Toward Smart Urban Management: Integrating Geographic Information Systems and Geology for Underground Bearing Capacity Prediction in Casablanca City, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. General Methodology
- The foundations are superficial.
- The shape of the foundations is square or rectangular.
- The ground is horizontal, and the foundations are vertical and not inclined.
- The geometry and mechanical properties of the soil are homogeneous.
- The contact between the sole and the ground is rough.
- The characteristics of the applied load are vertical and centered.
- The absence of a water table at different depths.
2.4. Geotechnical and Topographical Context
2.5. Substratum Definition and Bearing Capacity Calculation
2.6. Structuring the Database
- The level of good soil (m): indispensable parameter in the implementation and dimensioning of any civil engineering works.
- Soil bearing capacity q (bars): bearing capacity “q”. This characteristic of the soil is essential; the higher it is, the better. But still, it must be homogeneous under all the foundations; otherwise, a differential settlement will inevitably occur and induce pathologies.
- For the ground, the angle of friction (φ), and the cohesion (C) Ref. [49].
2.7. Geostatistical Techniques
3. Results
3.1. Bearing Capacity Calculation Using Geostatistics
3.2. Calculation of “Substrate Depth” by Geostatistical Methods
4. Discussion
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, H.; Zhang, K.; Wang, F.; Dang, A. Compact or disperse? Evolution patterns and coupling of urban land expansion and population distribution evolution of major cities in China, 1998–2018. Habitat Int. 2021, 108, 102324. [Google Scholar] [CrossRef]
- Tudes, S. Correlation Between Geology, Earthquake and Urban Planning. Earthq. Res. Anal. Stat. Stud. Obs. Plan. 2012, 20, 417–434. [Google Scholar]
- Culshaw, M.G. The 2010 hans cloos lecture: The contribution of urban geology to the development, regeneration and conservation of cities. Bull. Eng. Geol. Environ. 2011, 77, 333–376. [Google Scholar] [CrossRef]
- Nott, J.F. The urban geology of Cairns, Queensland, Australia. Quat. Int. 2003, 103, 75–82. [Google Scholar] [CrossRef]
- Willey, E.C. Urban geology of the Toowoomba conurbation, SE Queensland, Australia. Quat. Int. 2003, 103, 57–74. [Google Scholar] [CrossRef]
- Haworth, R.J. The shaping of Sydney by its urban geology. Quat. Int. 2003, 103, 41–55. [Google Scholar] [CrossRef]
- Özsan, A.; Öcal, A.; Akın, M.; Başarır, H. Engineering geological appraisal of the Sulakyurt dam site, Turkey. Bull. Eng. Geol. Environ. 2007, 66, 483–492. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Papanastassiou, D.; Chousianitis, K.G. Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environ. Earth Sci. 2012, 66, 537–548. [Google Scholar] [CrossRef]
- Davies, T.C. Urban geology of African megacities. J. Afr. Earth Sci. 2015, 110, 188–226. [Google Scholar] [CrossRef]
- El May, M.; Dlala, M.; Chenini, I. Urban geological mapping: Geotechnical data analysis for rational development planning. Eng. Geol. 2010, 116, 129–138. [Google Scholar] [CrossRef]
- Tálita de Sena Nola, I.; Zuquette, L.V. Procedures of engineering geological mapping applied to urban planning in a data-scarce area: Application in southern Brazil. J. S. Am. Earth Sci. 2021, 107, 103141. [Google Scholar] [CrossRef]
- Petrosino, P.; Angrisani, A.C.; Barra, D.; Donadio, C.; Aiello, G.; Allocca, V.; Coda, S.; De Vita, P.; Jicha, B.R.; Calcaterra, D. Multiproxy approach to urban geology of the historical center of Naples, Italy. Quat. Int. 2021, 577, 147–165. [Google Scholar] [CrossRef]
- Pratesi, F.; Tapete, D.; Del Ventisette, C.; Moretti, S. Mapping interactions between geology, subsurface resource exploitation and urban development in transforming cities using InSAR Persistent Scatterers: Two decades of change in Florence, Italy. Appl. Geogr. 2016, 77, 20–37. [Google Scholar] [CrossRef]
- McGill, J.T. Growing Importance of Urban Geology; Geological Survey Circular 487, US Department of the Interior: Washington, DC, USA, 1964.
- Andersen, T.R.; Poulsen, S.E.; Pagola, M.A.; Medhus, A.B. Geophysical mapping and 3D geological modelling to support urban planning: A case study from Vejle, Denmark. J. Appl. Geophys. 2020, 180, 104130. [Google Scholar] [CrossRef]
- AbdelMaksoud, K.M.; Al-Metwaly, W.M.; Ruban, D.A.; Yashalova, N.N. Geological heritage under strong urbanization pressure: El-Mokattam and Abu Roash as examples from Cairo, Egypt. J. Afr. Earth Sci. 2018, 141, 86–93. [Google Scholar] [CrossRef]
- Andersen, T.R.; Poulsen, S.E.; Thomsen, P.; Havas, K. Geological characterization in urban areas based on geophysical mapping: A case study from Horsens, Denmark. J. Appl. Geophys. 2018, 150, 338–349. [Google Scholar] [CrossRef]
- Šipetić, N.; Kuzmić, P. Design the Future Urban Plan of the Underground Construction from the Aspect of Geological and Geotechnical Features of Belgrade’s Inner City Area. Procedia Eng. 2016, 165, 641–648. [Google Scholar] [CrossRef]
- Kokkala, A.; Marinos, V. An engineering geological database for managing, planning and protecting intelligent cities: The case of Thessaloniki city in Northern Greece. Eng. Geol. 2022, 301, 106617. [Google Scholar] [CrossRef]
- Inabi, O.; Attou, M.; Benzaazoua, M.; Qachar, M. Design of Cost-Effective and Sustainable Treatments of Old Landslides Adapted to the Moroccan Road Network: A Case Study of Regional Road R410 Crossing the Rifan Structural Domain. Water 2023, 15, 2423. [Google Scholar] [CrossRef]
- Zhou, N.Q.; Zhao, S. Urbanization process and induced environmental geological hazards in China. Nat. Hazards 2013, 67, 797–810. [Google Scholar] [CrossRef]
- Huang, Y.; Bao, Y.; Wang, Y. Analysis of geoenvironmental hazards in urban underground space development in Shanghai. Nat. Hazards 2015, 75, 2067–2079. [Google Scholar] [CrossRef]
- Chen, F.; Lin, H.; Zhang, Y.; Lu, Z. Ground subsidence geo-hazards induced by rapid urbanization: Implications from InSAR observation and geological analysis. Nat. Hazards Earth Syst. Sci. 2012, 12, 935–942. [Google Scholar] [CrossRef]
- Pescatore, E.; Gallo, M.; Giano, S.I. Urban Geoscience: The Challenge of Street Geology. Urban Sci. 2024, 8, 139. [Google Scholar] [CrossRef]
- Melelli, L.; Silvani, F.; Ercoli, M.; Pauselli, C.; Tosi, G.; Radicioni, F. Urban Geology for the Enhancement of the Hypogean Geosites: The Perugia Underground (Central Italy). Geoheritage 2021, 13, 18. [Google Scholar] [CrossRef]
- Wang, Z.F.; Cheng, W.C.; Wang, Y.Q. Investigation into geohazards during urbanization process of Xi’an, China. Nat. Hazards 2018, 92, 1937–1953. [Google Scholar] [CrossRef]
- Andriamamonjisoa, S.N.; Hubert-Ferrari, A. Combining geology, geomorphology and geotechnical data for a safer urban extension: Application to the Antananarivo capital city (Madagascar). J. Afr. Earth Sci. 2019, 151, 417–437. [Google Scholar] [CrossRef]
- Gocmez, B.D.; Cekirge, N.; Vardar, M. Effects of geological factors on urban planning: An example from the Termal settlement, Turkey. Geol. Environ. Sci. 2006, 749, 1–9. [Google Scholar]
- Mandarino, A. Urban geomorphology of a historical city straddling the Tanaro River (Alessandria, NW Italy). J. Maps 2021, 17, 29–41. [Google Scholar] [CrossRef]
- Deng, C.; Liu, J.; Liu, Y.; Li, Z.; Nie, X.; Hu, X.; Wang, L.; Zhang, Y.; Zhang, G.; Zhu, D.; et al. Spatiotemporal dislocation of urbanization and ecological construction increased the ecosystem service supply and demand imbalance. J. Environ. Manag. 2021, 288, 112478. [Google Scholar] [CrossRef]
- Shu, B.; Zhang, H.; Li, Y.; Qu, Y.; Chen, L. Spatiotemporal variation analysis of driving forces of urban land spatial expansion using logistic regression: A case study of port towns in Taicang City, China. Habitat Int. 2014, 43, 181–190. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.; Lv, Z.; Yao, N.; Wei, J. Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 409–417. [Google Scholar] [CrossRef]
- Ait Lemkademe, A.; Michelot, J.L.; Benkaddour, A.; Hanich, L.; Heddoun, O. Origin of Groundwater Salinity in the Draa Sfar Polymetallic Mine Area Using Conservative Elements (Morocco). Water 2022, 15, 82. [Google Scholar] [CrossRef]
- Ait Lemkademe, A.; El Ghorfi, M.; Zouhri, L.; Heddoun, O.; Khalil, A.; Maacha, L. Origin and Salinization Processes of Groundwater in the Semi-Arid Area of Zagora Graben, Southeast Morocco. Water 2023, 15, 2172. [Google Scholar] [CrossRef]
- Loukili, I.; Moutaki, S.E.; Ghafiri, A.; El, M. Gisand Remote Sensing Applied to Land Use Change of The Prefecture of CASABLANCA, Morocco from 1986 Until 2011. J. Eng. Res. Appl. 2014, 4, 19–24. [Google Scholar]
- Loukili, I.; El Moutaki, S.; El Hakdaoui, M. Monitoring the Spatio-Temporal Urban Expansion of Casablanca City (Morocco) on more than a Century using Gis and Remote Sensing. Eur. J. Sci. Res. 2015, 135, 258–267. [Google Scholar]
- Zerhouny, M.; Fadil, A.; Hakdaoui, M. Underground Space Utilization in the Urban Land-Use Planning of Casablanca (Morocco). Land 2018, 7, 143. [Google Scholar] [CrossRef]
- Tezcan, S.S.; Keceli, A.; Ozdemir, Z. Allowable Bearing Capacity of Shallow Foundations Based on Shear Wave Velocity. Geotech. Geol. Eng. 2006, 24, 203–218. [Google Scholar] [CrossRef]
- Peng, M.; Peng, H. The ultimate bearing capacity of shallow strip footings using slip-line method. Soils Found. 2019, 59, 601–616. [Google Scholar] [CrossRef]
- Akhavan Tavakoli, M.; Fathipour, H.; Payan, M.; Jamshidi Chenari, R.; Ahmadi, H. Seismic bearing capacity of shallow foundations subjected to inclined and eccentric loading using modified pseudo-dynamic method. Transp. Geotech. 2023, 40, 100979. [Google Scholar] [CrossRef]
- Han, D.; Xie, X.; Zheng, L.; Huang, L. The bearing capacity factor N γ of strip footings on c–ϕ–γ soil using the method of characteristics. SpringerPlus 2016, 5, 1482. [Google Scholar] [CrossRef]
- AL-Shyoukhi, T.; Elmeligy, M.; Altahrany, A. Bearing capacity and settlement of inclined skirted foundation resting on sand. Results Eng. 2023, 20, 101454. [Google Scholar] [CrossRef]
- Casablanca, O.; Biondi, G.; Cascone, E. Bearing capacity of shallow foundations accounting for seismic excess pore pressures. Soil Dyn. Earthq. Eng. 2023, 173, 108090. [Google Scholar] [CrossRef]
- Yang, K.; McVay, M.; Nguyen, T.; Wang, K.; Song, X.; Wasman, S.; Rodgers, M.; Horhota, D.; Herrera, R. Bearing capacity of shallow foundations on Florida limestone: A study of single layer and rock-over-sand subsurface. Comput. Geotech. 2023, 163, 105742. [Google Scholar] [CrossRef]
- Kameswara Rao, N.S.V. Foundation Design: Theory and Practice [Internet], 1st ed.; Wiley: Hoboken, NJ, USA, 2010; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470825365 (accessed on 18 December 2023).
- Combarieu, O. Capacité portante des fondations superficielles. Bulletin des Laboratoires des Ponts et Chaussées, 1997; 53–72. [Google Scholar]
- Argani, L.P.; Gajo, A.; Smith, C.C. Combined rupture mechanism of shallow foundations under drained conditions. Comput. Geotech. 2023, 163, 105710. [Google Scholar] [CrossRef]
- Baazouzi, M.; Benmeddour, D.; Mabrouki, A.; Mellas, M. 2D Numerical Analysis of Shallow Foundation Rested Near Slope under Inclined Loading. Procedia Eng. 2016, 143, 623–634. [Google Scholar] [CrossRef]
- Prado-Pérez, A.J.; Aracil, E.; Pérez Del Villar, L. A combined methodology using electrical resistivity tomography, ordinary kriging and porosimetry for quantifying total C trapped in carbonate formations associated with natural analogues for CO2 leakage. J. Appl. Geophys. 2014, 105, 21–33. [Google Scholar] [CrossRef]
- Cui, T.; Pagendam, D.; Gilfedder, M. Gaussian process machine learning and Kriging for groundwater salinity interpolation. Environ. Model. Softw. 2021, 144, 105170. [Google Scholar] [CrossRef]
- Marinoni, O. Improving geological models using a combined ordinary–indicator kriging approach. Eng. Geol. 2003, 69, 37–45. [Google Scholar] [CrossRef]
Data Type | Year | Procedure |
---|---|---|
Geological map sheets of Casablanca Mohammadia (1/100,000) | 1982–1983 | Digitization, observing and comparing |
Geotechnical map sheets of Eastern Casablanca Mohammedia (1/50,000) | 1953–1954 | Digitization, observing and comparing |
100 Geotechnical soundings surveys georeferenced in the Lambert conform conic projection | 1990–2020 | Digitization and Geostatistics |
Geological Formations | Index | Geological AGE | |
---|---|---|---|
Gray silts | A1 | Actuel to rharbien | Holocene |
Brown silts | q(1-6lb) | Soltanien to villafranchien | Pleistocene |
Red silts | q(1-6lr) | ||
Laminated gray dune calcarenites | q3d | Maarifien | |
Dune calcarenites | q4d | Masoudien | |
Beige sandy marl | m2 | Inferior Burdigalien | Miocene |
Graywackes and Siltstones | Km1 | The Average cambrien |
Land Suitability Classes | |||
---|---|---|---|
Suitable | Moderately Suitable | Non-Suitable | |
Bearing capacity (kPa) | >350 | 350–150//150–50 | <50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loukili, I.; Inabi, O.; El Ghorfi, M.; El Moutaki, S.; Ghafiri, A. Toward Smart Urban Management: Integrating Geographic Information Systems and Geology for Underground Bearing Capacity Prediction in Casablanca City, Morocco. Land 2024, 13, 1826. https://doi.org/10.3390/land13111826
Loukili I, Inabi O, El Ghorfi M, El Moutaki S, Ghafiri A. Toward Smart Urban Management: Integrating Geographic Information Systems and Geology for Underground Bearing Capacity Prediction in Casablanca City, Morocco. Land. 2024; 13(11):1826. https://doi.org/10.3390/land13111826
Chicago/Turabian StyleLoukili, Ikram, Omar Inabi, Mustapha El Ghorfi, Saida El Moutaki, and Abdessamad Ghafiri. 2024. "Toward Smart Urban Management: Integrating Geographic Information Systems and Geology for Underground Bearing Capacity Prediction in Casablanca City, Morocco" Land 13, no. 11: 1826. https://doi.org/10.3390/land13111826
APA StyleLoukili, I., Inabi, O., El Ghorfi, M., El Moutaki, S., & Ghafiri, A. (2024). Toward Smart Urban Management: Integrating Geographic Information Systems and Geology for Underground Bearing Capacity Prediction in Casablanca City, Morocco. Land, 13(11), 1826. https://doi.org/10.3390/land13111826