A Method to Determine the Optimal Period for Field-Scale Yield Prediction Using Sentinel-2 Vegetation Indices
Abstract
:1. Introduction
1.1. Challenges and Limitations in Yield Prediction Models
1.2. Performance of Field-Scale Models and Role of Sentinel-2
1.3. Importance of Timing in Satellite-Based Yield Forecasting
1.4. Aim of the Study
2. Materials and Methods
2.1. Study Area, Data Collection and Preprocessing
2.2. Cloud Detection and Atmospheric Conditions
2.3. NDVI-Based Clear Pixel Procedure (NDVI-CPP)
2.4. Optimal Yield Forecast Period Determination
3. Results
3.1. Optimal Cloud Probability Threshold
3.2. Optimal NDVI Reference Period
- (a)
- The best yield–NDVI correlation can be associated with the stem elongation phase;
- (b)
- The timing of this phase cannot be predicted based solely on long-term analysis (e.g., 10 years or more). Instead, field-scale analyses over shorter time periods are required to account for any more rapid interannual variations in air temperature.
4. Discussion
5. Conclusions
- The optimal cloud probability threshold;
- The optimal period for yield prediction.
- Different space–time intervals;
- Other types of crops;
- Other variable-threshold cloud mask collections;
- A different MVC time (15 days, 3 weeks, 6 weeks and so on);
- No (or any other) time-based composite technique (like MVC).
- 6.
- For any Vegetation Index (VI).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | Calculated as the mean of the individual FmMVC values; e.g.: MEANJAN-FEB = (FmMVCJAN + FmMVCFEB)/2. |
References
- Sargun, K.; Mohan, S. Modeling the crop growth-a review. Mausam 2020, 71, 103–114. [Google Scholar]
- Darra, N.; Anastasiou, E.; Kriezi, O.; Lazarou, E.; Kalivas, D.; Fountas, S. Can Yield Prediction Be Fully Digitilized? A Systematic Review. Agronomy 2023, 13, 2441. [Google Scholar] [CrossRef]
- Chang, Y.; Latham, J.; Licht, M.; Wang, L. A data-driven crop model for maize yield prediction. Commun. Biol. 2023, 6, 439. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Pradhan, B.; Gite, S.; Chakraborty, S. Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review. Remote Sens. 2023, 15, 2014. [Google Scholar] [CrossRef]
- Wallach, D.; Makowski, D.; Jones, J.W.; Brun, F. Working with Dynamic Crop Models, 3rd ed.; Academic Press: London, UK, 2018; pp. 3–43. [Google Scholar] [CrossRef]
- Wallach, D.; Thorburn, P.; Asseng, S.; Challinor, A.J.; Ewert, F.; Jones, J.W.; Rotter, R.; Ruane, A. Multimodel ensembles improve predictions of crop–environment–management interactions. Glob. Chang. Biol. 2018, 24, 5072–5083. [Google Scholar] [CrossRef] [PubMed]
- Schauberger, B.; Jägermeyr, J.; Gornott, C. A systematic review of local to regional yield forecasting approaches and frequently used data resources. Eur. J. Agron. 2020, 120, 126153. [Google Scholar] [CrossRef]
- Azzari, G.; Jain, M.; Lobell, D.B. Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries. Remote Sens. Environ. 2017, 202, 129–141. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Cheng, E.; Zhang, B.; Peng, D.; Zhong, L.; Yu, L.; Liu, Y.; Xiao, C.; Li, C.; Li, X.; Chen, Y.; et al. Wheat yield estimation using remote sensing data based on machine learning approaches. Front. Plant Sci. 2022, 13, 1090970. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, H.; Zhong, R.; Xu, J.; Xu, J.; Huang, J.; Wang, S.; Ying, Y.; Lin, T. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US Corn Belt at the county level. Agric. For. Meteorol. 2020, 284, 107872. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Archontoulis, S.V. Forecasting Corn Yield with Machine Learning Ensembles. Front. Plant Sci. 2020, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- Wolanin, A.; Mateo-García, G.; Camps-Valls, G.; Gómez-Chova, L.; Meroni, M.; Duveiller, G.; Liangzhi, Y.; Guanter, L. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environ. Res. Lett. 2020, 15, 024019. [Google Scholar] [CrossRef]
- Meraj, G.; Kanga, S.; Ambadkar, A.; Kumar, P.; Singh, S.K.; Farooq, M.; Johnson, B.A.; Rai, A.; Sahu, N. Assessing the yield of wheat using satellite remote sensing-based machine learning algorithms and simulation modeling. Remote Sens. 2022, 14, 3005. [Google Scholar] [CrossRef]
- Dhakar, R.; Sehgal, V.; Chakraborty, D.; Sahoo, R.; Mukherjee, J.; Ines, A.; Naresh Kumar, S.; Shirsath, P.; Baidya Roy, S. Field scale spatial wheat yield forecasting system under limited field data availability by integrating crop simulation model with weather forecast and satellite remote sensing. Agric. Syst. 2022, 195, 103299. [Google Scholar] [CrossRef]
- Yang, S.; Li, L.; Fei, S.; Yang, M.; Tao, Z.; Meng, Y.; Xiao, Y. Wheat yield prediction using machine learning method based on UAV remote sensing data. Drones 2024, 8, 284. [Google Scholar] [CrossRef]
- Ngoune, L.; Shelton, C. Factors Affecting Yield of Crops. In Agronomy—Climate Change and Food Security; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Archana, S.; Kumar, P.S. A Survey on Deep Learning Based Crop Yield Prediction. Nature Environ. Pollut. Technol. 2023, 22, 579–592. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Ata-Ul-Karim, S.T.; Ge, Q.; Li, X.; Xiao, J. Integrating climate and satellite remote sensing data for predicting county-level wheat yield in China using machine learning methods. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102861. [Google Scholar] [CrossRef]
- Pang, A.; Chang, M.W.L.; Chen, Y. Evaluation of Random Forests (RF) for Regional and Local-Scale Wheat Yield Prediction in Southeast Australia. Sensors 2022, 22, 717. [Google Scholar] [CrossRef]
- Halder, M.; Datta, A.; Siam, M.K.H.; Mahmud, S.; Sarkar, M.S.; Rana, M.M. A Systematic Review on Crop Yield Prediction Using Machine Learning. In Intelligent Systems and Networks; Nguyen, T.D.L., Verdú, E., Le, A.N., Ganzha, M., Eds.; Springer: Singapore, 2023; Volume 752. [Google Scholar] [CrossRef]
- Meghraoui, K.; Sebari, I.; Pilz, J.; Ait El Kadi, K.; Bensiali, S. Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis of Current Developments and Potential Challenges. Technologies 2024, 12, 43. [Google Scholar] [CrossRef]
- Yu, F.; Wang, M.; Xiao, J.; Zhang, Q.; Zhang, J.; Liu, X.; Ping, Y.; Luan, R. Advancements in Utilizing Image-Analysis Technology for Crop-Yield Estimation. Remote Sens. 2024, 16, 1003. [Google Scholar] [CrossRef]
- Maestrini, B.; Basso, B. Drivers of within-field spatial and temporal variability of crop yield across the US Midwest. Sci. Rep. 2018, 8, 14833. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Conceição, L.A.; Lidon, F.C.; Patanita, M.; D’Antonio, P.; Fiorentino, C. Digitization of Crop Nitrogen Modelling: A Review. Agronomy 2023, 13, 1964. [Google Scholar] [CrossRef]
- Cardillo, C.; Cimino, O. Small Farms in Italy: What Is Their Impact on the Sustainability of Rural Areas? Land 2022, 11, 2142. [Google Scholar] [CrossRef]
- Fiorentino, C.; D’Antonio, P.; Toscano, F.; Donvito, A.; Modugno, F. New Technique for Monitoring High Nature Value Farmland (HNVF) in Basilicata. Sustainability 2023, 15, 8377. [Google Scholar] [CrossRef]
- Leukel, J.; Zimpel, T.; Stumpe, C. Machine learning technology for early prediction of grain yield at the field scale: A systematic review. Comput. Electron. Agric. 2023, 207, 107721. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models. Remote Sens. 2020, 12, 4000. [Google Scholar] [CrossRef]
- Shafiee, S.; Lied, L.M.; Burud, I.; Dieseth, J.A.; Alsheikh, M.; Lillemo, M. Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery. Comput. Electron. Agric. 2021, 183, 106036. [Google Scholar] [CrossRef]
- Fan, H.; Liu, S.; Li, J.; Li, L.; Dang, L.; Ren, T.; Lu, J. Early prediction of the seed yield in winter oilseed rape based on the near-infrared reflectance of vegetation (NIRv). Comput. Electron. Agric. 2021, 186, 106166. [Google Scholar] [CrossRef]
- Roy Choudhury, M.; Das, S.; Christopher, J.; Apan, A.; Chapman, S.; Menzies, N.W.; Dang, Y.P. Improving Biomass and Grain Yield Prediction of Wheat Genotypes on Sodic Soil Using Integrated High-Resolution Multispectral, Hyperspectral, 3D Point Cloud, and Machine Learning Techniques. Remote Sens. 2021, 13, 3482. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Bhadra, S.; Maimaitiyiming, M.; Brown, D.R.; Sidike, P.; Fritschi, F.B. Field-scale crop yield prediction using multi-temporal WorldView-3 and PlanetScope satellite data and deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 174, 265–281. [Google Scholar] [CrossRef]
- Sharifi, A. Yield prediction with machine learning algorithms and satellite images. J. Sci. Food Agric. 2020, 101, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel-2 Operations. Available online: https://www.esa.int/Enabling_Support/Operations/Sentinel-2_operations (accessed on 25 May 2024).
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High-resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Jewiss, J.L.; Brown, M.E.; Escobar, V.M. Satellite Remote Sensing Data for Decision Support in Emerging Agricultural Economies: How Satellite Data Can Transform Agricultural Decision Making [Perspectives]. IEEE Geosci. Remote Sens. Mag. 2020, 8, 117–133. [Google Scholar] [CrossRef]
- Dhillon, M.S.; Dahms, T.; Kübert-Flock, C.; Steffan-Dewenter, I.; Zhang, J.; Ullmann, T. Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria. Remote Sens. 2022, 14, 677. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel-2 Products Specification Document. Available online: https://sentinel.esa.int/documents/247904/685211/sentinel-2-products-specification-document (accessed on 25 May 2024).
- Faqe Ibrahim, G.; Rasul, A.; Abdullah, H. Sentinel-2 Accurately Estimated Wheat Yield in a Semi-Arid Region Compared with Landsat 8. Int. J. Remote Sens. 2023, 44, 4115–4136. [Google Scholar] [CrossRef]
- Mancini, A.; Solfanelli, F.; Coviello, L.; Martini, F.M.; Mandolesi, S.; Zanoli, R. Time Series from Sentinel-2 for Organic Durum Wheat Yield Prediction Using Functional Data Analysis and Deep Learning. Agronomy 2024, 14, 109. [Google Scholar] [CrossRef]
- Mandanici, E.; Bitelli, G. Preliminary Comparison of Sentinel-2 and Landsat 8 Imagery for a Combined Use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef]
- Nguyen-Thanh Son, C.-F.; Chen, Y.-S.; Cheng, P.; Toscano, P.; Chen, S.-L.; Tseng, K.-H.; Syu, C.-H.; Guo, H.-Y.; Zhang, Y.-T. Field-Scale Rice Yield Prediction from Sentinel-2 Monthly Image Composites Using Machine Learning Algorithms. Ecol. Inform. 2022, 69, 101618. [Google Scholar] [CrossRef]
- Yli-Heikkilä, M.; Wittke, S.; Luotamo, M.; Puttonen, E.; Sulkava, M.; Pellikka, P.; Heiskanen, J.; Klami, A. Scalable Crop Yield Prediction with Sentinel-2 Time Series and Temporal Convolutional Network. Remote Sens. 2022, 14, 4193. [Google Scholar] [CrossRef]
- Desloires, J.; Ienco, D.; Botrel, A. Out-of-Year Corn Yield Prediction at Field-Scale Using Sentinel-2 Satellite Imagery and Machine Learning Methods. Comput. Electron. Agric. 2023, 209, 107807. [Google Scholar] [CrossRef]
- Amankulova, K.; Farmonov, N.; Mucsi, L. Time-Series Analysis of Sentinel-2 Satellite Images for Sunflower Yield Estimation. Smart Agric. Technol. 2023, 3, 100098. [Google Scholar] [CrossRef]
- Fieuzal, R.; Bustillo, V.; Collado, D.; Dedieu, G. Combined Use of Multi-Temporal Landsat-8 and Sentinel-2 Images for Wheat Yield Estimates at the Intra-Plot Spatial Scale. Agronomy 2020, 10, 327. [Google Scholar] [CrossRef]
- Li, L.; Wang, B.; Feng, P.; Wang, H.; He, Q.; Wang, Y.; Liu, D.L.; Li, Y.; He, J.; Feng, H.; et al. Crop Yield Forecasting and Associated Optimum Lead Time Analysis Based on Multi-Source Environmental Data Across China. Agric. For. Meteorol. 2021, 308–309, 108558. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, X.; Shao, Y.; Chen, Y. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Sharma, M.; Bangotra, P.; Gautam, A.S.; Gautam, S. Sensitivity of Normalized Difference Vegetation Index (NDVI) to Land Surface Temperature, Soil Moisture and Precipitation Over District Gautam Buddh Nagar, UP, India. Stoch. Environ. Res. Risk Assess. 2022, 36, 1779–1789. [Google Scholar] [CrossRef]
- Radočaj, D.; Šiljeg, A.; Marinović, R.; Jurišić, M. State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review. Agriculture 2023, 13, 707. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Hollingsworth, B.V.; Chen, L.; Reichenbach, S.E.; Irish, R.R. Automated Cloud Cover Assessment for Landsat TM Images. In Imaging Spectrometry II; International Society for Optics and Photonics: Bellingham, WA, USA, 1996; pp. 170–179. [Google Scholar] [CrossRef]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ Automated Cloud-Cover Assessment (ACCA) Algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Scaramuzza, P.L.; Bouchard, M.A.; Dwyer, J.L. Development of the Landsat Data Continuity Mission Cloud-Cover Assessment Algorithms. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1140–1154. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D., Jr.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved Cloud and Cloud Shadow Detection in Landsats 4–8 and Sentinel-2 Imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Xie, F.; Shi, M.; Shi, Z.; Yin, J.; Zhao, D. Multilevel Cloud Detection in Remote Sensing Images Based on Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3631–3640. [Google Scholar] [CrossRef]
- Jeppesen, J.H.; Jacobsen, R.H.; Inceoglu, F.; Toftegaard, T.S. A Cloud Detection Algorithm for Satellite Imagery Based on Deep Learning. Remote Sens. Environ. 2019, 229, 247–259. [Google Scholar] [CrossRef]
- Segal-Rozenhaimer, M.; Li, A.; Das, K.; Chirayath, V. Cloud Detection Algorithm for Multi-Modal Satellite Imagery Using Convolutional Neural Networks (CNN). Remote Sens. Environ. 2020, 237, 111446. [Google Scholar] [CrossRef]
- López-Puigdollers, D.; Mateo-García, G.; Gómez-Chova, L. Benchmarking Deep Learning Models for Cloud Detection in Landsat-8 and Sentinel-2 Images. Remote Sens. 2021, 13, 992. [Google Scholar] [CrossRef]
- Skakun, S.; Wevers, J.; Brockmann, C.; Doxani, G.; Aleksandrov, M.; Batič, M.; Frantz, D.; Gascon, F.; Gómez-Chova, L.; Hagolle, O.; et al. Cloud Mask Intercomparison Exercise (CMIX): An Evaluation of Cloud Masking Algorithms for Landsat 8 and Sentinel-2. Remote Sens. Environ. 2022, 274, 112990. [Google Scholar] [CrossRef]
- Dombrovsky, L.A.; Solovjov, V.P.; Webb, B.W. Attenuation of solar radiation by a water mist from the ultraviolet to the infrared range. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1182–1190. [Google Scholar] [CrossRef]
- Sentinel Hub. Improving Cloud Detection with Machine Learning. Available online: https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13 (accessed on 25 May 2024).
- Google Earth Engine. COPERNICUS Sentinel-2 Cloud Probability Dataset. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY#description (accessed on 25 May 2024).
- Google Earth Blog. More Accurate and Flexible Cloud Masking for Sentinel-2 Images. Available online: https://medium.com/google-earth/more-accurate-and-flexible-cloud-masking-for-sentinel-2-images-766897a9ba5f (accessed on 25 May 2024).
- Zeng, L.; Wardlow, B.D.; Hu, S.; Zhang, X.; Zhou, G.; Peng, G.; Xiang, D.; Wang, R.; Meng, R.; Wu, W. A Novel Strategy to Reconstruct NDVI Time-Series with High Temporal Resolution from MODIS Multi-Temporal Composite Products. Remote Sens. 2021, 13, 1397. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, G.; Ling, H.; Han, F. Comparison of Time-Integrated NDVI and Annual Maximum NDVI for Assessing Grassland Dynamics. Ecol. Indic. 2022, 136, 108611. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Y.; Zhang, Y.; Li, M.; Xie, M.; Mo, W. Response of Vegetation Normalized Difference Vegetation Index to Different Meteorological Disaster Indexes in Karst Region of Guangxi, China. Heliyon 2023, 9, e20518. [Google Scholar] [CrossRef]
- Google Earth Engine. Make a Greenest Pixel Composite. Available online: https://developers.google.com/earth-engine/tutorials/tutorial_api_06#make-a-greenest-pixel-composite (accessed on 25 May 2024).
- Visual Crossing Weather Data Services. Available online: https://www.visualcrossing.com/weather/weather-data-services (accessed on 27 May 2024).
- Shang, Q.; Wang, Y.; Tang, H.; Sui, N.; Zhang, X.; Wang, F. Genetic, Hormonal, and Environmental Control of Tillering in Wheat. Crop J. 2021, 9, 986–991. [Google Scholar] [CrossRef]
- Xie, Q.; Mayes, S.; Sparkes, D.L. Optimizing Tiller Production and Survival for Grain Yield Improvement in a Bread Wheat × Spelt Mapping Population. Ann. Bot. 2016, 117, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Pais, I.P.; Moreira, R.; Semedo, J.N.; Ramalho, J.C.; Lidon, F.C.; Coutinho, J.; Maçãs, B.; Scotti-Campos, P. Wheat Crop under Waterlogging: Potential Soil and Plant Effects. Plants 2022, 12, 149. [Google Scholar] [CrossRef]
- Kronenberg, L.; Yates, S.; Boer, M.P.; Kirchgessner, N.; Walter, A.; Hund, A. Temperature Response of Wheat Affects Final Height and the Timing of Stem Elongation under Field Conditions. bioRxiv 2020, 756700. [Google Scholar] [CrossRef]
- Lombardia Region; General Directorate of Agriculture. Disciplinari Colture Cerealicole. Available online: https://www.risoitaliano.eu/customcontents/TRACCIA.pdf (accessed on 7 March 2024).
- Prabhakara, K.; Hively, W.D.; McCarty, G.W. Evaluating the Relationship Between Biomass, Percent Ground-Cover and Remote Sensing Indices Across Six Winter Cover Crop Fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102. [Google Scholar] [CrossRef]
- EEB/Birdlife Europe. Soil and Carbon Farming in the New CAP: Alarming Lack of Action and Ambition. Available online: https://eeb.org/wp-content/uploads/2022/06/Briefing-Soil-Health-No-Branding-V2.pdf (accessed on 28 August 2024).
- Meroni, M.; Waldner, F.; Seguini, L.; Kerdiles, H.; Rembold, F. Yield Forecasting with Machine Learning and Small Data: What Gains for Grains. Agric. For. Meteorol. 2021, 308–309, 108555. [Google Scholar] [CrossRef]
- Lai, Y.R.; Pringle, M.J.; Kopittke, P.M.; Menzies, N.W.; Orton, T.G.; Dang, Y.P. An Empirical Model for Prediction of Wheat Yield, Using Time-Integrated Landsat NDVI. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 99–108. [Google Scholar] [CrossRef]
- Liu, L.; Basso, B. Linking Field Survey with Crop Modeling to Forecast Maize Yield in Smallholder Farmers’ Fields in Tanzania. Food Sec. 2020, 12, 537–548. [Google Scholar] [CrossRef]
Year | Yield (q/ha) |
---|---|
2018 | 57 |
2020 | 79 |
2022 | 65 |
FmMVC as CP Threshold Varies | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CP threshold (%) | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% |
FmMVC 2018-03 | No Data (entire field masked) | 0.2965 | 0.3262 | 0.3441 | 0.4064 | 0.4725 | 0.4700 | 0.4515 | 0.4275 | 0.3368 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colonna, R.; Genzano, N.; Ciancia, E.; Filizzola, C.; Fiorentino, C.; D’Antonio, P.; Tramutoli, V. A Method to Determine the Optimal Period for Field-Scale Yield Prediction Using Sentinel-2 Vegetation Indices. Land 2024, 13, 1818. https://doi.org/10.3390/land13111818
Colonna R, Genzano N, Ciancia E, Filizzola C, Fiorentino C, D’Antonio P, Tramutoli V. A Method to Determine the Optimal Period for Field-Scale Yield Prediction Using Sentinel-2 Vegetation Indices. Land. 2024; 13(11):1818. https://doi.org/10.3390/land13111818
Chicago/Turabian StyleColonna, Roberto, Nicola Genzano, Emanuele Ciancia, Carolina Filizzola, Costanza Fiorentino, Paola D’Antonio, and Valerio Tramutoli. 2024. "A Method to Determine the Optimal Period for Field-Scale Yield Prediction Using Sentinel-2 Vegetation Indices" Land 13, no. 11: 1818. https://doi.org/10.3390/land13111818
APA StyleColonna, R., Genzano, N., Ciancia, E., Filizzola, C., Fiorentino, C., D’Antonio, P., & Tramutoli, V. (2024). A Method to Determine the Optimal Period for Field-Scale Yield Prediction Using Sentinel-2 Vegetation Indices. Land, 13(11), 1818. https://doi.org/10.3390/land13111818