar]
- Sandoval, V.; Ramírez, C.; San Martín, C.; Vidal, O.; Álvarez, M.; Marticorena, A.; Pérez, Y. Diversidad Vegetal en las Cuencas de los Ríos Baker y Pascua (Aisén, Patagonia Chilena). Bosque Valdivia 2016, 37, 243–253. [Google Scholar] [CrossRef]
- Montes, R.M.; Quiñones, R.A. Long-Range Dependence in the Runoff Time Series of the Most Important Patagonian River Draining to the Pacific Ocean. N. Z. J. Mar. Freshw. Res. 2018, 52, 264–283. [Google Scholar] [CrossRef]
- Bañales-Seguel, C.; Salazar, A.; Mao, L. Hydro-Morphological Characteristics and Recent Changes of a Nearly Pristine River System in Chilean Patagonia: The Exploradores River Network. J. South Am. Earth Sci. 2020, 98, 102444. [Google Scholar] [CrossRef]
- Piper, F.I. Decoupling between Growth Rate and Storage Remobilization in Broadleaf Temperate Tree Species. Funct. Ecol. 2020, 34, 1180–1192. [Google Scholar] [CrossRef]
- Cornejo, P.; Guerrero, N.M.; Montes, R.M.; Quiñones, R.A.; Sepúlveda, H.H. Hydrodynamic Effect of Biofouling in Fish Cage Aquaculture Netting. Aquaculture 2020, 526, 735367. [Google Scholar] [CrossRef]
- Meerhoff, E.; Castro, L.R.; Tapia, F.J.; Pérez-Santos, I. Hydrographic and Biological Impacts of a Glacial Lake Outburst Flood (GLOF) in a Patagonian Fjord. Estuaries Coasts 2019, 42, 132–143. [Google Scholar] [CrossRef]
- Gale-Detrich, T.; Sánchez Jardón, L.; Adiego, A.; Rozzi, R.; Maldonado, P.; Navarrete Almonacid, M.; Coloma Zapata, J.; Hernández Soto, D.; Mora Chepo, M.; Cancino Salas, R.; et al. Catalyzing Holistic Conservation-Based Development Through Ethical Travel Experiences Rooted in the Bioculture of Patagonia’s Subantarctic Natural Laboratories. In Tourism and Conservation-based Development in the Periphery; Gale-Detrich, T., Ednie, A., Bosak, K., Eds.; Natural and Social Sciences of Patagonia; Springer International Publishing: Cham, Switzerland, 2023; pp. 427–461. ISBN 978-3-031-38047-1. [Google Scholar]
- Andrés Adiego, A.; Gale, T. Mobilizing Global Change Science for Effective Governance Action in the Laguna San Rafael y el Guayaneco Biosphere Reserve. Mendeley Data 2024, V1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gale, T.; Adiego, A.; Bourlon, F.; Salazar, A. Mobilizing Global Change Science for Effective Multi-Actor Governance in the Laguna San Rafael and Guayaneco Biosphere Reserve. Land 2024, 13, 1739. https://doi.org/10.3390/land13111739
Gale T, Adiego A, Bourlon F, Salazar A. Mobilizing Global Change Science for Effective Multi-Actor Governance in the Laguna San Rafael and Guayaneco Biosphere Reserve. Land. 2024; 13(11):1739. https://doi.org/10.3390/land13111739
Chicago/Turabian StyleGale, Trace, Andrés Adiego, Fabien Bourlon, and Alexandra Salazar. 2024. "Mobilizing Global Change Science for Effective Multi-Actor Governance in the Laguna San Rafael and Guayaneco Biosphere Reserve" Land 13, no. 11: 1739. https://doi.org/10.3390/land13111739
APA StyleGale, T., Adiego, A., Bourlon, F., & Salazar, A. (2024). Mobilizing Global Change Science for Effective Multi-Actor Governance in the Laguna San Rafael and Guayaneco Biosphere Reserve. Land, 13(11), 1739. https://doi.org/10.3390/land13111739